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Classical and Quantum Distortions
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Outline

Dispersion and nonlinearity compensation by Spectral Phase Conjugation

Beating temporal quantum limits by Quantum Soliton Control

Beating spatial quantum limits by Self-Focusing

Nonlinear Optics and Fluid Dynamics

Beating resolution limits by Dielectric Slabs
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Ultrashort Pulse Propagation Effects

Group-Velocity Dispersion
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Kerr Nonlinearity (∆n(t) ∼ I(t))
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High-Order Effects

Third-Order Dispersion
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Self-Steepening
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Stimulated Raman Scattering, ...

Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001)
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Ultrashort Pulse Propagation
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Perform a(ω) → a∗(2ω0 − ω), or equivalently A(T ) → A∗(T ), to compensate for GVD
and Kerr effect and if loss, higher-order dispersion, and self-steepening can be
neglected.

Temporal Phase Conjugation (TPC)

Yariv, Fekete, and Pepper, Optics Letters, 4, 52 (1979),

Fisher, Suydam, and Yevick, Optics Letters, 8, 611 (1983).
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Spectral Phase Conjugation
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Perform a(ω) → a∗(ω), or equivalently A(T ) → A∗(T0 − T ), to compensate for
dispersion of all orders, Kerr effect, and self-steepening if loss and stimulated Raman
scattering can be neglected.

Spectral Phase Conjugation (SPC)

Tsang and Psaltis, Optics Letters 28, 1558 (2003)
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Methods of Performing SPC

Tsang and Psaltis, Optics Express, 12, 2207 (2004)
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Tsang and Psaltis, Optics Communications, 242, 659 (2004)
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Marom et al., Optics Letters, 25, 132 (2000)
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SPC via Extended Phase Matching

Tsang, JOSA B 23, 861 (2006)

Extended Phase Matching: Quasi-Phase Matching + Group Velocity Matching

Quasi-Phase Matching satisfied by periodic poling of nonlinear crystals

Group Velocity Matching satisfied by material dispersion, such as KTP at 1584 nm.
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Coupled-Mode Equations

z derivatives can be neglected if the pump pulse is short enough:
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As(L, t) = As(0, t) sec(G) + jA∗
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Mirrorless Parametric Oscillation
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As(L, t) = As(0, t)sec(G) + jA∗

i (0,−t)tan(G) (8)

Ai(L, t) = Ai(0, t)sec(G) + jA∗

s(0,−t)tan(G) (9)

What happens when G = π/2, and sec(G), tan(G) = ∞?

z derivatives can no longer be neglected, gain increases exponentially with respect to
z.

Analogous to mirrorless optical parametric oscillation
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Experimental Demonstration of Mirrorless OPO

3cm periodically-poled KTP crystal from Raicol Crystals, dispersed femtosecond pump
pulse at 792nm

43% down conversion efficiency, 140 dB equivalent gain

Pu, Wu, Tsang, and Psaltis, under preparation
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Spontaneous Parametric Down Conversion

Classical theory predicts zero output for zero input:
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Quantum theory predicts entangled photon pair generation even for zero input.

Giovannetti et al. (MIT), Physical Review Letters,88, 183602 (2002),

Kuzucu et al. (MIT), Physical Review Letters, 94, 083601 (2005)
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Comparison with Kuzucu et al.’s experiment

Number of generated photon pairs per pump pulse is given by tan2(G).
[Tsang, JOSAB 23, 861 (2006)]

Using their parameters, λ0 = 1584 nm, χ(2) = 7.3 pm/V, n0 = 2, γ = 1.5 × 10−10

s/m, Tp = 100 fs, average pump power = 350 mW, diameter = 200 µm, and pump
repetition rate fr = 80 MHz, the spontaneously generated photon pairs per second is
theoretically given by

G = 0.2, (12)

fr tan2(G)= 3.6 × 106/s. (13)

Kuzucu et al. (MIT), Physical Review Letters, 94, 083601 (2005):
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What’s Special about These Photon Pairs?

The entangled photons are frequency correlated and time anti-correlated.

One-way autocompensating cryptography [Walton et al., PRA 67, 062309 (2003)],
Quantum enhancement of timing accuracy [Giovannetti et al., Nature 412, 417 (2001)].
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R

∞
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R

∞
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(14)

Time-anti-correlated photons can achieve a lower uncertainty in T for the same
bandwidth.

Analogous to how mutual funds work: selecting negatively-correlated stocks reduces
risk. Beating Classical and Quantum Limits in Optics – p.15/33



Multiphoton Enhancement

Giovannetti, Lloyd, and Maccone, Nature 412, 417 (2001)

N independent photons:

∆T ≥ 1

2
√

N∆ω
(Standard Quantum Limit) (15)

e.g.: W = 100 ps, N = 1010, ∆T = 1 fs

N negatively-time-correlated photons:

∆T ≥ 1

2N∆ω
(Ultimate Quantum Limit) (16)

N = 2 is quite useless compared to N ≫ 1

How to create multiphoton time anti-correlation with N ≫ 1?
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Quantum Theory of Optical Fiber Soliton

Classical theory: soliton is a stable solitary wave due to balance between anomalous
GVD and Kerr effect

Quantum theory: Stable pulse shape and bandwidth due to balance between GVD and
Kerr effect, but the average position of the pulse is affected by dispersion only.

Tsang, Physical Review Letters 97, 023902 (2006)
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Adiabatic Soliton Expansion

1. Adiabatically reduce the Kerr nonlinearity or increase the group-velocity dispersion
along the fiber

Intensity ∆T

W

∆T increases due to Dispersion

W increases due to Expansion

ττ

Spectrum

∆Ω

∆ω

∆Ω remains unaffected by GVD or Kerr effect

∆ω decreases due to Expansion

ω ω
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Quantum Dispersion Compensation

2. Compensate for dispersion of T in a second fiber with b′L′ = −bL

Spectrum ∆Ω

∆ω

∆Ω unchanged

∆ω unchanged

ω ω

∆T is the same as the input, but ∆ω is reduced, so ∆T < 1/(2
√

N∆ω).

Subfemtosecond timing jitter detection can be performed by cross-correlation
measurements via sum-frequency generation or balanced homodyne measurements
with a reference local oscillator pulse.
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2D Self-Focusing Collapse

Balance between diffraction and Kerr effect is unstable.

Centurion, Pu, Tsang, and Psaltis, Physical Review A 71, 063811 (2005)
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Spatial Quantum Enhancement by Self-Focusing

increasing pulse energy →

Spectrum

∆K

∆K

∆k∆k

kk

Use a Fourier-transform lens to transform to real space

e.g. W = 3 mm, N = 1010, ∆X = 30 nm
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Demetri’s Grand Vision of Optical Computing
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Nonlinear Optics and Fluid Dynamics

(3+1)D Nonlinear Schrödinger equation:
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If β2 < 0 and n2 < 0 (self defocusing), and we make the “Madelung transformation”
ρ = |A|2 and v = ∇Arg(A), We can obtain equations that resemble hydrodynamic
equations:

k0
∂ρ

∂z
+ ∇ · (ρv) = 0, (18)

k0
∂ρv

∂z
+ ∇ · (ρvv) = −∇P + ∇ · Tq , (19)

P ∝ I2 is the pressure, n2 needs to be negative for the pressure to have the correct
sign

T
q ∝ ∂i

√
ρ∂j

√
ρ−√

ρ∂i∂j
√

ρ is the so-called quantum pressure that is not present in
ordinary fluid dynamics equations, but can be neglected if the nonlinearity is high
enough
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Vorticity and Optical Vortex Solitons

Most interesting fluid dynamics depends on vorticity, or ω = ∇× v.

But for the Madelung transformation, v = ∇Arg(A) and ∇× v = 0

fluid vorticity can be represented by optical vortex solitons, where ρ = 0 and the
Madelung transformation does not apply

A large number of optical vortex solitons can approximate continuous vorticity and
therefore inviscid fluid dynamics

Still need optical analogues of viscosity (quantum-noise-induced random walk of vortex
solitons?) and no-slip boundary conditions for the correspondence to be complete.

Tsang and Psaltis, e-print physics/0604149.
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Veselago: Negative Refraction

Veselago, Sov. Phys. Usp. 10, 509 (1968)
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Pendry: Evanescent Wave Amplification

T → exp(−ikzd), R → 0 (20)

Pendry, Phys. Rev. Lett. 85, 3966 (2000)
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Importance of Low Loss
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Two Dielectric Slabs

R = Γ +
τ2Γ exp(2ikzd)

1 − Γ2 exp(2ikzd)
= 0, T =

τ2 exp(ikzd)

1 − Γ2 exp(2ikzd)
= − exp(−ikzd) (21)

for some kx.

Tsang and Psaltis, Optics Letters, 31, 2741 (2006), Erratum: 32, 86 (2006).
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Numerical Example

λ = 230 nm, n = 2.7, a = 20 nm, d = 20 nm, TE polarization,
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Low loss

Many spatial modes

High refractive index material available (transparent down to λ = 230 nm, n = 2.7 for
diamond)

non-contact imaging, suitable for lithography and bio-imaging
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Miscellaneous

Reverse propagation of femtosecond pulses in optical fiber (collaboration with
Fiorenzo Omenetto at Tufts)
Tsang, Psaltis, and Omenetto, Optics Letters 28, 1873 (2003)

Spontaneous spectral phase conjugation for coincident frequency entanglement
Tsang and Psaltis, Physical Review A 71, 043806 (2005)

Quantum temporal imaging
Tsang and Psaltis, Physical Review A 73, 013822 (2006)

Trade-off between resolution enhancement and multiphoton absorption rate in
quantum lithography
Tsang, e-print quant-ph/0607114 [accepted by Physical Review A].

Electro-optical solitons
collaboration with Prof. Hajimiri’s Electronics group at Caltech

Compensation of random scattering by phase conjugation
collaboration with Prof. Yang’s Biophotonics group at Caltech
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Future Work

Quantum theory of mirrorless optical parametric oscillators

Quantum information processing via scalar and vector solitons

Spatial quantum information processing via spatial solitons

Effect of loss and decoherence

Quantum limits on spatial, temporal, and spectral information capacity of optical fields

Beating the resolution limit of λ/n by the use of dielectrics, e.g. photonic crystals,
coupled resonators

Quantum near-field optics

Correspondence between nonlinear optics and viscous fluid dynamics

Application to Bose-Einstein condensates and superfluids

Experiments
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Quantum Optical Engineering
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