The ε-Capacity Region of AWGN Multiple Access Channels with Feedback

Vincent Y. F. Tan
(Joint work with Lan V. Truong and Silas L. Fong)

National University of Singapore (NUS)

SPCOM 2016, Bangalore
Shannon Centenary:

Shannon abstracted away information meaning, "semantics" • treat all data equally — bits as a "universal currency" • crucial abstraction for modern communication and computing systems

Also relaxed computation and delay constraints to discover a fundamental limit: capacity, providing a goal-post to work toward

For a channel \(\{ p(y|x) : x \in X, y \in Y \} \), we can transmit information with rates up to the capacity [Shannon (1948)]

"Feedback doesn't increase capacity" [Shannon (1956)]

Vincent Tan (NUS)
Shannon Centenary:

For a channel \(\{p(y|x) : x \in \mathcal{X}, y \in \mathcal{Y}\} \), we can transmit information with rates up to the capacity [Shannon (1948)]

\[
C = \max_{P \in \mathcal{P}(\mathcal{X})} I(X; Y)
\]
Shannon Centenary:

For a channel \(\{p(y|x) : x \in \mathcal{X}, y \in \mathcal{Y}\} \), we can transmit information with rates up to the capacity [Shannon (1948)]

\[
C = \max_{P \in \mathcal{P}(\mathcal{X})} I(X; Y)
\]

“Feedback doesn’t increase capacity” [Shannon (1956)]
At time $i = 1, 2, ..., n$, the channel input and output are related by $Y_i = gX_i + Z_i$, where $Z_i \sim \mathcal{N}(0, 1)$.

Send M messages encoded as codewords $\{X_n^m\} : m = 1, ..., M$.

Peak power constraint:
$$\sum_{i=1}^{n} X_i^2(m) \leq P, \quad \forall m \in \{1, ..., M\}$$

Expected or Long-Term power constraint:
$$\sum_{m=1}^{M} \left(\sum_{i=1}^{n} X_i^2(m) \right) \leq P.$$
At time $i = 1, 2, ..., n$, the channel input and output are related by:

$$Y_i = gX_i + Z_i,$$

where $Z_i \sim N(0, 1)$.

Send M messages encoded as codewords $\{X_n(m) : m = 1, ..., M\}$.

Peak power constraint:

$$\sum_{i=1}^{n} X_i^2(m) \leq P, \quad \forall m \in \{1, ..., M\}.$$

Expected or Long-Term power constraint:

$$\frac{1}{M} \sum_{m=1}^{M} \left(\sum_{i=1}^{n} X_i^2(m) \right) \leq P.$$
At time $i = 1, 2, \ldots, n$, the channel input and output are related by

$$Y_i = gX_i + Z_i, \quad Z_i \sim \mathcal{N}(0, 1)$$
At time $i = 1, 2, \ldots, n$, the channel input and output are related by

$$Y_i = gX_i + Z_i, \quad Z_i \sim \mathcal{N}(0, 1)$$

Send M messages encoded as codewords $\{X^n(m) : m = 1, \ldots, M\}$
At time $i = 1, 2, \ldots, n$, the channel input and output are related by

$$Y_i = gX_i + Z_i, \quad Z_i \sim \mathcal{N}(0, 1)$$

Send M messages encoded as codewords $\{X^n(m) : m = 1, \ldots, M\}$

Peak power constraint

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2(m) \leq P, \quad \forall m \in \{1, \ldots, M\}$$
At time $i = 1, 2, \ldots, n$, the channel input and output are related by

$$Y_i = gX_i + Z_i, \quad Z_i \sim \mathcal{N}(0, 1)$$

Send M messages encoded as codewords $\{X^n(m) : m = 1, \ldots, M\}$

Peak power constraint

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2(m) \leq P, \quad \forall m \in \{1, \ldots, M\}$$

Expected or **Long-Term** power constraint

$$\frac{1}{M} \sum_{m=1}^{M} \left(\frac{1}{n} \sum_{i=1}^{n} X_i^2(m) \right) \leq P.$$
Let the channel gain $g = 1$ wlog.
Let the channel gain $g = 1$ wlog.

The average probability of error is

$$P_e^{(n)} := \Pr(\hat{M} \neq M).$$
Let the channel gain $g = 1$ wlog.

The average probability of error is

$$P_e^{(n)} := \Pr(\hat{M} \neq M).$$

Define

$$M^*_{PP}(n, P, \varepsilon) := \max \left\{ M \in \mathbb{N} : \exists \text{ length-}n \text{ code with} \right.$$

$$M \text{ codewords and } P_e^{(n)} \leq \varepsilon \text{ under the PP constraint} \left. \right\}$$
Let the channel gain $g = 1$ wlog.

The average probability of error is

$$P_e^{(n)} := \Pr(\hat{M} \neq M).$$

Define

$$M^*_\text{PP}(n, P, \varepsilon) := \max \left\{ M \in \mathbb{N} : \exists \text{ length-}n \text{ code with} \right. \left. M \text{ codewords and } P_e^{(n)} \leq \varepsilon \text{ under the PP constraint} \right\}$$

Define

$$M^*_\text{LT}(n, P, \varepsilon) := \max \left\{ M \in \mathbb{N} : \exists \text{ length-}n \text{ code with} \right. \left. M \text{ codewords and } P_e^{(n)} \leq \varepsilon \text{ under the LT constraint} \right\}$$
Let

\[C(x) := \frac{1}{2} \log(1 + x), \quad \text{nats per ch. use} \]
First-Order Results

Let

\[C(x) := \frac{1}{2} \log(1 + x), \quad \text{nats per ch. use} \]

If we demand that the avg error prob. vanishes [Shannon (1948)],

\[
\lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} \frac{1}{n} \log M^*_\text{PP}(n, P, \varepsilon) = C(P),
\]

\[
\lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} \frac{1}{n} \log M^*_\text{LT}(n, P, \varepsilon) = C(P).
\]
First-Order Results

- Let
 \[C(x) := \frac{1}{2} \log(1 + x), \text{ nats per ch. use} \]

- If we demand that the avg error prob. vanishes [Shannon (1948)],
 \[
 \lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} \frac{1}{n} \log \mathcal{M}_{PP}^*(n, P, \varepsilon) = C(P), \\
 \lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} \frac{1}{n} \log \mathcal{M}_{LT}^*(n, P, \varepsilon) = C(P).
 \]

- In \(n \) channel uses, can send up to \(nC(P) \) nats over \(p(y|x) \) reliably.
If we do not demand that the avg error prob. vanishes
[Yoshihara (1964), Polyanskiy-Poor-Verdú (2010)],

\[
\lim_{n \to \infty} \frac{1}{n} \log M^*_{PP}(n, P, \varepsilon) = C(P)
\]

\[
\lim_{n \to \infty} \frac{1}{n} \log M^*_{LT}(n, P, \varepsilon) = C\left(\frac{P}{1 - \varepsilon}\right), \quad \forall \varepsilon \in (0, 1).
\]
If we do not demand that the avg error prob. vanishes \newline \cite{Yoshihara1964, Polyanskiy2010},

\[
\lim_{n \to \infty} \frac{1}{n} \log M_{PP}^*(n, P, \varepsilon) = C(P)
\]

\[
\lim_{n \to \infty} \frac{1}{n} \log M_{LT}^*(n, P, \varepsilon) = C\left(\frac{P}{1 - \varepsilon}\right), \quad \forall \varepsilon \in (0, 1).
\]

The above limits are known as the \(\varepsilon\)-capacities.
First-Order Results

- If we **do not** demand that the avg error prob. vanishes
 \[[\text{Yoshihara (1964), Polyanskiy-Poor-Verdú (2010)}], \]

\[
\lim_{n \to \infty} \frac{1}{n} \log M_{PP}^*(n, P, \varepsilon) = C(P) \\
\lim_{n \to \infty} \frac{1}{n} \log M_{LT}^*(n, P, \varepsilon) = C\left(\frac{P}{1 - \varepsilon}\right), \quad \forall \varepsilon \in (0, 1).
\]

- The above limits are known as the **\(\varepsilon\)-capacities**

- Since for **peak-power**, the **\(\varepsilon\)**-capacity does not depend on \(\varepsilon\), the strong converse holds
First-Order Results

- If we do not demand that the avg error prob. vanishes [Yoshihara (1964), Polyanskiy-Poor-Verdú (2010)],

\[
\lim_{n \to \infty} \frac{1}{n} \log M_{PP}^*(n, P, \varepsilon) = C(P)
\]

\[
\lim_{n \to \infty} \frac{1}{n} \log M_{LT}^*(n, P, \varepsilon) = C\left(\frac{P}{1 - \varepsilon}\right), \quad \forall \varepsilon \in (0, 1).
\]

- The above limits are known as the ε-capacities

- Since for peak-power, the ε-capacity does not depend on ε, the strong converse holds

- Since for long-term, the ε-capacity depends on ε, the strong converse does not hold
Strong Converse?

\[\varepsilon = \lim_{n \to \infty} P_e^{(n)}, \quad R = \lim_{n \to \infty} \frac{1}{n} \log M \]
Strong Converse?

\[\varepsilon = \lim_{n \to \infty} P_{e}^{(n)} \], \quad R = \lim_{n \to \infty} \frac{1}{n} \log M \]
Higher-Order Results

- More refined asymptotic expansions.
Higher-Order Results

- More refined asymptotic expansions.
- Third-order [Polyanskiy-Poor-Verdú (2010), T.-Tomamichel (2015)],

\[
\log M^*_{PP}(n, P, \varepsilon) = nC(P) + \sqrt{nV(P)}\Phi^{-1}(\varepsilon) + \frac{1}{2} \log n + O(1)
\]

where the channel dispersion is

\[
V(x) := \frac{x(x + 2)}{2(x + 1)^2}
\]

squared nats per ch. use

and

\[
\Phi(a) := \int_{-\infty}^{a} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \, dt.
\]
Higher-Order Results

- More refined asymptotic expansions.
- Third-order [Polyanskiy-Poor-Verdú (2010), T.-Tomamichel (2015)],
 \[
 \log M^*_\text{PP}(n, P, \varepsilon) = nC(P) + \sqrt{nV(P)}\Phi^{-1}(\varepsilon) + \frac{1}{2} \log n + O(1)
 \]
 where the channel dispersion is
 \[
 V(x) := \frac{x(x + 2)}{2(x + 1)^2} \text{ squared nats per ch. use}
 \]
 and
 \[
 \Phi(a) := \int_{-\infty}^{a} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt.
 \]
- Second-order [Yang-Caire-Durisi-Polyanskiy (2015)]
 \[
 \log M^*_\text{LT}(n, P, \varepsilon) = nC\left(\frac{P}{1 - \varepsilon}\right) - \sqrt{V\left(\frac{P}{1 - \varepsilon}\right)}\sqrt{n \log n} + o(\sqrt{n}).
 \]
Feedback helps to simplify coding schemes
Feedback helps to simplify coding schemes

Long-term power constraint under feedback

\[
\frac{1}{M} \sum_{m=1}^{M} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbb{E} [X_i^2(m, Y^{i-1})] \right) \leq P.
\]
Feedback helps to simplify coding schemes

Long-term power constraint under feedback

\[
\frac{1}{M} \sum_{m=1}^{M} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[X_i^2(m, Y_i^{i-1}) \right] \right) \leq P.
\]

Non-asymptotic fundamental limit

\[
M_{FB}^*(n, P, \varepsilon) := \max \left\{ M \in \mathbb{N} : \exists \text{ length-}n \text{ code with } M \text{ codewords and } P_e^{(n)} \leq \varepsilon \text{ under the LT-FB constraint} \right\}
\]
Feedback: Existing Results

- First-order [Shannon (1956)]

\[
\lim_{{\varepsilon \downarrow 0}} \lim_{{n \to \infty}} \frac{1}{n} \log M^*_{{FB}}(n, P, \varepsilon) = C(P).
\]

Schalkwijk and Kailath (1966) demonstrated a simple coding scheme based on estimation-theoretic ideas to show that

\[
P(n) \leq 2 \exp \left(-\frac{2}{n} (C(P) - R) \right),
\]

for

\[
R = \frac{1}{n} \log M^*_{{FB}}(n, P, \varepsilon).
\]

Error exponent is infinity.

Suggests that the fixed-error results can also be drastically improved.
Feedback : Existing Results

- First-order [Shannon (1956)]

\[
\lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} \frac{1}{n} \log M^*_\text{FB}(n, P, \varepsilon) = C(P).
\]

- Schalkwijk and Kailath (1966) demonstrated a simple coding scheme based on estimation-theoretic ideas to show that

\[
P_e^{(n)}(R) \leq 2 \exp \left(- \frac{2^{2n(C(P) - R)}}{2n} \right), \quad \text{for} \quad R = \frac{1}{n} \log M < C(P).
\]
Feedback: Existing Results

- **First-order** [Shannon (1956)]
 \[
 \lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} \frac{1}{n} \log M_{FB}^*(n, P, \varepsilon) = C(P).
 \]

- **Schalkwijk and Kailath (1966)** demonstrated a simple coding scheme based on estimation-theoretic ideas to show that
 \[
 P_e^{(n)}(R) \leq 2 \exp \left(-\frac{2^{2n(C(P)-R)}}{2} \right), \quad \text{for} \quad R = \frac{1}{n} \log M < C(P).
 \]

- Error exponent is **infinity**
Feedback : Existing Results

- **First-order** [Shannon (1956)]

\[
\lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} \frac{1}{n} \log M^*_\text{FB}(n, P, \varepsilon) = C(P).
\]

- **Schalkwijk and Kailath (1966)** demonstrated a simple coding scheme based on estimation-theoretic ideas to show that

\[
P_e^{(n)}(R) \leq 2 \exp \left(-\frac{2^{2n(C(P) - R)}}{2} \right), \quad \text{for} \quad R = \frac{1}{n} \log M < C(P).
\]

- Error exponent is **infinity**

- Suggests that the fixed-error results can also be **drastically improved**
Theorem (Truong-Fong-T. (ISIT 2016))

For the direct part,

\[
\log M_{FB}^*(n, P, \varepsilon) \geq nC \left(\frac{P}{1 - \varepsilon} \right) - \log \log n + O(1).
\]
Theorem (Truong-Fong-T. (ISIT 2016))

For the direct part,

\[
\log M_{FB}^*(n, P, \varepsilon) \geq nC\left(\frac{P}{1 - \varepsilon}\right) - \log \log n + O(1).
\]

For the converse part

\[
\log M_{FB}^*(n, P, \varepsilon) \leq nC\left(\frac{P}{1 - \varepsilon}\right) + \sqrt{V\left(\frac{P}{1 - \varepsilon}\right)} \sqrt{n \log n} + O(\sqrt{n}).
\]
Theorem (Truong-Fong-T. (ISIT 2016))

For the direct part,

$$\log M^*_{FB}(n, P, \varepsilon) \geq nC\left(\frac{P}{1 - \varepsilon}\right) - \log \log n + O(1).$$

For the converse part

$$\log M^*_{FB}(n, P, \varepsilon) \leq nC\left(\frac{P}{1 - \varepsilon}\right) + \sqrt{V\left(\frac{P}{1 - \varepsilon}\right)}\sqrt{n\log n} + O(\sqrt{n}).$$

From these results, the ε-capacity is

$$\lim_{n \to \infty} \frac{1}{n} \log M^*_{FB}(n, P, \varepsilon) = C\left(\frac{P}{1 - \varepsilon}\right).$$
\[\lim_{n \to \infty} \frac{1}{n} \log M^*_\text{FB}(n, P, \varepsilon) = C\left(\frac{P}{1 - \varepsilon}\right). \]

Feedback doesn’t improve the first-order term since

\[\lim_{n \to \infty} \frac{1}{n} \log M^*_\text{LT}(n, P, \varepsilon) = C\left(\frac{P}{1 - \varepsilon}\right) \]
AWGN Channels with Feedback: Remarks

\[
\lim_{n \to \infty} \frac{1}{n} \log M_{FB}^*(n, P, \varepsilon) = C \left(\frac{P}{1 - \varepsilon} \right).
\]

Feedback doesn’t improve the first-order term since

\[
\lim_{n \to \infty} \frac{1}{n} \log M_{LT}^*(n, P, \varepsilon) = C \left(\frac{P}{1 - \varepsilon} \right)
\]

With feedback, second-order term is at least

\[- \log \log n + O(1).\]

This is a great improvement over without feedback where the second-order term is [Yang-Caire-Durisi-Polyanskiy (2015)]

\[- \sqrt{\mathcal{V} \left(\frac{P}{1 - \varepsilon} \right)} \sqrt{n \log n} + o(\sqrt{n}).\]
Proof Idea for the Direct Part

- Partition msg set \(\{1, \ldots, M\} \) into \(A_1 \uplus A_2 \).
Proof Idea for the Direct Part

- Partition msg set \(\{1, \ldots, M\} \) into \(A_1 \cup A_2 \).
- \(A_1 \): Send \((0, 0, \ldots, 0) \in \mathbb{R}^n\)
Proof Idea for the Direct Part

- Partition msg set \(\{1, \ldots, M\} \) into \(A_1 \sqcup A_2 \).

- \(A_1 \): Send \((0, 0, \ldots, 0) \in \mathbb{R}^n\)

- \(A_2 \): Schalkwijk-Kailath (1966) scheme \(M' = |A_2| \approx (1 - \varepsilon)M \) msg

\[
P_{e}^{(n)}(R'_{n} | A_2) \leq \frac{1}{n}, \quad \text{where} \quad R'_n := \frac{1}{n} \log M'.
\]
Proof Idea for the Direct Part

- Partition msg set \(\{1, \ldots, M\} \) into \(A_1 \sqcup A_2 \).

- \(A_1 \): Send \((0, 0, \ldots, 0) \in \mathbb{R}^n\)

- \(A_2 \): *Schalkwijk-Kailath (1966)* scheme \(M' = |A_2| \approx (1 - \varepsilon)M \) msg

\[
P_e^{(n)}(R_n' \mid A_2) \leq \frac{1}{n}, \text{ where } R_n' := \frac{1}{n} \log M'.
\]

Choose \(\log M' = nC \left(\frac{P}{1 - \varepsilon} \right) - \log \log n + O_\varepsilon(1) \)

where \(-\log \log n \) because of double exponential decay of \(P_e^{(n)}(R) \)
Proof Idea for the Direct Part

- Partition msg set \(\{1, \ldots, M\} \) into \(A_1 \sqcup A_2 \).

- \(A_1 \): Send \((0, 0, \ldots, 0) \in \mathbb{R}^n \)

- \(A_2 \): Schalkwijk-Kailath (1966) scheme \(M' = |A_2| \approx (1 - \varepsilon)M \) msg

\[
\Pr_e^n(R_n' \mid A_2) \leq \frac{1}{n}, \text{ where } R_n' := \frac{1}{n} \log M'.
\]

- Choose

\[
\log M' = nC \left(\frac{P}{1 - \varepsilon} \right) - \log \log n + O(1)
\]

where \(- \log \log n\) because of double exponential decay of \(\Pr_e^n(R) \)

- Hence,

\[
\Pr_e^n = \Pr(A_1)\Pr_e^n(A_1) + \Pr(A_2)\Pr_e^n(A_2) \leq \varepsilon \cdot 1 + (1 - \varepsilon)\frac{1}{n} \approx \varepsilon.
\]
Proof Idea for the Converse Part

- Convert **expected long-term power** to a **peak-power** code.
Proof Idea for the Converse Part

- Convert **expected long-term power** to a **peak-power code**.

- **Key observation**

 \[\exists \text{ LT-FB code } \{X_i(\cdot , \cdot)\}_{i=1}^n \text{ with } M \text{ msgs and } P_e^{(n)} \leq \varepsilon \]

 \[\implies \exists \text{ PP-FB code } \{X_i'(\cdot , \cdot)\}_{i=1}^n \text{ with } M \text{ msgs and } P_e^{(n)} \leq 1 - \frac{1}{\sqrt{n}} \]
Proof Idea for the Converse Part

■ Convert expected long-term power to a peak-power code.

■ Key observation

\[\exists \text{LT-FB code } \{X_i(\cdot, \cdot)\}_{i=1}^{n} \text{ with } M \text{ msges and } P_{e(n)} \leq \varepsilon \]

\[\implies \exists \text{PP-FB code } \{X'_i(\cdot, \cdot)\}_{i=1}^{n} \text{ with } M \text{ msges and } P_{e(n)} \leq 1 - \frac{1}{\sqrt{n}} \]

with

\[\frac{1}{n} \sum_{i=1}^{n} (X'_i(M, Y^{i-1}))^2 \leq \frac{P}{1 - \varepsilon - \frac{1}{\sqrt{n}}} \quad \text{a.s.} \]
Proof Idea for the Converse Part

- Convert expected long-term power to a peak-power code.

- Key observation

\[\exists \text{ LT-FB code } \{X_i(\cdot, \cdot)\}_{i=1}^n \text{ with } M \text{ msges and } P_e^{(n)} \leq \varepsilon \]

\[\implies \exists \text{ PP-FB code } \{X'_i(\cdot, \cdot)\}_{i=1}^n \text{ with } M \text{ msges and } P_e^{(n)} \leq 1 - \frac{1}{\sqrt{n}} \]

with

\[\frac{1}{n} \sum_{i=1}^{n} \left(X'_i(M, Y^{i-1}) \right)^2 \leq \frac{P}{1 - \varepsilon - \frac{1}{\sqrt{n}}} \quad \text{a.s.} \]

- Exploit connection between binary hypothesis testing and channel coding with feedback under peak-power constraint

[Polyanskiy-Poor-Verdú (2011)] [Fong-T. (2015)]
MACs and Gaussian MACs

- The multiple access channel (MAC)

![Diagram of multiple access channel](image-url)
The multiple access channel (MAC)

\[M_1 \rightarrow \text{Encoder 1} \rightarrow X_1^n \rightarrow p(y|x_1, x_2) \rightarrow Y^n \rightarrow \text{Decoder} \rightarrow (\hat{M}_1, \hat{M}_2) \]

The Gaussian multiple access channel

Again assume \(g_1 = g_2 = 1 \).
Capacity Region for the Gaussian MAC

\[R_1 \leq C(P_1) \]

\[R_2 \leq C(P_2) \]

\[R_1 + R_2 \leq C(P_1 + P_2) \]
Gaussian MAC with Feedback

Consider Gaussian version with expected long-term power constraints

\[E[X_1^2(M_1, Y_{i-1})] \leq P_1 \]

\[E[X_2^2(M_2, Y_{i-1})] \leq P_2 \]

Vincent Tan (NUS)

AWGN MACs with Feedback

SPCOM 2016
Consider Gaussian version with expected long-term power constraints

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[X_{1i}^2(M_1, Y_{i-1}) \right] \leq P_1, \quad \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[X_{2i}^2(M_2, Y_{i-1}) \right] \leq P_2.$$
Ozarow (1984) showed that the capacity region is

\[\mathcal{R}_{\text{Ozarow}}(P_1, P_2) := \bigcup_{0 \leq \rho \leq 1} \left\{ (R_1, R_2) \mid \begin{array}{l}
R_1 \leq C((1 - \rho^2)P_1), \\
R_2 \leq C((1 - \rho^2)P_2), \\
R_1 + R_2 \leq C\left(P_1 + P_2 + 2\rho\sqrt{P_1P_2}\right) \end{array} \right\}. \]
Ozarow (1984) showed that the capacity region is

$$\mathcal{R}_{\text{Ozarow}}(P_1, P_2) := \bigcup_{0 \leq \rho \leq 1} \left\{ (R_1, R_2) \mid \begin{array}{l}
R_1 \leq C\left((1 - \rho^2)P_1\right), \\
R_2 \leq C\left((1 - \rho^2)P_2\right), \\
R_1 + R_2 \leq C\left(P_1 + P_2 + 2\rho \sqrt{P_1P_2}\right) \end{array} \right\}.$$

With feedback, capacity region is enlarged!
Ozarow (1984) showed that the capacity region is

\[
R_{\text{Ozarow}}(P_1, P_2) := \bigcup_{0 \leq \rho \leq 1} \left\{ (R_1, R_2) \left| \begin{array}{l}
R_1 \leq C((1 - \rho^2)P_1), \\
R_2 \leq C((1 - \rho^2)P_2), \\
R_1 + R_2 \leq C\left(P_1 + P_2 + 2\rho\sqrt{P_1P_2}\right) \end{array} \right. \right\}.
\]

- With feedback, capacity region is **enlarged**!
- It appears that transmitters can **cooperate**!
Ozarow (1984) showed that the capacity region is

$$\mathcal{R}_{\text{Ozarow}}(P_1, P_2) := \bigcup_{0 \leq \rho \leq 1} \left\{ (R_1, R_2) \mid \begin{align*}
R_1 &\leq C((1 - \rho^2)P_1), \\
R_2 &\leq C((1 - \rho^2)P_2), \\
R_1 + R_2 &\leq C(P_1 + P_2 + 2\rho\sqrt{P_1P_2})
\end{align*} \right\}. $$

With feedback, capacity region is enlarged!

It appears that transmitters can cooperate!

Direct part is an extension of the Schalkwijk and Kailath coding scheme.
CR of the G-MAC with Feedback $P_1 = P_2 = 1$

No feedback
CR of the G-MAC with Feedback $P_1 = P_2 = 1$

$\rho = 0$

R_{CW}

R_1

R_2
CR of the G-MAC with Feedback \(P_1 = P_2 = 1 \)

\[\rho = 0.1 \]
CR of the G-MAC with Feedback $P_1 = P_2 = 1$

$\rho = 0.2$

R_{CW}
CR of the G-MAC with Feedback $P_1 = P_2 = 1$

\[\rho = 0.3 \]
CR of the G-MAC with Feedback $P_1 = P_2 = 1$

\[\rho = 0.4 \]
CR of the G-MAC with Feedback $P_1 = P_2 = 1$

\[
\rho = 0.5
\]
CR of the G-MAC with Feedback $P_1 = P_2 = 1$

$\rho = 0.6$
CR of the G-MAC with Feedback $P_1 = P_2 = 1$

\[\rho = 1.0 \]
The Ozarow region
Similarly to the single-user case, extend to non-vanishing errors.
- Capacity Region of the G-MAC with Feedback

- Similarly to the single-user case, extend to non-vanishing errors

- \((R_1, R_2)\) is \(\varepsilon\)-achievable

\[
\lim_{n \to \infty} \frac{1}{n} \log M_1 \geq R_1 \quad \lim_{n \to \infty} \frac{1}{n} \log M_2 \geq R_2,
\]

and the average probability of error

\[
\lim_{n \to \infty} P_e^{(n)} \leq \varepsilon.
\]
Similarly to the single-user case, extend to non-vanishing errors.

\((R_1, R_2)\) is \(\varepsilon\)-achievable if there exists a sequence of codes with \((M_1, M_2)\) messages such that

\[
\lim_{n \to \infty} \frac{1}{n} \log M_1 \geq R_1 \quad \text{and} \quad \lim_{n \to \infty} \frac{1}{n} \log M_2 \geq R_2,
\]

and the average probability of error

\[
\lim_{n \to \infty} P_e^{(n)} \leq \varepsilon.
\]

\(C_\varepsilon(P_1, P_2)\) is the set of all \(\varepsilon\)-achievable \((R_1, R_2)\).
The ε-capacity region is

$$C_\varepsilon(P_1, P_2) = R_{\text{Ozarow}} \left(\frac{P_1}{1 - \varepsilon}, \frac{P_2}{1 - \varepsilon} \right), \text{ for all } \varepsilon \in [0, 1).$$
Theorem (Truong-Fong-T. (arXiv 2015))

The ε-capacity region is

$$C_\varepsilon(P_1, P_2) = R_{Ozarow}\left(\frac{P_1}{1 - \varepsilon}, \frac{P_2}{1 - \varepsilon}\right), \quad \text{for all } \varepsilon \in [0, 1).$$

If we can tolerate an error of $\leq \varepsilon$, we can operate at (R_1, R_2) satisfying

$$R_1 \leq C\left(\frac{(1 - \rho^2)P_1}{1 - \varepsilon}\right)$$

$$R_2 \leq C\left(\frac{(1 - \rho^2)P_2}{1 - \varepsilon}\right), \quad \text{for any } 0 \leq \rho \leq 1.$$

$$R_1 + R_2 \leq C\left(\frac{P_1 + P_2 + 2\rho\sqrt{P_1P_2}}{1 - \varepsilon}\right)$$

This is optimal.
\(\varepsilon = 0 \) recovers Ozarow's result

\[
C(P_1, P_2) = C_0(P_1, P_2) = R_{Ozarow}(P_1, P_2).
\]
\(\varepsilon = 0 \) recovers Ozarow’s result

\[
\mathcal{C}(P_1, P_2) = \mathcal{C}_0(P_1, P_2) = \mathcal{R}_{\text{Ozarow}}(P_1, P_2).
\]

Again \(\mathcal{C}_\varepsilon \) depends on \(\varepsilon \)

\[
\mathcal{C}_\varepsilon(P_1, P_2) = \mathcal{R}_{\text{Ozarow}}\left(\frac{P_1}{1 - \varepsilon}, \frac{P_2}{1 - \varepsilon}\right), \quad \text{for all} \quad \varepsilon \in [0, 1).
\]
\(\varepsilon = 0 \) recovers Ozarow's result

\[C(P_1, P_2) = C_0(P_1, P_2) = R_{Ozarow}(P_1, P_2). \]

Again \(C_\varepsilon \) depends on \(\varepsilon \)

\[C_\varepsilon(P_1, P_2) = R_{Ozarow}\left(\frac{P_1}{1 - \varepsilon}, \frac{P_2}{1 - \varepsilon}\right), \quad \text{for all} \quad \varepsilon \in [0, 1). \]

Strong converse doesn't hold
\(\varepsilon \)-Capacity of the G-MAC with Feedback : Remarks

- \(\varepsilon = 0 \) recovers Ozarow’s result

\[C(P_1, P_2) = C_0(P_1, P_2) = \mathcal{R}_{\text{Ozarow}}(P_1, P_2). \]

- Again \(C_\varepsilon \) depends on \(\varepsilon \)

\[C_\varepsilon(P_1, P_2) = \mathcal{R}_{\text{Ozarow}}\left(\frac{P_1}{1 - \varepsilon}, \frac{P_2}{1 - \varepsilon}\right), \quad \text{for all } \varepsilon \in [0, 1). \]

- **Strong converse doesn’t hold**

- We have bounds on the “second-order” terms but they are quite loose
ϵ-Capacity of the G-MAC with Feedback: Remarks

- $\epsilon = 0$ recovers Ozarow’s result

$$C(P_1, P_2) = C_0(P_1, P_2) = R_{Ozarow}(P_1, P_2).$$

- Again C_ϵ depends on ϵ

$$C_\epsilon(P_1, P_2) = R_{Ozarow}\left(\frac{P_1}{1-\epsilon}, \frac{P_2}{1-\epsilon}\right), \quad \text{for all } \epsilon \in [0, 1).$$

- Strong converse doesn’t hold

- We have bounds on the “second-order” terms but they are quite loose

- Direct part follows similarly to the single-user case
Proof Idea for the Converse: Step 1

Start with an information-spectrum bound somewhat similar to Chen-Alajaji (1995) and Han (1998)
Proof Idea for the Converse : Step 1

Start with an information-spectrum bound somewhat similar to Chen-Alajaji (1995) and Han (1998)

Lemma (Information-Spectrum Bounds)

Fix a MAC $W^n(y^n|x_1^n, x_2^n)$ with feedback and error prob. $\leq \varepsilon$.
Proof Idea for the Converse : Step 1

Start with an information-spectrum bound somewhat similar to Chen-Alajaji (1995) and Han (1998)

Lemma (Information-Spectrum Bounds)

Fix a MAC $W^n(y^n|x^n_1, x^n_2)$ with feedback and error prob. $\leq \varepsilon$. For any $\gamma_1, \gamma_2, \gamma_3 > 0$ and any $\{(Q_{Y_i}|X_{1i}, Q_{Y_i}|X_{2i}, Q_{Y_i})\}_{i=1}^n$
Proof Idea for the Converse: Step 1

Start with an information-spectrum bound somewhat similar to Chen-Alajaji (1995) and Han (1998)

Lemma (Information-Spectrum Bounds)

Fix a MAC $W^n(y^n|x^n_1, x^n_2)$ with feedback and error prob. $\leq \varepsilon$.

For any $\gamma_1, \gamma_2, \gamma_3 > 0$ and any $\{(Q_{Y_i|X_1i}, Q_{Y_i|X_2i}, Q_{Y_i})\}_{i=1}^n$,

$$\log M_1 \leq \gamma_1 - \log^+ \left[1 - \varepsilon - \Pr \left(\sum_{i=1}^n \log \frac{W(Y_i|X_1i, X_2i)}{Q_{Y_i|X_2i}(Y_i|X_2i)} \geq \gamma_1 \right) \right]$$

$$\log M_2 \leq \gamma_2 - \log^+ \left[1 - \varepsilon - \Pr \left(\sum_{i=1}^n \log \frac{W(Y_i|X_1i, X_2i)}{Q_{Y_i|X_1i}(Y_i|X_1i)} \geq \gamma_2 \right) \right]$$

$$\log(M_1M_2) \leq \gamma_3 - \log^+ \left[1 - \varepsilon - \Pr \left(\sum_{i=1}^n \log \frac{W(Y_i|X_1i, X_2i)}{Q_{Y_i}(Y_i)} \geq \gamma_3 \right) \right]$$
Given a code generating symbols \(\{(X_{1i}(M_1, Y^{i-1}), X_{2i}(M_2, Y^{i-1}))\}_{i=1}^n\), let
Proof Idea for the Converse Part : Step 2

Given a code generating symbols \(\{(X_{1i}(M_1, Y_i^{-1}), X_{2i}(M_2, Y_i^{-1}))\}_{i=1}^n \), let

\[
P_{1i} := \mathbb{E}[X_{1i}^2], \quad P_{2i} := \mathbb{E}[X_{2i}^2], \quad \rho_i := \frac{\mathbb{E}[X_{1i}X_{2i}]}{\sqrt{P_{1i}P_{2i}}},
\]

Define

\[
\rho := \frac{\sum_{i=1}^n \rho_i \sqrt{P_{1i}P_{2i}}}{n \sqrt{P_1P_2}}
\]
Proof Idea for the Converse Part : Step 2

Given a code generating symbols \(\{ (X_1(1, Y^{i-1}), X_2(M_2, Y^{i-1})) \}_{i=1}^n \), let

\[
P_{1i} := \mathbb{E}[X_1^2], \quad P_{2i} := \mathbb{E}[X_2^2], \quad \rho_i := \frac{\mathbb{E}[X_1X_2]}{\sqrt{P_{1i}P_{2i}}}.
\]

Define

\[
\rho := \frac{\sum_{i=1}^n \rho_i \sqrt{P_{1i}P_{2i}}}{n \sqrt{P_1P_2}}
\]

Lemma ("Single-Letterization")

\[
|\rho| \leq 1,
\]

\[
\sum_{i=1}^n \left(P_{1i}(1 - \rho_i^2) \right) \leq nP_1(1 - \rho^2), \quad \text{and}
\]

\[
\sum_{i=1}^n \left(P_{1i} + P_{2i} + 2\rho_i \sqrt{P_{1i}P_{2i}} \right) \leq n \left(P_1 + P_2 + 2\rho \sqrt{P_1P_2} \right).
\]
Proof Idea for the Converse Part : Step 3

Finally, we need to bound the probabilities. We do so using Chebyshev.
Proof Idea for the Converse Part : Step 3

Finally, we need to bound the probabilities. We do so using Chebyshev.

Lemma

For any $T > 1$, choose

\[
\gamma_1 := nC(P_1(1 - \rho^2)T) + n^{2/3}
\]

\[
\gamma_3 := nC((P_1 + P_2 + 2\rho\sqrt{P_1P_2})T) + n^{2/3}.
\]
Finally, we need to bound the probabilities. We do so using Chebyshev.

Lemma

For any $T > 1$, choose

\[
\gamma_1 := nC(P_1(1 - \rho^2)T) + n^{2/3}
\]
\[
\gamma_3 := nC((P_1 + P_2 + 2\rho\sqrt{P_1P_2})T) + n^{2/3}.
\]

Then, with a good choice of Q's

\[
\Pr\left(\sum_{i=1}^{n} \log \frac{W(Y_i|X_{1i}, X_{2i})}{Q_{Y_i|X_{2i}}(Y_i|X_{2i})} \geq \gamma_1\right) \leq \frac{1}{T} + O(n^{-1/3})
\]
\[
\Pr\left(\sum_{i=1}^{n} \log \frac{W(Y_i|X_{1i}, X_{2i})}{Q_{Y_i}(Y_i)} \geq \gamma_3\right) \leq \frac{1}{T} + O(n^{-1/3}).
\]
Proof Idea for the Converse Part : Completion

Recall that

$$\log M_1 \leq \gamma_1 - \log^+ \left[1 - \varepsilon - \Pr \left(\sum_{i=1}^{n} \log \frac{W(Y_i|X_{1i}, X_{2i})}{Q_{Y_i|X_{2i}}(Y_i|X_{2i})} \geq \gamma_1 \right) \right]$$

Conclusion:

$$\log M_1 \leq n \mathbb{C} \left(P_1 \left(1 - \rho_2 \right) 1 - \varepsilon \right) + O \left(\frac{n^2}{3} \right).$$

By product: Second-order term is upper bounded by $$O \left(\frac{n^2}{3} \right).$$
Recall that

\[
\log M_1 \leq \gamma_1 - \log^+ \left[1 - \varepsilon - \Pr \left(\sum_{i=1}^{n} \log \frac{W(Y_i|X_{1i}, X_{2i})}{Q_{Y_i|X_{2i}}(Y_i|X_{2i})} \geq \gamma_1 \right) \right]
\]

Probability term satisfies

\[
\Pr(\cdots) \leq \frac{1}{T} + O(n^{-1/3}).
\]
Proof Idea for the Converse Part : Completion

- Recall that
 \[\log M_1 \leq \gamma_1 - \log^+ \left[1 - \varepsilon - \Pr \left(\sum_{i=1}^{n} \log \frac{W(Y_i|X_{1i}, X_{2i})}{Q_{Y_i|X_{2i}} Y_i|X_{2i}} \geq \gamma_1 \right) \right] \]

- Probability term satisfies
 \[\Pr(\cdots) \leq \frac{1}{T} + O(n^{-1/3}). \]

- Choose
 \[\frac{1}{T} = 1 - \varepsilon - O(n^{-1/3}) \quad \text{so} \quad \gamma_1 = nC \left(\frac{P_1(1 - \rho^2)}{1 - \varepsilon} \right) + O(n^{2/3}). \]
Proof Idea for the Converse Part : Completion

- Recall that

 \[\log M_1 \leq \gamma_1 - \log^+ \left[1 - \varepsilon - \Pr \left(\sum_{i=1}^{n} \log \frac{W(Y_i|X_{1i}, X_{2i})}{Q_{Y_i|X_{2i}}(Y_i|X_{2i})} \geq \gamma_1 \right) \right] \]

- Probability term satisfies

 \[\Pr(\cdots) \leq \frac{1}{T} + O(n^{-1/3}). \]

- Choose

 \[\frac{1}{T} = 1 - \varepsilon - O(n^{-1/3}) \quad \text{so} \quad \gamma_1 = nC \left(\frac{P_1(1-\rho^2)}{1-\varepsilon} \right) + O(n^{2/3}). \]

- Conclusion:

 \[\log M_1 \leq nC \left(\frac{P_1(1-\rho^2)}{1-\varepsilon} \right) + O(n^{2/3}). \]
Proof Idea for the Converse Part: Completion

Recall that

$$\log M_1 \leq \gamma_1 - \log^+ \left[1 - \varepsilon - \Pr \left(\sum_{i=1}^{n} \log \frac{W(Y_i|X_{1i}, X_{2i})}{Q_{Y_i|X_{2i}}(Y_i|X_{2i})} \geq \gamma_1 \right) \right]$$

Probability term satisfies

$$\Pr(\cdots) \leq \frac{1}{T} + O(n^{-1/3}).$$

Choose

$$\frac{1}{T} = 1 - \varepsilon - O(n^{-1/3}) \quad \text{so} \quad \gamma_1 = nC \left(\frac{P_1(1 - \rho^2)}{1 - \varepsilon} \right) + O(n^{2/3}).$$

Conclusion:

$$\log M_1 \leq nC \left(\frac{P_1(1 - \rho^2)}{1 - \varepsilon} \right) + O(n^{2/3}).$$

By product: Second-order term is upper bounded by $O(n^{2/3})$.
Generalized a result by Ozarow (1984) to non-vanishing $\varepsilon \in [0, 1)$
Wrap Up

- Generalized a result by Ozarow (1984) to non-vanishing \(\varepsilon \in [0, 1) \)
- Established \(\varepsilon \)-capacity region for AWGN-MAC with feedback

\[
C_\varepsilon(P_1, P_2) = R_{\text{Ozarow}}\left(\frac{P_1}{1 - \varepsilon}, \frac{P_2}{1 - \varepsilon}\right).
\]
Generalized a result by Ozarow (1984) to non-vanishing $\varepsilon \in [0, 1)$

Established ε-capacity region for AWGN-MAC with feedback

$$C_\varepsilon(P_1, P_2) = R_{\text{Ozarow}}\left(\frac{P_1}{1 - \varepsilon}, \frac{P_2}{1 - \varepsilon}\right).$$

First step to obtaining higher-order terms in asymptotic expansion
Wrap Up

- Generalized a result by Ozarow (1984) to non-vanishing $\varepsilon \in [0, 1)$
- Established ε-capacity region for AWGN-MAC with feedback
 \[C_\varepsilon(P_1, P_2) = R_{Ozarow}\left(\frac{P_1}{1 - \varepsilon}, \frac{P_2}{1 - \varepsilon}\right). \]
- First step to obtaining higher-order terms in asymptotic expansion
- Current second-order bounds are loose

http://arxiv.org/abs/1512.05088
Generalized a result by Ozarow (1984) to non-vanishing $\varepsilon \in [0, 1)$

Established ε-capacity region for AWGN-MAC with feedback

$$C_\varepsilon(P_1, P_2) = \mathcal{R}_{Ozarow} \left(\frac{P_1}{1 - \varepsilon}, \frac{P_2}{1 - \varepsilon} \right).$$

First step to obtaining higher-order terms in asymptotic expansion

Current second-order bounds are loose

http://arxiv.org/abs/1512.05088

Lan V. Truong Silas L. Fong