Publications: 2001-current

Last updated: Jul 2014

What does annealing do to metal-graphene contacts?

Leong W.S., Nai C.T., J.T.L. Thong

Nano Letters 14 (2014), 3840-3847

DOI:10.1021/nl500999r

Length-dependent thermal conductivity in suspended single-layer graphene

X Xu, Pereira L.F.C., Wang Y., Wu J, Zhang K, Zhao X., Bae S., Bui C.T., Xie R.G., Thong J.T.L., Hong B.H., Loh K.P., Donadio D., Li B., Ozyilmaz B.

Nature Communications 5:3689 (2014)

DOI:10.1038/ncomms4689

Suppression of void formation in Si0.5Ge0.5 alloy nanowire during Ni germanosilicidation

Li Y., Buddharaju K., Wang X-P, Lee S-J, Thong T.L.

Advanced Engineering Materials (2014)

DOI:10.1002/adem.201300462

Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials

Han T., Bai X., Thong J.T.L., Li B., Qiu C.W.

Advanced Materials 26 (2014), 1731-1734

DOI:10.1002/adma.201304448

Experimental demonstration of a bilayer thermal cloak

Han T., Bai X., Gao D., Thong J.T.L., Li B., Qiu C.W.

Physical Review Letters 112 (2014), 054302

DOI:10.1103/PhysRevLett.112.054302

Control of surface morphology and crystal structure of silicon nanowires and their coherent phonon transport characteristics

Lee S-Y.., Kim G-S., Lim J., Han S., Li B., Thong J.T.L., Yoon Y-G., Lee S-K..

Acta Materialia 64 (2014), 62-71

DOI:10.1016/j.actamat.2013.11.042

Profiling nanowire thermal resistance with a spatial resolution of nanometers

Liu D., Xie R., Yang N., Li B., J.T.L. Thong

Nano Letters 14 (2014), 806-812

DOI:10.1021/nl4041516

Low-contact-resistance graphene devices with nickel-etched-graphene contacts

Leong W.S., Gong H., Thong J.T.L.

ACS Nano 8 (2014), 994-1001

DOI:10.1021/nn405834b

Suppressing thermal conductivity of suspended tri-layer graphene by gold deposition

Wang J., Zhu L., Chen J., B.Li, Thong J.T.L.

Advanced Materials 25 (2013), 6884-6888

DOI: 10.1002/adma.201303362

Polarization splitter using horizontal slot waveguide

Zhang H., Huang Y., Das S., Li C., Yu M., Lo P.G.Q, Hong M., Thong J.T.L.

Optics Express , 21 (2013), 3363-3368

DOI: 10.1364/OE.21.003363

Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics

Zhang H., Das S., Huang Y., Li C., Chen S., Zhou H., Yu M., Lo P.G.Q, Thong J.T.L.

Applied Physics Letters , 101 (2012), 021105

DOI: 10.1063/1.4734640

 

Magnetism in MoS2 induced by proton irradiation

Mathew S, Gopinadhan K., Chan T.K., Yu X.J., Zhan D., Cao L., Rusydi A., Breese M.B.H., Dhar S., Shen, Z.X., Venkatesan T., Thong J.T.L.

Applied Physics Letters , 101 (2012), 102103

DOI: 10.1063/1.4750237

 

Cobalt-mediated crystallographic etching of graphite from defects

Wang R., Wang J., Gong H., Luo Z., Zhan D., Shen Z, Thong J.T.L.

Small , 8 (2012), 2515-2523

DOI: 10.1002/smll.201102747

 

Diameter-dependent thermal transport in individual ZnO nanowires and its correlation with surface coating and defects

Bui C.T., Xie R., Zheng M., Zhang Q., Sow C.H., Li B., Thong J.T.L.

Small, 8 (2012), 738-745

DOI: 10.1002/smll.201102046

 

Flow sensing of single cell by graphene transistor in a microfluidic channel

Ang P.K., Li A., Jaiswal M., Wang Y., Hou H.W., Thong J.T.L., Lim C.T., Loh K.P.

Nano Letters, 11 , 5240-5246 (2011)

DOI: 10.1021/nl202579k

Mega-electron-volt proton irradiation on supported and suspended graphene: A Raman spectroscopic layer dependent study

Mathew S, Chan T.K., Zhan D., Gopinadhan K., Barman A.R., Breese M.B.H., Dhar S., Shen Z.X., Venkatesan T., Thong J.T.L.

Journal of Applied Physics, 110 , 084309 (2011)

DOI: 10.1063/1.3647781

 

An electrically tuned solid-state thermal memory based on metal–insulator transition of single-crystalline VO2 nanobeams

Xie R., Bui C.T., Varghese B., Zhang Q., Sow C.H., Li. B, Thong J.T.L.

Advanced Functional Materials, 21 , 1602-1607 (2011)

DOI: 10.1002/adfm.201002436

 

The effect of layer number and substrate on the stability of graphene under MeV proton beam irradiation

Mathew S., Chan T.K., Zhan D., Gopinadhan K., Barman A.R., Bresse M.B.H., Dhar S., Shen Z.X., Venkatesan T., Thong J.T.L.

Carbon, 49, 1720 - 1726 (2011)

DOI: 10.1016/j.carbon.2010.12.057

 

Thermal transport in suspended and supported few-layer graphene

Wang Z.Q., Xie R.G., Bui C.T., Liu D., Ni X.X., Li B.W., Thong J.T.L.

Nano Letters, 11, 113 - 118 (2011)

DOI: 10.1021/nl102923q

Featured in NPG Asia Materials (18 April 2011) : Link

 

Large-diameter graphene nanotubes synthesized using Ni nanowire templates

Wang R., Hao Y.F., Wang Z.Q., Gong H., Thong J.T.L.

Nano Letters, 10, 4844 - 4850 (2010)

DOI: 10.1021/nl102445x

Featured in NPG Asia Materials (28 February 2011) : Link

Thermal oxidation of polycrystalline tungsten nanowire

You G.F., Thong J.T.L.

Journal of Applied Physics, 108, 094312 (2010)

DOI: 10.1063/1.3504248

Gold on graphene as a substrate for surface enhanced Raman scattering study

Wang Y.Y., Ni Z.H., Hu H.L., Hao Y.F., Wong C.P., Yu T., Thong J.T.L., Shen Z.X.

Applied Physics Letters, 97, 163111 (2010)

DOI: 10.1063/1.3505335

Capturing a DNA duplex under near-physiological conditions

Zhang H.J., Xu W., Liu X.G., Stellacci F., Thong J.T.L.

Applied Physics Letters, 97, 163702 (2010)

DOI: 10.1063/1.3505152

Converting carbon nanofibers to carbon nanoneedles: catalyst splitting and reverse motion

Yun J., Wang R., Hong M.H., Thong J.T.L., Foo Y.L., Thompson C.V., Choi W.K.

Nanoscale, 2 , 2180 - 2185 (2010)

DOI: 10.1039/c0nr00265h

Self-aligned nanolithography by selective polymer dissolution

Zhang H.J., Wong C.L., Hao Y.F., Wang R., Liu X.G., Stellacci F., Thong J.T.L.

Nanoscale, 2 , 2302 - 2306 (2010)

DOI: 10.1039/c0nr00398k

Parallel fabrication of polymer-protected nanogaps

Zhang H, Thompson C.V., Stellacci F., Thong J.T.L.

Nanotechnology, 21, 385303 (2010)

DOI: 10.1088/0957-4484/21/38/385303

 

Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires

Dawood M.K., Liew T.H., Lianto P., Hong M.H., Tripathy S., Thong J.T.L., Choi W.K.

Nanotechnology, 21, 205305 (2010)

DOI: 10.1088/0957-4484/21/20/205305

Improving the morphological stability of a polycrystalline tungsten nanowire with a carbon shell

You G.F., Gong H., Thong J.T.L.

Nanotechnology, 21, 195701 (2010)

DOI: 10.1088/0957-4484/21/19/195701

 

Field emission from a large area of vertically-aligned carbon nanofibers with nanoscale tips and controlled spatial geometry

Yun J., Wang R., Choi W.K., Thong J.T.L., Thompson C.V., Zhu M., Foo Y.L., Hong M.H.

Carbon, 48, 1362 - 1368 (2010)

DOI: 10.1016/j.carbon.2009.12.026

 

Probing layer number and stacking order of few-layer graphene by Raman Spectroscopy

Hao Y., Wang Y., Wang L., Ni Z., Wang Z., Wang R., Koo C.K., Shen Z., Thong J.T.L.

Small, 6, 195 - 200 (2010)

DOI: 10.1002/smll.200901173

 

High mobility, printable, and solution-processed graphene electronics

Wang S., Ang P.K., Wang Z., Tang A.L.L., Thong J.T.L., Loh K.P.

Nano Letters, 10, 92 - 98 (2010)

DOI: 10.1021/nl9028736

 

Polymer-protected sub-2-nm-nanogap fabrication for biological sensing in near-physiological conditions

Zhang H., Barsotti R.J., Wong C.L., Xue X., Liu X., Stellacci F., Thong J.T.L.

Small, 5, 2797 - 2801 (2009)

DOI: 10.1002/smll.200900938

 

High-throughput synthesis of graphene by intercalation-exfoliation of graphite oxide and study of ionic screening in graphene transistor

Ang P.K., Wang S., Bao Q., Thong J.T.L., Loh K.P

ACS Nano, 3, 3587 - 3594 (2009)

DOI: 10.1021/nn901111s

 

P -type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires

Liao L., Yan B., Hao Y.F., Xing G.Z., Liu J.P., Zhao B.C., Shen Z.X., Wu T., Wang L., Thong J.T.L., Li C.M., Huang W., Yu T.

Applied Physics Letters, 94, 113106 (2009)

DOI: 10.1063/1.3097029

 

Simple, low-cost technique for photolithographic self-aligned top metal contacts to nanowires and nanotubes

Oon C.H., Thong J.T.L.

Nanotechnology, 19, 455305 (2008)

DOI: 10.1088/0957-4484/19/45/455305

 

Field emission properties of individual zinc oxide nanowire field emitter

Yeong K.S., Thong J.T.L.

Journal of Vacuum Science and Technology B, 26 , 983 - 989 (2008)

DOI: 10.1116/1.2919146

 

Improving the NH3 gas sensitivity of ZnO nanowire sensors by reducing the carrier concentration

Law J.B.K., Thong J.T.L.

Nanotechnology, 19, 205502 (2008)

DOI: 10.1088/0957-4484/19/20/205502

Featured in Nanotechweb (28 April 2008) : Link

 

Site-specific growth of ZnO nanowires from patterned Zn via compatible semiconductor processing

Law J.B.K., Boothroyd C.B., Thong J.T.L.

Journal of Crystal Growth, 310, 2485 - 2492 (2008)

DOI: 10.1016/j.jcrysgro.2008.01.012

 

Horizontally directed growth of carbon nanotubes utilizing self-generated electric field from plasma induced surface charging

Law J.B.K., Koo C.K., Thong J.T.L.

Applied Physics Letters, 91, 243108 (2007)

DOI: 10.1063/1.2824478

 

Enhanced field emission from CuO nanowire arrays by in situ laser irradiation

Zhu Y.W., Sow C.H., Thong J.T.L.

Journal of Applied Physics, 102, 114302 (2007)

DOI: 10.1063/1.2818096

 

Effect of sidewall modification in the determination of friction coefficient of vertically aligned carbon nanotube films using friction force microscopy

Ler J.G.Q., Hao Y., Thong J.T.L.

Carbon, 45, 2737 - 2743 (2007)

DOI: 10.1016/j.carbon.2007.09.038

 

The effects of gas exposure and UV illumination on field emission from individual ZnO nanowires

Yeong K.S., Maung K.H., Thong J.T.L.

Nanotechnology, 18, 185608 (2007)

DOI: 10.1088/0957-4484/18/18/185608

 

Lateral ZnO nanowire growth on a planar substrate using a growth barrier

Law J.B.K., Thong J.T.L.

Nanotechnology, 18, 55601 (2007)

DOI: 10.1088/0957-4484/18/5/055601

 

Co-synthesis of ZnO-CuO nanostructures by directly heating brass in air

Zhu Y., Sow C.H., Yu T., Zhao Q., Li P., Shen Z., Yu D., Thong J.T.L.

Advanced Functional Materials, 16, 2415 - 2422 (2006)

DOI: 10.1002/adfm.200600251

 

Field-emission properties of ultrathin 5 nm tungsten nanowire

Yeong K.S., Thong J.T.L.

Journal of Applied Physics, 100, 114325 (2006)

DOI: 10.1063/1.2400722

 

The growth mechanism and field-emission properties of single carbon nanotips

Yeong K.S., Boothroyd C.B., Thong J.T.L.

Nanotechnology, 17, 6 - 3655 - 3661 (2006)

DOI: 10.1088/0957-4484/17/15/006

 

Field-emission-induced growth of nanowire between electrodes

Yeong K.S., Law J.B.K., Thong J.T.L.

Applied Physics Letters, 88, 193116 (2006)

DOI: 10.1063/1.2202733

 

Life cycle of a tungsten cold field emitter

Yeong K.S., Thong J.T.L.

Journal of Applied Physics, 99, 104903 (2006)

DOI: 10.1063/1.2197267

 

In situ observation of localized metallic nanocrystal growth on carbon nanotube templates in a scanning electron microscope

Wong W.K., Lim S.H., Thong J.T.L.

Nanotechnology, 17, 2373 - 2377 (2006)

DOI: 10.1088/0957-4484/17/9/049

 

Characteristics of single metallic nanowire growth via a field-emission induced process

Oon C.H., Khong S.H., Boothroyd C.B., Thong J.T.L.

Journal of Applied Physics, 99, 64309 (2006)

DOI: 10.1063/1.2181281

 

Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time

Law J.B.K., Thong J.T.L.

Applied Physics Letters, 88, 133114 (2006)

DOI: 10.1063/1.2190459

Featured in Photonics Spectra (June 2006, pp 124-5) : PDF

 

Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching

Zhu Y., Elim H.I., Foo Y.L., Yu T., Liu Y., Ji W., Lee J.Y., Shen Z., Wee A.T.S., Thong J.T.L., Sow C.H.

Advanced Materials, 18, 587 - 592 (2006)

DOI: 10.1002/adma.200501918

 

Enhanced field emission from O2 and CF4 plasma-treated CuO nanowires

Zhu Y.W., Moo A.M., Yu T., Xu X.J., Gao X.Y., Liu Y.J., Lim C.T., Shen Z.X., Ong C.K., Wee A.T.S., Thong J.T.L., Sow C.H.

Chemical Physics Letters, 419, 458 - 463 (2006)

DOI: 10.1016/j.cplett.2005.11.087

 

Substrate-friendly synthesis of metal oxide nanostructures using a hotplate

Yu T., Zhu Y., Xu X., Yeong K.S., Shen Z., Chen P., Lim C.-T., Thong J.T.L., Sow C.H.

Small, 2, 80 - 84 (2006)

DOI: 10.1002/smll.200500234

 

Patterning and fusion of CuO nanorods with a focused laser beam

Yu T., Sow C.H., Gantimahapatruni A., Cheong F.C., Zhu Y., Chin K.C., Xu X., Lim C.T., Shen Z., Thong J.T.L., Wee A.T.S.

Nanotechnology, 16, 1238 - 1244 (2005)

DOI: 10.1088/0957-4484/16/8/043

 

Efficient field emission from a- Fe2O3 nanoflakes on an atomic force microscope tip

Zhu Y.W., Yu T., Sow C.H., Liu Y.J., Wee A.T.S., Xu X.J., Lim C.T., Thong J.T.L.

Applied Physics Letters, 87, 1 - 3 (2005)

DOI: 10.1063/1.1991978

 

Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films

Zhu Y.W., Yu T., Cheong F.C., Xu X.J., Lim C.T., Tan V.B.C., Thong J.T.L., Sow C.H.

Nanotechnology, 16, 88 - 92 (2005)

DOI: 10.1088/0957-4484/16/1/018

 

Effects of CF4 plasma on the field emission properties of aligned multi-wall carbon nanotube films

Zhu Y.W., Cheong F.C., Yu T., Xu X.J., Lim C.T., Thong J.T.L., Shen Z.X., Ong C.K., Liu Y.J., Wee A.T.S., Sow C.H.

Carbon, 43, 395 - 400 (2005)

DOI: 10.1016/j.carbon.2004.09.029

 

Controlled growth and field-emission properties of cobalt oxide nanowalls

Yu T., Zhu Y., Xu X., Shen Z., Chen P., Lim C.T., Thong J.T.L., Sow C.H.

Advanced Materials, 17, 1595 - 1599 (2005)

DOI: 10.1002/adma.200500322

 

Electron-acoustic and surface electron beam induced voltage signal formation in scanning electron microscopy analysis of semiconducting samples

Wong W.K., Rau E.I., Thong J.T.L.

Ultramicroscopy, 101, 183 - 195 (2004)

DOI: 10.1016/j.ultramic.2004.06.002

 

Fabrication of super-sharp nanowire atomic force microscope probes using a field emission induced growth technique

Tay A.B.H., Thong J.T.L.

Review of Scientific Instruments, 75, 3248 - 3255 (2004)

DOI: 10.1063/1.1791321

 

Large-scale ordered carbon nanotube arrays initiated from highly ordered catalyst arrays on silicon substrates

Lei Y., Yeong K.S., Thong J.T.L., Chim W.K.

Chemistry of Materials, 16, 2757 - 2761 (2004)

DOI: 10.1021/cm049588p

 

Effects of adsorbates on the field emission current from carbon nanotubes

Yeong K.S., Thong J.T.L.

Applied Surface Science, 233, 20 - 23 (2004)

DOI: 10.1016/j.apsusc.2004.03.222

 

High-resolution nanowire atomic force microscope probe grown by a field-emission induced process

Tay A.B.H., Thong J.T.L.

Applied Physics Letters, 84 , 5207 - 5209 (2004)

DOI: 10.1063/1.1765202

 

In situ nanowire growth for electrical interconnects

Oon C.H., Thong J.T.L.

Nanotechnology, 15 , 687 - 691 (2004)

DOI: 10.1088/0957-4484/15/5/048

 

Effect of Shot Noise and Secondary Emission Noise in Scanning Electron Microscope Images

Sim K.S., Thong J.T.L., Phang J.C.H.

Scanning, 26, 36 - 40 (2002)

DOI: 10.1002/sca.4950260106

 

Laser pruning of carbon nanotubes as a route to static and movable structures

Lim K.Y., Sow C.H., Lin J., Cheong F.C., Shen Z.X., Thong J.T.L., Chin K.C., Wee A.T.S.

Advanced Materials, 15 , 300 - 303 (2003)

DOI: 10.1002/adma.200390072

 

Add-on transmission attachments for the scanning electron microscope

Khursheed A., Karuppiah N., Osterberg M., Thong J.T.L.

Review of Scientific Instruments, 74 , 134 - 140 (2003)

DOI: 10.1063/1.1529301

 

Field-emission induced growth of nanowires

Thong J.T.L., Oon C.H., Yeadon M., Zhang W.D.

Applied Physics Letters, 81, 4823 - 4825 (2002)

DOI: 10.1063/1.1529084

Featured in Nature Nanozone Highlights (19 December 2002) : Link

 

High-resolution atomic force microscope nanotip grown by self-field emission

Oon C.H., Thong J.T.L., Lei Y., Chim W.K.

Applied Physics Letters, 81, 3037 (2002)

DOI: 10.1063/1.1515120

 

Fabrication of vertically aligned carbon nanotubes patterns by chemical vapor deposition for field emitters

Zhang W.D., Thong J.T.L., Tjiu W.C., Gan L.M.

Diamond and Related Materials, 11, 1638 - 1642 (2002)

DOI: 10.1016/S0925-9635(02)00110-3

 

Automatic integrated circuit die positioning in the scanning electron microscope

Tan H.W., Phang J.C.H., Thong J.T.L.

Scanning, 24, 86 - 91 (2002)

DOI: 10.1002/sca.4950240206

 

Properties and applications of cobalt-based material produced by electron-beam-induced deposition

Lau Y.M., Chee P.C., Thong J.T.L., Ng V.

Journal of Vacuum Science and Technology A, 20, 1295 - 1302 (2002)

DOI: 10.1116/1.1481040

 

Reduction of charging effects using vector scanning in the scanning electron microscope

Thong J.T.L., Lee K.W., Wong W.K.

Scanning, 23 , 395 - 402 (2001)

DOI: 10.1002/sca.4950230606

 

Effect of pseudo-random scan parameters on negative specimen charging and beam landing errors in the scanning electron microscope

Thong J.T.L., Wong W.K., Zainal A.

Scanning, 23, 113 - 114 (2001)

DOI: 10.1002/sca.4950230201

 

Specimen charging characterization using computer-based image contrast-emission processing for the scanning electron microscope

Wong W.K., Wei Y.Z., Phang J.C.H., Thong J.T.L.

Scanning, 23, 114 - 115 (2001)

DOI: 10.1002/sca.4950230201

 

High-current field emission from a vertically aligned carbon nanotube field emitter array

Thong J.T.L., Oon C.H., Eng W.K., Zhang W.D., Gan L.M.

Applied Physics Letters, 79, 2811 -1 2813 (2001)

DOI: 10.1063/1.1412590

 

Single-image signal-to-noise ratio estimation

Thong J.T.L., Sim K.S., Phang J.C.H.

Scanning, 23, 328 - 336 (2001)

DOI: 10.1002/sca.4950230506

 

Controlled synthesis of aligned carbon nanotube arrays on catalyst patterned silicon substrates by plasma-enhanced chemical vapor deposition

Wang H., Lin J., Huan C.H.A., Dong P., He J., Tang S.H., Eng W.K., Thong T.L.J.

Applied Surface Science, 181, 248 - 254 (2001)

DOI: 10.1016/S0169-4332(01)00391-9

 

Evolution of hillocks during silicon etching in TMAH

Thong J.T.L., Luo P., Choi W.K., Tan S.C.

Journal of Micromechanics and Microengineering, 11, 61 - 69 (2001)

DOI: 10.1088/0960-1317/11/1/310

 

back to top

 

 

Books

 

 

Electron Beam Testing Technology (ed. J.T.L. Thong), (Plenum, 1993).

 

Publisher Notes: A comprehensive volume on the electron beam testing (EBT) of integrated circuits (ICs), drawing together both background material and recent developments. The text is divided into three parts. Part I is introductory, explaining why such technology has achieved its current status in IC testing, and its basic principles. Part II is a reference section which discusses the fundamental elements of the subject. Part III concentrates on the practical and implementational aspects of the technology, such as test automation and device handling, and includes case studies.

 

 

back to top