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Fisher information for far-field linear optical superresolution via homodyne
or heterodyne detection in a higher-order local oscillator mode
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The distance between two point light sources is difficult to estimate if that distance is below the diffraction
(Rayleigh’s) resolution limit of the imaging device. A recently proposed technique enhances the precision
of this estimation by exploiting the source-separation-dependent coupling of light into higher-order transverse-
electromagnetic (TEM) modes, particularly the TEM01 mode of the image. We theoretically analyze the estimation
of the source separation by means of homodyne or heterodyne detection with a local oscillator in the TEM01 mode,
which is maximally sensitive to the separation in the sub-Rayleigh regime. We calculate the Fisher information
associated with this estimation and compare it with direct imaging. For thermal sources, the Fisher information
in any mode of the image plane depends nonlinearly on the average received photon number. We show that the
per-photon Fisher information surpasses that of direct imaging (in the interesting sub-Rayleigh regime) when
the average received photon number per source exceeds two for homodyne detection and four for heterodyne
detection.
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I. INTRODUCTION

The resolution limit of conventional microscopes is deter-
mined by Rayleigh’s criterion [1]. In the last few decades, var-
ious techniques have been invented to circumvent Rayleigh’s
limit by changing the imaging conditions. Such techniques
utilize nonlinear optical properties of the object [2,3], near-
field optics [4,5], or work with photoswitchable samples [6,7].
However, recently it was found that sub-Rayleigh resolution
can be achieved for certain microscopy-related tasks without
resorting to nonlinear optics or near-field interactions. Such is
the case, for example, for estimating the distance separating
two point sources [8–11].

The idea of this new approach was to count photons in
the Hermite-Gaussian or transverse-electromagnetic (TEM)
modes {TEM0q ; q = 0,1, . . .} in the image plane [8]. The
precision of this estimation has been calculated as the inverse
of the Fisher information (FI) in accordance with the Cramér-
Rao bound of classical statistics [12,13]. Remarkably, this
FI is independent of the separation distance, in contrast to
direct imaging in which the FI tends to zero in the limit of
low separations. Moreover, it was shown that this method
is quantum optimal, i.e., it permits extracting the maximum
possible FI from each photon available to the observer [8].
Inspired by this analysis, a number of groups around the
world demonstrated proof-of-principle experiments to achieve
superresolution [14–17].

However, direct implementation of the scheme of Ref. [8]
requires a setup for spatial mode filtering in the Hermite-
Gaussian basis, which is a challenge [18,19]. It is thus tempting
to use a homodyne or heterodyne detector instead of a mode
filter, taking advantage of such a detector’s sensitivity to the
optical signal only in the mode that matches that of the local

oscillator, which, in turn, can be readily prepared in any TEM
mode by using spatial light modulators or optical cavities.
Reference [17] demonstrated the viability of this method
for achieving sub-Rayleigh resolution. The first-order mode
TEM01 was chosen as the local oscillator in the experiments
of Ref. [17]. As shown in Ref. [10], this mode contains most of
the information on the source separation in the sub-Rayleigh
regime. Consequently, we focus on dyne measurements of this
mode in this paper.

Because homodyne and heterodyne detection are physically
different from direct photon counting, the FI associated with
these measurements needs to be evaluated independently.
Reference [20] argues that homodyne detection offers no
advantage with respect to direct imaging for weak thermal
light because of the shot noise. However, there has been
no similar analysis for arbitrary thermal sources. Here we
show that homodyne and heterodyne detection do possess an
advantage over direct imaging for estimating separations well
below the Rayleigh limit when the average received photon
number per source of the thermal state exceeds two and four,
respectively.

II. CONCEPTS

A. Displacement and TEM01 mode

To illustrate the mode transformation and detection process,
we begin with a brief description of homodyne detection in
TEM01 using classical optics. A complete quantum optical
derivation that includes the effect of shot noise is given in the
later sections and appendixes. Heterodyne detection is closely
related; see below. We work in a single transverse dimen-
sion and assume quasimonochromatic light in the paraxial
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approximation. We also assume a translationally invariant
imaging system with a Gaussian point spread function. With
such assumptions, a pointlike light source located at the optical
axis of the objective lens is imaged in the TEM00 mode. When
the light source is displaced by ±d, the beam amplitude in the
image plane is

αE0(x ± d) = α

(
1

2πσ 2

)1/4

e−( x±d
2σ )2

, (1)

where α is the amplitude, E0(x) is the normalized amplitude
profile of TEM00, and σ is the beam width. For small
displacement, this can be approximated by Taylor expansion,

αE0(x ± d) ≈ αE0(x) ± αd E′
0(x)

= αE0(x) ∓ d

2σ
αE1(x), (2)

where E′
0(x) is the derivative of E0(x) with respect to x

and E1(x) is the normalized amplitude profile of TEM01.
This means that, when the source becomes displaced, TEM01

acquires a nonzero amplitude that is ∓ d
2σ

of the amplitude of
TEM00, and a nonzero power corresponding to d2/(4σ 2) of
that in TEM00. We detect the image by homodyne detection
with the local oscillator prepared in TEM01, resulting in a
photocurrent proportional to the displacement d (with added
shot noise, which is included later in our quantum formalism of
analysis). A null measurement of the displacement is thereby
achieved, in contrast to direct imaging, in which a signal in
the form of a certain intensity distribution is present for all
displacements.

B. Fisher information

As is standard in astronomy [21,22], single-molecule
microscopy [23], asymptotic statistics [24], and engineering
statistics [13], we adopt here the Fisher information (FI) as the
sensitivity measure. Given a probability distribution Pr(Y |λ)
of measurement outcome Y as a function of parameter λ, the
FI is defined as

Fλ =
〈(

∂

∂λ
ln Pr(Y |λ)

)2〉
, (3)

where〈·〉 represents statistical average.
The inverse of FI gives the Cramér-Rao bound, which is

a lower bound on the mean-square error of any unbiased
estimator. The bound can be attained in the asymptotic limit
of infinite repetitions by the maximum-likelihood estimator
[13,24]. Although a biased estimator can violate the Cramér-
Rao bound for limited repetitions [15,25], one can generalize
the bound for any biased or unbiased estimator by adopting
a modified error criterion from the Bayesian or minimax
perspective [25]. In particular, the Bayesian Cramér-Rao
bound by Schützenberger [26] and Van Trees [13,25,27] and
the local asymptotic minimax theorem by Hájek and Le Cam
[24,27] are valid for any biased or unbiased estimator, and both
depend on the FI.

For the imaging problem, the probability distribution
and therefore the FI depend on the optical measure-
ment method. In this paper, we compare the FI of three
measurements—homodyne detection, heterodyne detection,

and direct imaging—of the light on the image plane from
two thermal point sources. Let us note that the quantum Fisher
information computed in Refs. [8,10,11] is an upper bound on
the FI for any measurement allowed by quantum mechanics,
but otherwise outside the scope of this paper.

III. MEASURING THE DISPLACEMENT
OF A SINGLE SOURCE

A. Coherent source

The noise properties of homodyne and heterodyne detection
of coherent or thermal fields can be discussed using either
a semiclassical or quantum-optical formalism. Since both
approaches give exactly the same quantitative results [28], the
choice of formalism is a matter of taste and familiarity. Here,
we use the quantum-optical formalism to make explicitly sure
that our measurement models agree with quantum mechanics.

In order to introduce our approach for calculating the per-
photon FI, we first consider a single coherent source. As is
evident from Eq. (2), a coherent state |α〉 in TEM00 displaced
by ±d is approximately equivalent to the direct product,

|α〉± = |α〉0 ⊗
∣∣∣∣∓ d

2σ
α

〉
1

, (4)

where the subscripts 0 and 1 label the two lowest-order TEM
modes centered on the optical axis of the lens. A full quantum
optical analysis leading to Eq. (4) is given in Appendix A.
Importantly, displacements in opposite directions give rise to
opposite amplitudes of the TEM01 component because of the
antisymmetric shape of that mode.

Without loss of generality, we assume α to be real. The
homodyne detector will measure the probability distribution
of the quadrature X in the state |∓ d

2σ
α〉, which is given by [29]

Prα(X|d) =
∣∣∣∣
〈
X

∣∣∣∣ ∓ d

2σ
α

〉∣∣∣∣
2

= 1√
π

exp

[
−

(
X ± d

2σ

√
2α

)2]
. (5)

A single quadrature measurement yields a sample of this
distribution, from which the displacement d can be estimated.
The FI is given by

F (α)(d) =
〈(

∂

∂d
ln Prα(X|d)

)2〉

=
∫ +∞

−∞

(
∂

∂d
ln Prα(X|d)

)2

Prα(X|d)dX = α2

σ 2
.

(6)

For the coherent state, the average photon number N = α2, so
the per-photon FI is F

(α)
1 (d) = 1/σ 2. We notice that Ref. [30]

also analyzes the performance of homodyne detection with
the TEM01 mode to estimate the displacement of a single
coherent light source by calculating the quantum noise limited
sensitivity.
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B. Thermal source

Let us now consider a single thermal source. If the average
photon number of the original thermal state is N , then we have
a thermal state with average photon number d2

4σ 2 N in TEM01.
This follows from the fact that linear mode transformations
(beam splitters) map thermal states into (in general correlated)
states, each single mode of which is in a thermal state. It can
also be verified more formally using the Sudarshan-Glauber
P representation, as is shown in Appendix B.

A thermal state with average photon number N can be
described by the Wigner function [29],

W (X,P ) = 1

π (2N + 1)
exp

[
−X2 + P 2

2N + 1

]
. (7)

For a single thermal light source displaced by d, the Wigner
function of the thermal state in TEM01 is, therefore,

W
(1)
01 (X,P ) = 1

π
(

d2

2σ 2 N + 1
)exp

[
− X2 + P 2

d2

2σ 2 N + 1

]
. (8)

Using homodyne detection, we obtain the distribution of
quadrature X in TEM01 [29],

Pr(1)
01 (X|d) = 1√

π
(

d2

2σ 2 N + 1
) exp

[
− X2

d2

2σ 2 N + 1

]
. (9)

The width of this Gaussian distribution depends on d, and
hence a single sample thereof permits inferring this parameter.
We find the FI for this inference to be

F
(1)
N (d) =

〈(
∂

∂d
ln Pr(1)

01 (X|d)

)2〉
= 2d2N2

(d2N + 2σ 2)2
, (10)

and the per-photon FI is

F
(1)
1 (d) = 1

N
F

(1)
N (d) = 2d2N

(d2N + 2σ 2)2
. (11)

An important observation we can make here is that F
(1)
1 (d)

depends on N , i.e., the FI is not additive with respect to
the number of incoming photons. For example, for low N ,
F

(1)
1 (d) ≈ d2N/2σ 4, which means that performing a single

measurement of d on a mode with N photons gives a higher
precision than two separate measurements on a mode with
N/2 photons.

In practice it is often advantageous to use heterodyne rather
than homodyne detection (i.e., a local oscillator with a slightly
different frequency) in order to reduce flicker noise [17].
Heterodyne detection is formally equivalent to mixing the
input light with vacuum on a 50/50 beam splitter, followed
by a homodyne detection of orthogonal quadratures in the two
output modes [31]. The overall FI for heterodyne detection
can be obtained from that for homodyne detection by the
following steps: Replace N by N/2, and multiply by 2 to take
into account the fact that two quadratures with independent
statistics are measured. The per-photon FI is still obtained by
dividing by N . Since the numerator in Eq. (10) is quadratic in
N , this means that the per-photon FI for heterodyne detection
can be obtained from that for homodyne detection simply by
replacing N with N/2.

IV. MEASURING THE SEPARATION
OF TWO THERMAL SOURCES

A. Homodyne and heterodyne detection

In practice, we are most interested in measuring the distance
between two point light sources (e.g., stars) separated below
the Rayleigh limit, for which the direct imaging approach
offers reduced precision [8]. For two thermal sources each
with average photon number N and displaced by ±d, the
average photon number detected in TEM01 is the sum of the
photon numbers from each state, because the random phase
between the sources does not lead to intereference when we
sum up the photon numbers. From the results of Sec. III
B, the TEM01 mode is in a thermal state of average photon
number d2

2σ 2 N .
We can then perform the same calculation as in the previous

section. In this case, the Wigner function for the light in TEM01

is

W
(2)
01 (X,P ) = 1

π
(

θ2

4σ 2 N + 1
)

× exp

[
−(X2 + P 2)

/(
θ2

4σ 2
N + 1

)]
, (12)

where we choose to work with θ = 2d, the separation of the
light sources. This corresponds to the distribution of the X

quadrature,

Pr(2)
01 (X|θ ) = 1√

π
(

θ2

4σ 2 N + 1
)exp

[
−X2

/(
θ2

4σ 2
N + 1

)]
,

(13)
and the per-photon FI,

F
(2)
1 (θ ) = θ2N

(θ2N + 4σ 2)2
. (14)

Following the same arguments as in the previous section, the
per-photon FI for heterodyne detection can be obtained by
replacing N with N/2 in Eq. (14).

As a side remark, since none of the calculations depend
on the two sources being of equal strength, the total FI
under either detection method for two sources of unequal
strengths N1 and N2 can be obtained by replacing N

with (N1 + N2)/2.

B. Direct imaging

We now evaluate the FI for spatially resolved direct imaging
of two incoherent thermal sources. An exact expression for this
quantity for arbitrary source strengths is unknown and appears
to be difficult to obtain. We can, however, approximate it by
noting that, in practice, the photon counts on each pixel are
integrated over a large number of temporal modes, and their
statistics can be approximated as Gaussian by virtue of the
central limit theorem. The FI then becomes simple to evaluate,
as shown in Appendix C. We also find that this approximate
FI for any N , when evaluated on the per-photon basis, is
upper bounded by the per-photon FI in the N 
 1 limit.
Thus we simply show the calculation of the FI for N 
 1
here and use it as an upper bound on the approximate FI for
arbitrary N .
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θ/σ

21/4σ direct imaging
N=1

N=3
N=10
N=100

N=2

FIG. 1. Per-photon FI of homodyne and direct imaging for two
incoherent thermal sources. The (black) direct imaging curve is for
weak thermal states with N 
 1, which gives the approximate FI for
direct imaging (see main text and Appendix C). (Inset) Per-photon
FI for θ 
 σ . In this limit, the FI for direct imaging is the same as
homodyne detection when N = 2. Black dots in the inset represent the
result for direct imaging. Note that when θ/σ becomes close to 1, the
population in TEM01 starts to decrease because higher-order modes
become important. This higher-order mode effect is not included in
the figure. Our results for the FI are accurate in the regime of small
θ/σ . The per-photon FI for heterodyne detection can be obtained
from that for homodyne detection by replacing N with N/2; see text.

In the N 
 1 limit, information comes from one-photon
events only, and the per-photon FI can be computed from the
probability distribution of each photon. For direct imaging, the
measurement outcome is the position of arrival x of the photon
in the image plane whose probability density is

Pr(DI)(x|θ ) = 1

2
√

2πσ

[
e
− (x−θ/2)2

2σ2 + e
− (x+θ/2)2

2σ2

]
. (15)

The per-photon information is, hence,

F
(DI)
1 (θ ) =

∫ ∞

−∞
dx

[(
2x − 2xe

xθ

σ2 + θ + θe
xθ

σ2
)2

32
√

2π
(
1 + e

xθ

σ2
)
σ 5

e
− (x+θ/2)2

2σ2

]

= 1

4σ 2
− 1

2
√

2πσ 5

∫ ∞

−∞
dx

x2e−(x+θ/2)2/2σ 2

1 + e−xθ/σ 2 , (16)

which can be evaluated numerically.

C. Comparison

In Fig. 1, we plot the per-photon FI for direct imaging
and homodyne detection. One sees that homodyne detection
is advantageous for small separations as long as the average
photon number N > 2, which is consistent with the conclusion
in Ref. [20] that there is no advantage for small N . This also
means that heterodyne detection is advantageous for N > 4.
This advantage can be understood by noting that, for small
separations θ 
 σ , the FI in Eq. (14) for homodyne detection
scales as θ2N/16σ 4, whereas for direct imaging it scales like
θ2/8σ 4 [see Eq. (16) and Appendix C].

The maximum per-photon FI with homodyne detection
is achieved for θ2N = 4σ 2 (i.e., when there are d2

4σ 2 N = 1
4

photons in the TEM01 mode per source) and equals 1/16σ 2.
This corresponds to 1/4 of the per-photon FI obtained in the
quantum optimal measurement, which is achieved by means
of a photon number measurement in TEM01 [8].

Let us compare the three methods (direct imaging, homo-
dyne detection in TEM01, and photon number measurement
in TEM01) in order to better understand the difference in
their precision. For a direct image, the probability distribution
Eq. (15) of a photon’s position of arrival in the image plane
is a sum of two Gaussians, which, for θ 
 σ , are almost
indistinguishable from a single Gaussian centered x = 0, and
hence the inference on the source separation θ is very poor.
The photon number measurement, on the other hand, is a
null measurement: The signal power is proportional to θ2,
so there is no signal whatsoever at θ = 0, leading to an FI
that is independent of θ . The homodyne measurement lies in
between. It is not an ideal null measurement because of the
shot noise, but it can still give a substantial advantage relative
to direct imaging for sufficiently large N . Equation (14) shows
that maximum sensitivity for the homodyne measurement is
achieved when Nθ2 = 4σ 2.

The requirement of N > 2 (or N > 4) means that the
homodyne (or heterodyne) approach is most promising for
measurements of distances between objects with rough sur-
faces that scatter laser light. Such measurements can occur,
for example, in LIDARs that are used to operate autonomous
vehicles. Since the laser can have a very large number of
photons in a single mode, the scattered light is likely to contain
speckles with multiple photons per mode. For astronomical
applications, e.g., measurements of distances between binary
star components, the advantages and disadvantages of this
method require further analysis to account not only for
fundamental noise sources, but also for technical issues, such
as atmospheric turbulences.
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APPENDIX A: COHERENT LIGHT

Here we prove Eq. (4). Coherent states can be generated by
the phase-space displacement operator D[α; a†

k] = e−|α|2/2eαa
†
k

acting on the vacuum state |vac〉, where a
†
k is the creation

operator for mode k. We can define the creation operators for
the Hermite-Gaussian modes TEM00 and TEM01 as a

†
0,1 =∫

dx E0,1(x)a†
x with the corresponding subscripts. Then, the

creation operator for a beam that is physically displaced by ±d

is a
†
± = ∫

dx E0(x ± d)a†
x , where a

†
x is the creation operator

at position x in the image plane.
From Eq. (2), we have, to leading order,

a
†
± = a

†
0 ∓ d

2σ
a
†
1. (A1)
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For a single coherent light source in TEM00, the states
corresponding to displacements by ±d can be expressed as

|α〉± = D[α; a†
±]|vac〉 = e−|α|2/2eαa

†
± |vac〉. (A2)

Using Eq. (A1), we have

|α〉± = e| d
2σ

α|2/2D[α; a†
0]D

[
∓ d

2σ
α; a†

1

]
|vac〉

= |α〉0 ⊗
∣∣∣∣∓ d

2σ
α

〉
1

. (A3)

The prefactor e| d
2σ

α|2/2 � 1 for sufficiently small d/σ .

APPENDIX B: INCOHERENT LIGHT

We now obtain a similar result for thermal sources: If
the physically displaced source is in a thermal state with
the average photon number N , then TEM01 will contain a
thermal state with average photon number d2

4σ 2 N . For a single
incoherent thermal light source, we write the density matrix
using the Sudarshan-Glauber P representation,

ρ =
∫

P (α)|α〉±〈α| d2α, (B1)

where P (α) = 1
πN

e−|α|2/N is the P function of the thermal state
with N photons. We substitute Eq. (4) and take the partial trace
of ρ over TEM00 to get the density matrix ρ1 in TEM01,

ρ1 = Tr0ρ = 1

π

∫
0〈β|ρ|β〉0d

2β

= 1

π2N

∫
d2α e|α|2/N

∫
d2β0〈β|(|α〉±〈α|)|β〉0

= 1

π2N

∫
d2α

{
e|α|2/N

∣∣∣∣∓ d

2σ
α

〉
1

〈
∓ d

2σ
α

∣∣∣∣
×

∫
d2β |0〈β|α〉0|2

}
.

(B2)

Notice that∫
d2β |0〈β|α〉0|2 = 0〈α|

[∫
d2β |β〉0〈β|

]
|α〉0 = π, (B3)

where we utilize the fact that∫
|β〉〈β|d2β = π. (B4)

ρ1 now reads

ρ1 = 1

πN

∫
d2α e|α|2/N

∣∣∣∣∓ d

2σ
α

〉
1

〈
∓ d

2σ
α

∣∣∣∣. (B5)

At last, we change the integration variable and obtain

ρ1 = 1

πN1

∫
e−|α|2/N1 |α〉1〈α|d2α (B6)

where N1 = d2

4σ 2 N is the average photon number in TEM01. ρ1

describes a thermal state with average photon N1.

APPENDIX C: DIRECT IMAGING

Let n(m) = (n(m)
1 ,n

(m)
2 , . . . )� be a column vector of photon

counts in the mth temporal mode, where each n
(m)
j is the

photon count in a spatial mode and � denotes the transpose.
Integrated over M temporal modes, the photon-count vector
is n = ∑M

m=1 n(m). Assuming a large M and independent and
identically distributed statistics across the temporal modes,
the statistics of n can be approximated as Gaussian by
virtue of the central limit theorem. Defining μ ≡ 〈n(m)〉 and

 ≡ 〈n(m)n(m)�〉 − 〈n(m)〉〈n(m)〉�, the mean of n is Mμ and the
covariance matrix is M
. The per-photon FI for the normally
distributed n becomes [32]

F
(DI)
1 (θ ) ≈ 1

N

∂μ�

∂θ

−1 ∂μ

∂θ

+ 1

2MN
tr

(

−1 ∂


∂θ

−1 ∂


∂θ

)
, (C1)

lim
M→∞

F
(DI)
1 (θ ) = 1

N

∂μ�

∂θ

−1 ∂μ

∂θ
. (C2)

This quantity is upper bounded by the per-photon FI in the
N 
 1 limit; the proof is as follows. Define the normalized
mean count vector as p ≡ μ/N . Using the optical equivalence
theorem [33], it can be shown that 
 = ND + V , where
Djk = pjδjk , Vjk = E(|αj |2|αk|2) − E(|αj |2)E(|αk|2), αj de-
notes the c-number amplitude of each spatial mode, and E

denotes the expectation with respect to the P function. Since
the P function is classical, V is a covariance matrix and must
be positive semidefinite, resulting in the matrix inequalities

 � ND and 
−1 � (ND)−1. Hence,

1

N

∂μ�

∂θ

−1 ∂μ

∂θ
� ∂p�

∂θ
D−1 ∂p

∂θ
=

∑
j

1

pj

(
∂pj

∂θ

)2

, (C3)

the last expression of which does not depend on N and
coincides with the per-photon FI in the N 
 1 limit.

For N 
 1, we find the per-photon FI for direct imaging at
small separation θ using

F
(DI)
1 (θ ) =

∫ ∞

−∞

[
∂Pr(DI)(x|θ )/∂θ

]2

Pr(DI)(x|θ )
dx, (C4)

where Pr(DI)(x|θ ) is given by Eq. (15). To the leading order in
θ , we have

∂

∂θ
Pr(DI)(x|θ ) ≈ − θ

4
√

2πσ 3

(
1 − x2

σ 2

)
e
− x2

2σ2 ,

and

Pr(DI)(x|θ ) ≈ 1√
2πσ

e
− x2

2σ2 ,

hence

F
(DI)
1 (θ ) = θ2

8σ 4
+ O(θ3). (C5)
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