Quantum Microwave Photonics:

Coupling quantum microwave circuits to quantum optics via cavity electro-optic modulators

Mankei Tsang

eletmk@nus.edu.sg

¹ Department of Electrical and Computer Engineering ² Department of Physics National University of Singapore http://mankei.tsang.googlepages.com/

Quantum Microwave Photonics: Coupling quantum microwave circuits to quantum optics via cavity electro-optic modulators - p. 1/16

Hybrid Quantum Systems

Kippenberg and Vahala, Science 321, 1172 (2008)

Quantum Microwave Photonics: Coupling quantum microwave circuits to quantum optics via cavity electro-optic modulators - p. 2/16

Electro-Optic Modulation

- $\bullet = \epsilon_0 \left(1 + \boldsymbol{\chi}^{(1)} + \boldsymbol{\chi}^{(2)} \boldsymbol{E} + \boldsymbol{\chi}^{(3)} : \boldsymbol{E} \boldsymbol{E} + \dots \right)$
- $\chi^{(2)}$ (Pockels): $\Delta \phi(V) \propto V$: e.g., lithium niobate (LiNbO₃)
- Optical:
 - transparent between 350 nm- 5μ m
 - Intrinsic $Q \sim 10^6$ resonator at 1.55 μ m [Ilchenko *et al.*, JOSAB 20, 333 (2003)]
 - 10dB squeezing [Vahlbruch et al. PRL 100, 033602 (2008)]
- Microwave:
 - intrinsic $\epsilon_l \approx 28$, $\epsilon_t \approx 45$, $Q \approx 2.3 \times 10^3$ at 9GHz, 300K [Bourreau *et al.*, EL 22, 399 (1986)], loss should decrease with temp.
 - Cu half-wave resonator: $Q \approx 100$ at 9GHz, 300K [Ilchenko *et al.*]
 - 26.5GHz EOM with Nb electrode on LiNbO₃ at 4.2K [Yoshida et al., IEEE TMTT 47, 1201 (1999)]

Quantum Microwave Photonics: Coupling quantum microwave circuits to quantum optics via cavity electro-optic modulators - p. 3/16

Three-Wave Mixing

Quantum Microwave Photonics: Coupling quantum microwave circuits to quantum optics via cavity electro-optic modulators - p. 4/16

Resonant Enhancement

Device Geometry

Mahapatra and Robinson, "Integrated-optic ring resonators made by proton exchange in lithium niobate," Appl. Opt. **24**, 2285 (1985).

Cohen *et al.* (USC), "High-*Q* microphotonic electro-optic modulator," Solid-State Electronics **45**, 1557 (2001)

Fig. 1. Experimental setup: (1) $\rm LiNbO_3$ optical cavity, (2) microwave resonator, (3) microwave feeding strip line, and (4) diamond coupling prism. Inset: geometric characteristics of the nonlinear optical cavity.

llchenko *et al.* (JPL), "Whispering-gallery-mode electrooptic modulator and photonic microwave receiver," J. Opt. Soc. Am. B **20**, 333 (2003), r = 2.4 mm, $d = 150 \mu$ m, half-wave 9 GHz resonator

Quantum Microwave Photonics: Coupling quantum microwave circuits to quantum optics via cavity electro-optic modulators - p. 6/16

Analogy with Cavity Optomechanics

Teufel et al., Nature 464, 697 (2010)

Quantum Microwave Photonics: Coupling quantum microwave circuits to quantum optics via cavity electro-optic modulators - p. 7/16

Laser Cooling and Noiseless Frequency Conversion

$$\frac{da}{dt} = ig\alpha b - \frac{\Gamma_a}{2}a + \sqrt{\gamma_a}A_{\rm in} + \sqrt{\gamma_a'}A',\tag{1}$$

$$\frac{db}{dt} = ig\alpha^* a - \frac{\Gamma_b}{2}b + \sqrt{\gamma_b}B_{\rm in} + \sqrt{\gamma_b'}B',\tag{2}$$

$$A_{\rm out} = \sqrt{\gamma_a} a - A_{\rm in},\tag{3}$$

$$B_{\rm out} = \sqrt{\gamma_b} b - B_{\rm in}.$$
 (4)

Effective microwave resonator temperature $\propto \langle b^\dagger b
angle$

Quantum Microwave Photonics: Coupling quantum microwave circuits to quantum optics via cavity electro-optic modulators - p. 8/16

Laser Cooling and Noiseless Frequency Conversion

$$H_{I} \approx g \sqrt{N_{\text{pump}}} \left(a^{\dagger} b + a b^{\dagger} \right)$$

$$a = n \frac{\omega_{a} n^{3} r}{\sqrt{\hbar \omega_{b}}}$$
(5)
(6)

$$g = \eta \frac{du du}{2d} \sqrt{\frac{du g}{2C}},\tag{6}$$

$$G \equiv \frac{g^2 N_{\text{pump}}}{\Gamma_a \Gamma_b}$$
(7)

$$Cooling: G \gg 1 \tag{8}$$

 $Conversion: G = 1 \tag{9}$

Quantum Microwave Photonics: Coupling quantum microwave circuits to quantum optics via cavity electro-optic modulators - p. 9/16

Plots

Quantum Microwave Photonics: Coupling quantum microwave circuits to quantum optics via cavity electro-optic modulators - p. 10/1

Parametric Amplification/Oscillation

$$\frac{da}{dt} = ig\alpha b^* - \frac{\Gamma_a}{2}a + \sqrt{\gamma_a}A_{\rm in} + \sqrt{\gamma_a'}A', \qquad (10)$$

$$\frac{db}{dt} = ig\alpha a^* - \frac{\Gamma_b}{2}b + \sqrt{\gamma_b}B_{\rm in} + \sqrt{\gamma_b'}B', \qquad (11)$$

$$A_{\rm out} = \sqrt{\gamma_a} a - A_{\rm in},\tag{12}$$

$$B_{\rm out} = \sqrt{\gamma_b} b - B_{\rm in}.$$
 (13)

Quantum Microwave Photonics: Coupling quantum microwave circuits to quantum optics via cavity electro-optic modulators - p. 11/1

Parametric Amplification/Oscillation

$$H_I \approx g \sqrt{N_{\text{pump}}} \left(a^{\dagger} b^{\dagger} + a b \right), \qquad G \equiv \frac{g^2 N_{\text{pump}}}{\Gamma_a \Gamma_b}$$
(14)

 $\text{Oscillation}: G \ge 1, \tag{15}$

Spontaneous Down Conversion/Entangled Photons : $G \ll 1$ (16)

Double-sideband pumping: backaction-evading microwave quadrature measurement
 $\chi^{(3)}$ (Kerr): $\phi(V) \propto V^2$, backaction-evading microwave energy measurement

Quantum Microwave Photonics: Coupling quantum microwave circuits to quantum optics via cavity electro-optic modulators - p. 12/1

Plots

Coupling Strength

$$G = \frac{g^2 N_{\text{pump}}}{\gamma_a \gamma_b}, \qquad \qquad g = \eta \frac{\omega_a n^3 r}{2d} \sqrt{\frac{\hbar \omega_b}{2C}}. \tag{17}$$

llchenko *et al.*, JOSAB 20, 333 (2003) ($\gamma_a \approx 2\pi \times 90$ MHz, $\gamma_b \approx 2\pi \times 50$ MHz, $d \approx 150 \mu$ m):

Fig. 1. Experimental setup: (1) LiNbO₃ optical cavity, (2) microwave resonator, (3) microwave feeding strip line, and (4) diamond coupling prism. Inset: geometric characteristics of the nonlinear optical cavity.

$$g \approx 20 \text{ Hz},$$
 $G \approx 2 \times 10^{-5} \text{ at 2 mW pump}$ (18)

g can be improved by $\sim 10^1 - 10^2$, γ_b reduced by $\sim 10^3$ using superconducting microwave resonator

r in BaTiO₃ and KTN is higher than LiNbO₃ by $10^1 - 10^2$ Quantum Microwave Photonics: Coupling quantum microwave circuits to quantum optics via cavity electro-optic modulators – p. 14/1

Competition: electro-optomechanics, atoms

Regal and Lehnert, J. Phys.: Conf. Series **264**, 012025 (2011); Safavi-Naeini and Painter, NJP 13, 013017 (2011); Taylor *et al.*, PRL 107, 273601 (2011)

	Electro-optics	Mechanics	Atoms
Effect	$\chi^{(2)}$	$\chi^{(3)}$	$\chi^{(3)}$
Pumps	optical	optical + microw.	optical + microw.
Resonators	microw. + optical	microw. + optical + mech.	microw. + optical + atoms
Experiment	g = 20 Hz (llchenko)	N/A	N/A

Quantum Microwave Photonics: Coupling quantum microwave circuits to quantum optics via cavity electro-optic modulators - p. 15/1

Summary

Fig. 1. Experimental setup: (1) LiNbO₃ optical cavity, (2) mi-

Quantum Microwave Photonics: Coupling quantum microwave circuits to quantum oplics, via: cavity, electing-oplic, modulators - p. 16/1