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Classical and Quantum Distortions

Classical Effects
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Information Transmission System
e.g. Free Space, Optical Fiber, Microscope
t
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Dispersion, Diffraction, Rayleigh Criterion, Loss, Nonlinearity, ...

Quantum Decoherence
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Quantum Limits
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Outline

o N

Dispersion and nonlinearity compensation by Spectral Phase Conjugation

Beating temporal quantum limits by Quantum Soliton Control

9
9
® Beating spatial quantum limits by Self-Focusing
® Nonlinear Optics and Fluid Dynamics

9o

Beating resolution limits by Dielectric Slabs
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Ultrashort Pulse Propagation Effects
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High-Order Effects

Third-Order Dispersion
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Stimulated Raman Scattéring,

Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001)
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Ultrashort Pulse Propagation

-
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® Perform a(w) — a*(2wg — w), or equivalently A(T) — A*(T), to compensate for GVD
and Kerr effect and if loss, higher-order dispersion, and self-steepening can be

neglected.

® Temporal Phase Conjugation (TPC)

S\

A(0,T)

J\

A*(0,T)

Yariv, Fekete, and Pepper, Optics Letters, 4, 52 (1979),

Fisher, Suydam, and Yevick, Optics Letters, 8, 611 (1983).
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Spectral Phase Conjugation
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® Perform a(w) — a*(w), or equivalently A(T) — A*(Ty — T), to compensate for
dispersion of all orders, Kerr effect, and self-steepening if loss and stimulated Raman

scattering can be neglected.

® Spectral Phase Conjugation (SPC)

N[0 ] A0 N

AQ,T) Fiber A(LT) A*(L,-T) Fiber A*0,-T)

Tsang and Psaltis, Optics Letters 28, 1558 (2003)
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Methods of Performing SPC

® Tsang and Psaltis, Optics Express, 12, 2207 (2004)
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® Tsang and Psaltis, Optics Communications, 242, 659 (2004)
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PPKTP \

L

Pump

® Extended Phase Matching: Quasi-Phase Matching + Group Velocity Matching
® Quasi-Phase Matching satisfied by periodic poling of nonlinear crystals

® Group Velocity Matching satisfied by material dispersion, such as KTP at 1584 nm.
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z derivatives can be neglected if the pump pulse is short enough:

Coupled-Mode Equations

a(;i -+ kK 88/13 = jxAp(t — kp2) A} 3)
OERVEY SN
Approximate solutions:
As(L,t) = As(0,t) sec(G) + jAT (0, —t) tan(G) (5)
Ai(L,t) = A;(0,t) sec(G) + jAL(0, —t) tan(G) (6)
G = %/Ap(f)df - (1 - ];/kg)X/Ap(T)vdT @)
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9

°

Mirrorless Parametric Oscillation

=+ Numerical Signal Gain
- secz(G)
X Numerical Idler Gain

tanz(G)

As(L,t) = As(0,t)sec(G) + jAT (0, —t)tan(G) (8)
Ai(L,t) = A;(0,t)sec(G) 4+ jA%(0, —t)tan(G) (9)

What happens when G = 7 /2, and sec((), tan(G) = co?

z derivatives can no longer be neglected, gain increases exponentially with respect to
Z.

Analogous to mirrorless optical parametric oscillation
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X Signal
No Signal

— > t
k S

Depleted
Pump

® 3cm periodically-poled KTP crystal from Raicol Crystals, dispersed femtosecond pump
pulse at 792nm

® 43% down conversion efficiency, 140 dB equivalent gain
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pontaneous Parametric Down Conversion

X Signal
No Signal
k; k;
| P, _P,
\ t \ - !
ks
Y < > Y
PUMP . Depleted
Pump
® Classical theory predicts zero output for zero input:
0A 0A
T bk = Ay (t — kL 2) AT 10
0A* 0A*
Lkl —2 = —jxA,(t — kL 2)As 11
8z+18t Ix A p?) ()

® Quantum theory predicts entangled photon pair generation even for zero input.

Giovannetti et al. (MIT), Physical Review Letters,88, 183602 (2002),

Kuzucu et al. (MIT), Physical Review Letters, 94, 083601 (2005)
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Number of generated photon pairs per pump pulse is given by tan?(G).
[Tsang, JOSAB 23, 861 (2006)]

Using their parameters, Ao = 1584 nm, x(2) = 7.3 pm/V, ng = 2,y = 1.5 x 1010
s/m, T,, = 100 fs, average pump power = 350 mW, diameter = 200 m, and pump
repetition rate f,- = 80 MHz, the spontaneously generated photon pairs per second is
theoretically given by

G = 0.2, (12)
fr taHQ(G): 3.6 x 10°/s. (13)

Kuzucu et al. (MIT), Physical Review Letters, 94, 083601 (2005):

coupling efﬁciency into the PM fiber. From the detection
efficiencies and our measurement duty cycle we estimate a

single spatial fiber-optic mode pair production ratg of

~4 X 10%/s at 350 mW of pump power.

|
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hat's Special about These Photon Pairs?

® The entangled photons are frequency correlated and time anti-correlated.

® One-way autocompensating cryptography [Walton et al., PRA 67, 062309 (2003)],
Quantum enhancement of timing accuracy [Giovannetti et al., Nature 412, 417 (2001)].

Intensity T Intensity AT
<>

N ' N

\]V

T

20 tlA(t)|2de

T= > JAwPa

(14)

® Time-anti-correlated photons can achieve a lower uncertainty in 7" for the same
bandwidth.

® Analogous to how mutual funds work: selecting negatively-correlated stocks reduces J
risk.

Beating Classical and Quantum Limits in Optics — p.15/33



Multiphoton Enhancement

Giovannetti, Lloyd, and Maccone, Nature 412, 417 (2001)
» N independent photons:

AT (Standard Quantum Limit) (15)

1
> _ -
2V NAw

® eg:W=100ps, N =100 AT =1fs

P N negatively-time-correlated photons:

AT >

(Ultimate Quantum Limit) (16)
w

® N =2is quite useless comparedto N > 1

» How to create multiphoton time anti-correlation with NV >> 1?

o |
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Quantum Theory of Optical Fiber Soliton

® Classical theory: soliton is a stable solitary wave due to balance between anomalous
GVD and Kerr effect

Optical Pulse Optical Fiber

A_@ 4

Anomalous GVD + Kerr Effect

® Quantum theory: Stable pulse shape and bandwidth due to balance between GVD and
Kerr effect, but the average position of the pulse is affected by dispersion only.

Intensity AT : Controlled by Dispersion Only

<>

W' Controlled by Dispersion +
Kerr Nonlinearity

LTsang, Physical Review Letters 97, 023902 (2006) J
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Adiabatic Soliton Expansion

® 1. Adiabatically reduce the Kerr nonlinearity or increase the group-velocity dispersion
along the fiber

AT
% AT increases due to Dispersion
w Increases due to Expansion
! / \ !

Spectrum A() remains unaffected by GVD or Kerr effect

AQ
~ ) Aw decreases due to Expansion

/\Aw
. |
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Quantum Dispersion Compensation

-

® 2. Compensate for dispersion of 7" in a second fiber with b’ L’ =

ﬂ@_m@_A

Adiabatic Soliton Expansion Normal GVD,
Linear
Spectrum AQ AL unchanged
<> <>

Aw ) Aw unchanged
W w

AT is the same as the input, but Aw is reduced, so AT < 1/(2v/ N Aw).

|

Subfemtosecond timing jitter detection can be performed by cross-correlation

measurements via sum-frequency generation or balanced homodyne measurements
with a reference local oscillator pulse

o | |
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2D Self-Focusing Collapse

Balance between diffraction and Kerr effect is unstable.

z=55mm z=63mm g=7.2mm z = &8.0mm

Centurion, Pu, Tsang, and Psaltis, Physical Review A 71, 063811 (2005)
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|aI Quantum Enhancement by Self-Focusing

increasing pulse energy —

AK
_) AK
k k

Spectrum

® Use a Fourier-transform lens to transform to real space

Squeezed Squeezed

momentum position B
Self-focusing _:Ek

< f >< 7 > Split

Photodetector
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metri's Grand Vision of Optical Computing

Real Initial Spatio-
Conditions temporal
SyStem Evolution
Optical
Output

Fy

Optical
metaphor

Spatio-temporal Detection &
light modulation Decoding
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Nonlinear Optics and Fluid Dynamics

., N

(3+1)D Nonlinear Schrodinger equation:

0A ) iBs 0% A .
— V2 A 27 " 4 ikons|AlPA 17
0z 2noko  — 2 0712 +ikona|A| an

® |f 3> < 0and ny < 0 (self defocusing), and we make the “Madelung transformation”
p=|A|? and v = VArg(A), We can obtain equations that resemble hydrodynamic

equations:
0
ko—p + V. (pv) =0, (18)
0z
0
kO%—I—V-(pvv):—VP—FV-Tq, (19)
4

® P « I?isthe pressure, no needs to be negative for the pressure to have the correct
sign

O T x 9;,/pdj\/p— /pIiDj+/p is the so-called quantum pressure that is not present in
ordinary fluid dynamics equations, but can be neglected if the nonlinearity is high

enough
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Vorticity and Optical Vortex Solitons

® Most interesting fluid dynamics depends on vorticity, or w = V X v.
® But for the Madelung transformation, v = VArg(A) and V x v = 0
9o

fluid vorticity can be represented by optical vortex solitons, where p = 0 and the
Madelung transformation does not apply

® A large number of optical vortex solitons can approximate continuous vorticity and
therefore inviscid fluid dynamics

® Still need optical analogues of viscosity (quantum-noise-induced random walk of vortex
solitons?) and no-slip boundary conditions for the correspondence to be complete.

Tsang and Psaltis, e-print physics/0604149.

o |
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Veselago: Negative Refraction

-

n = -1 n > 1

Veselago, Sov. Phys. Usp. 10, 509 (1968)

o |
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Pendry: Evanescent Wave Amplification

n = -1 e <0

T — exp(—ik,d), R —0 (20)

Pendry, Phys. Rev. Lett. 85, 3966 (2000)

| |
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Importance of Low Loss

-

Power loss
Po
wer Power extracted=
reflected /absorbed )
Power in
- Power reflected /absorbed
- Power loss
Power in
Object Near-Field Imaging System Detector
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Two Dielectric Slabs

N

k‘ng

k-
a d a
2r 21k d 2 k. d
R—T 4+ 7T exp(2i = ) _0, T= 7 exp(i 2 ) — — exp(—ik.d) 21)
1 — I'? exp(2ik.d) 1 — I'? exp(2ik.d)

for some k...

Tsang and Psaltis, Optics Letters, 31, 2741 (2006), Erratum: 32, 86 (2006).
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Numerical Example

-

® )\ =230nm, n =2.7,a=20nm, d= 20 nm, TE polarization,
Source "Detector"

1+

I » . » s | = = —object
A n ” n nonopf=-- free space image

image behind two slabs

0.8

Intensity
=}
[}
T

®

o

~
T

o
)
T

WPl NV
/2 a d  a d/2 800 -600 -400

® [owloss
® Many spatial modes
® High refractive index material available (transparent down to A = 230 nm, n = 2.7 for

diamond)

® non-contact imaging, suitable for lithography and bio-imaging
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Miscellaneous

-

Reverse propagation of femtosecond pulses in optical fiber (collaboration with
Fiorenzo Omenetto at Tufts)
Tsang, Psaltis, and Omenetto, Optics Letters 28, 1873 (2003)

Spontaneous spectral phase conjugation for coincident frequency entanglement
Tsang and Psaltis, Physical Review A 71, 043806 (2005)

Quantum temporal imaging
Tsang and Psaltis, Physical Review A 73, 013822 (2006)

Trade-off between resolution enhancement and multiphoton absorption rate in
guantum lithography
Tsang, e-print quant-ph/0607114 [accepted by Physical Review Al.

Electro-optical solitons
collaboration with Prof. Hajimiri’s Electronics group at Caltech

Compensation of random scattering by phase conjugation
collaboration with Prof. Yang's Biophotonics group at Caltech

|
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Future Work

Quantum theory of mirrorless optical parametric oscillators
Quantum information processing via scalar and vector solitons
Spatial quantum information processing via spatial solitons

Effect of loss and decoherence

Quantum limits on spatial, temporal, and spectral information capacity of optical fields

9
9
9
9
K
9

Beating the resolution limit of \/n by the use of dielectrics, e.g. photonic crystals,
coupled resonators

Quantum near-field optics
Correspondence between nonlinear optics and viscous fluid dynamics

Application to Bose-Einstein condensates and superfluids

L I B B

Experiments
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Quantum Optical Engineering

-

Computing

Interconnects

Quantum
Computing

Near-Field

Enhancement Nonlinear Optics
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Time resoluti
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Noise

Nearfield Ultrafast
Quantum Quantum

Quan.tum Nois&  Theory Theory
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