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I propose quantum versions of the Ziv-Zakai bounds as alternatives to the widely used quantum

Cramér-Rao bounds for quantum parameter estimation. From a simple form of the proposed bounds,

I derive both a Heisenberg error limit that scales with the average energy and a limit similar to the

quantum Cramér-Rao bound that scales with the energy variance. These results are further illustrated by

applying the bound to a few examples of optical phase estimation, which show that a quantum Ziv-Zakai

bound can be much higher and thus tighter than a quantum Cramér-Rao bound for states with highly

non-Gaussian photon-number statistics in certain regimes and also stay close to the latter where the latter

is expected to be tight.
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In statistics, one often has to resort to analytic bounds on
the error to assess the performance of a parameter estima-
tion technique. For the mean-square error criterion, the
Cramér-Rao bounds (CRBs) are the most well known
[1]. Although the CRBs are asymptotically tight in the
limit of infinitely many trials, it is well known that the
bounds can grossly underestimate the achievable error
when the likelihood function is highly non-Gaussian and
the number of trials is limited [1,2]. For such situations, the
Ziv-Zakai bounds (ZZBs), which relate the mean-square
error to the error probability in a binary hypothesis testing
problem, have been found to be superior alternatives in
many cases [2,3]. These bounds are often much tighter
in the highly non-Gaussian regime and can also follow
the CRBs closely for large numbers of trials [2]. In physics,
the ZZBs have also been applied to gravitational-wave
astronomy [4].

The CRBs can be generalized for quantum parameter
estimation, where one estimates an unknown parameter
such as phase shift, mirror position, time, or magnetic field
by measuring a quantum system such as an optical beam,
an atomic clock, or a spin ensemble [5–8]. Given a quan-
tum state to be measured, the quantum CRBs (QCRBs)
give error bounds that hold for any measurement, but since
they are always less tight to the error than the correspond-
ing classical CRBs [9], the QCRBs share all the short-
comings of their classical counterparts. This is an
outstanding problem in quantum metrology, as there have
been many claims based on the QCRBs or other similarly
rudimentary arguments about the parameter-estimation ca-
pabilities of certain exotic quantum states [10–12], but
such claims cannot be justified if the bounds are not tight.
Similar to the classical case, one expects the QCRBs to be
tight when many copies of the quantum object are available
[5]; the question is how many. For example, Braunstein
et al. found numerically that the CRB for phase estimation
using the quantum state proposed by [10] is tight only

when the number of copies exceeds a threshold [13], while
Genoni et al. found experimentally that the QCRB for a
phase-diffused coherent state is tight only after �100
copies have been measured [14].
In this Letter, I propose quantum Ziv-Zakai bounds

(QZZBs) as alternatives to the QCRBs for quantum pa-
rameter estimation. The QZZBs relate the mean-square
error in a quantum parameter estimation problem to the
error probability in a quantum hypothesis testing problem,
and should be contrasted with previous studies that con-
sider quantum interferometry as a binary decision problem
only [15]. To demonstrate the versatility of the proposed
bounds, I show that a simple form of the bounds can
produce both a Heisenberg error limit (H limit [16]) that
scales with the average energy [17–19] and another limit
similar to the QCRB that scales with the energy variance.
I then illustrate these results by applying the bound to a few
examples of optical phase estimation. An especially illu-
minating example is the state proposed by Rivas and Luis,
the QCRB of which can be arbitrarily low [12]. I show that
a QZZB can be used to rule out any actual error scaling that
is better than the H-limit scaling for multiple copies of this
state. Beyond a certain number of copies, the QZZB starts
to follow the QCRB closely, thus revealing the regime
where the QCRB must be overly optimistic and indicating
more precisely the asymptotic regime where the QCRB is
tight. Although the QZZBs are also lower error bounds and
not guaranteed to be tight either, the study here and the
usefulness of their classical counterparts suggest that they
should be similarly useful for quantum parameter estima-
tion in general, whenever one is suspicious about the tight-
ness of the QCRBs.
Let X be the unknown parameter, Y be the observation,

and ~XðYÞ be an estimate of X as a function of the obser-
vation Y. Generalization to multiple parameters is possible
[2] but outside the scope of this Letter. The mean-square
estimation error is
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� �
Z

dxdyPX;Yðx; yÞ½ ~XðyÞ � x�2; (1)

where PX;Yðx; yÞ ¼ PYjXðyjxÞPXðxÞ is the joint probability
density of X and Y, PYjXðyjxÞ is the observation probability
density, also called the likelihood function when viewed as
a function of x, and PXðxÞ is the prior probability density.
A classical ZZB is given by [2]

��1

2

Z 1

0
d��V

Z 1

�1
dx½PXðxÞþPXðxþ�Þ�Preðx;xþ�Þ;

(2)

where Preðx; xþ �Þ is the minimum error probability of the
binary hypothesis testing problem with hypotheses
H 0: X ¼ x and H 1: X ¼ xþ �, observation densities
PYðyjH 0Þ ¼ PYjXðyjxÞ, and PYðyjH 1Þ ¼ PYjXðyjxþ �Þ,
and prior probabilities P0 � PrðH 0Þ ¼ PXðxÞ=½PXðxÞ þ
PXðxþ �Þ� and P1�PrðH 1Þ¼1�P0. V denotes the op-
tional ‘‘valley-filling’’ operation Vfð�Þ�max��0fð�þ�Þ
[2], which makes the bound tighter but more difficult to
calculate. Another version of the ZZB is

��1

2

Z 1

0
d��V

Z 1

�1
dx2min½PXðxÞ;PXðxþ�Þ�Prele ðx;xþ�Þ;

(3)

where Prele ðx; xþ �Þ is the minimum error probability of the
same hypothesis testing problem as before, except that the
hypotheses are now equally likely with P0 ¼ P1 ¼ 1=2. If
the prior distribution PXðxÞ is a uniform window, the two
bounds are equivalent [2]. For reference, Ref. [20] includes
proofs of these bounds, following closely the ones inRef. [2].

To apply the bounds to the quantum parameter estima-
tion problem, let �X be the quantum state that depends on
the unknown parameter X and EðYÞ be the positive
operator-valued measure that models the measurement.
The observation density becomes PYjXðyjxÞ ¼ tr½EðyÞ�x�.
The hypothesis testing problem then becomes a state dis-
crimination problem with the two possible states given by
�x and �xþ�. The error probability is bounded by a lower
limit first derived by Helstrom [6,21]:

Pr eðx; xþ �Þ � 1

2
ð1� kP0�x � P1�xþ�k1Þ; (4)

where kAk1 � tr
ffiffiffiffiffiffiffiffiffi
AyA

p
is the trace norm. Since all the

quantities in the integral in Eq. (2) are nonnegative, a lower
quantum bound on the classical bound can be obtained by
replacing Preðx; xþ �Þ in Eq. (2) with the right-hand side
of Eq. (4), resulting in a QZZB. For Prele ðx; xþ �Þ,

Pr ele ðx; xþ �Þ � 1

2

�
1� 1

2
k�x � �xþ�k1

�
(5)

� 1

2
½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Fð�x; �xþ�Þ

q
�; (6)

where F is the quantum fidelity defined as Fð�x; �xþ�Þ �
ðtr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�x
p

�xþ�
ffiffiffiffiffiffi
�x

pp Þ2. The inequality in Eq. (6) is proved in

Ref. [21] and becomes an equality when �X is pure. For a

product state �ð1Þ
X ��ð2Þ

X ������ð�Þ
X , F¼Q

�
j¼1Fð�ðjÞ

x ;�ðjÞ
xþ�Þ,

and Eq. (6) is especially convenient. Equations (3), (5), and
(6) form another QZZB, which is much more tractable and
shall be used in the remainder of the Letter. Similar to the
Bayesian version of the QCRB [7,8], the QZZBs allow one
to compute lower quantum limits that hold for any mea-
surement and estimation method by considering only the
quantum state �X and the prior distribution PXðxÞ. There
are, however, at least three significant differences between
the two families of bounds: (1) The QZZBs are not ex-
pected to be saturable exactly in general, unlike the
QCRBs in special cases [22], as the QZZBs are derived
from the classical ZZBs, which are also not saturable
usually, and the Helstrom bounds, which cannot be satu-
rated for all x and � using one positive operator-valued
measure. (2) While the QCRBs depend only on the infini-
tesimal distance between �x and its neighborhood [6,9],
the QZZBs depend on the distance between �x and �xþ�

for all relevant values of x and �. (3) The QCRBs are ill
defined if �x and PXðxÞ are not differentiable with respect
to x, whereas the QZZBs have no such problem.
Assume now that�X is generated by the unitary evolution

�X ¼ expð�iHXÞ� expðiHXÞ; (7)

whereH is a Hamiltonian operator and � is the initial state.
It can be shown that Fð�x; �xþ�Þ � jhc j expð�iH�Þjc ij2,
where jc i is a purification of � with the same energy
statistics [23]. Write jc i in the energy basis as jc i ¼P

kCkjEki with HjEki ¼ EkjEki. Then

Fð�x; �xþ�Þ �
��������
X
k

jCkj2 expð�iEk�Þ
��������

2¼ X
k;l

jCkj2jClj2

� cos½ðEk � ElÞ�� � Fð�Þ; (8)

which is independent of x. Assume further that the prior
distribution is a uniformwindowwith mean� and widthW
given by

PXðxÞ ¼ 1

W
rect

�
x��

W

�
: (9)

With the optionalV omitted, Eqs. (3), (6), (8), and (9) give

� � �Z � 1

2

Z W

0
d��

�
1� �

W

�
½1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Fð�Þp �: (10)

This inequality can be used to derive both an H limit and a
QCRB-like variance-dependent limit.
Applying the inequality cos� � 1� �j�j to Eq. (8),

where � 	 0:7246 is the implicit solution of � ¼ sin� ¼
ð1� cos�Þ=� for 0<�<	, one obtains Fð�Þ �P

k;ljCkj2jClj2ð1� �jEk � Elj�Þ. Let E0 be the minimum

Ek. Then �Ek � Ek � E0 is nonnegative and jEk � Elj ¼
j�Ek ��Elj 
 �Ek þ �El, which leads to
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Fð�Þ � 1� 2�Hþ�; Hþ � hc jHjc i � E0: (11)

A tighter bound in terms of Hþ may be found using the
formalism in Ref. [23] but Eq. (11) suffices here. Since the
bound in Eq. (11) goes negative for � > 1=ð2�HþÞ, one
can use the tighter bound Fð�Þ � 0 there. Assuming a large
enough Hþ so that W � 1=ð2�HþÞ, Eq. (10) becomes

���Z�1

2

Z 1=ð2�HþÞ

0
d��

�
1� �

W

�
ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�Hþ�
p Þ¼ 1

80�2H2þ

� 1

336�3WH3þ
! 1

80�2H2þ
forW� 1

2�Hþ
: (12)

Equation (12) is an H limit that scales with the average
energy relative to the ground state and does not depend on
the prior W for large Hþ. This result is subtly different
from the one in Ref. [18], which does not average the
mean-square error over a prior distribution and uses a
different method to prove the limit. The limit derived in
Ref. [19], on the other hand, does include prior information
and is tighter than Eq. (12), but makes the additional
assumptions that H has integer eigenvalues and W ¼ 2	.
The H limit derived here also does not contradict with
Ref. [24], which assumes H / nk, k an integer, and defines
a different H limit in terms of n.

To derive another limit in terms of the energy variance,
note that the fidelity can also be bounded by [23,25]

Fð�Þ � cos2ð�H�Þ for 0 
 � 
 	

2�H
;

�H2 � hc jH2jc i � hc jHjc i2: (13)

With W � 	=2�H, Eq. (10) becomes

�Z � 1

2

Z 	=2�H

0
d��

�
1� �

W

�
½1� sinð�H�Þ�

¼ 	2=16� 1=2

�H2
� 1þ 	3=48� 	=2

W�H3

! 	2=16� 1=2

�H2
for W � 	

2�H
; (14)

which is less tight than the QCRB �C ¼ 1=ð4�H2Þ by a
constant factor but shows that the QZZB is also capable of
predicting the same scaling with the energy variance.

Consider now the problem of phase estimation using a
harmonic oscillator, assumed here to be an optical mode,
with H ¼ n, the photon-number operator. For comparison,
the Bayesian QCRB that includes a prior Fisher informa-
tion � � R

dxPXðxÞ½@ lnPðxÞ=@x�2 is [6–8]

� � �C � 1

4�N2 þ�
; (15)

where �N2 � hc jn2jc i � N2 and N � hc jnjc i. � is ill
defined for the prior given by Eq. (9); I shall instead use a
Gaussian prior distribution with variance W2=12 for the
QCRB, so that � ¼ 12=W2. For large �N2, the prior
information is irrelevant to the QCRB. In this regime,

Ref. [20] shows that the QZZB is less tight than the
QCRB by just a factor of 2 when the photon-number
distribution jCmj2 can be approximated as continuous and
Gaussian, a case in which the QCRB is known to be
saturable [22]. Thus the two bounds can differ substantially
only when jCmj2 is highly non-Gaussian.

Consider first a coherent state jc i ¼ expð�N=2Þ�P1
m¼0ðNm=2=

ffiffiffiffiffiffi
m!

p Þjmi with mean photon number N.

�N2¼N, and the fidelity is Fð�;NÞ¼exp½2Nðcos��1Þ�,
as shown in Fig. 1(a) for some different N’s. For a product
of coherent states,

Q
�
j¼1 Fð�; NjÞ ¼ Fð�;P�

j¼1 NjÞ is iden-
tical to that for one coherent state with the same total
photon number on average.
For W ¼ 2	, it can be shown [20] that Eq. (10) gives

�Z � �0
Z ¼ 	3=2

8
ffiffiffiffi
N

p expð�4NÞerfið2 ffiffiffiffi
N

p Þ; (16)

where erfiz � ð2= ffiffiffiffi
	

p ÞRz
0 du expðu2Þ. The QZZB and the

QCRB are plotted in Fig. 1(b). In the limit of N � 1, the
right-hand side of Eq. (16) approaches 	=ð16NÞ, which is
slightly less than the QCRB given by �C ! 1=ð4NÞ but
still obeys the expected 1=N ‘‘shot-noise’’ scaling.

Next, consider the state jc i ¼ ðMþ 1Þ�1=2
P

M
m¼0 jmi,

which has an equal superposition of number states up to
jMi and shall be called the rectangle state here, with N ¼
M=2 and �N2 ¼ MðMþ 2Þ=12. The QCRB given by

�C ¼ 1

4NðN þ 1Þ=3þ�
(17)

follows the H-limit scaling 1=N2 for largeN. The fidelity is
Fð�Þ ¼ sin2½ð2N þ 1Þ�=2�=½ð2N þ 1Þ2sin2ð�=2Þ�. Unlike
the coherent states, the fidelities for the rectangle states
have sidelobes, as shown in Fig. 1(c).
The QZZB for W ¼ 2	 is [20]

�Z � �0
Z ¼ 	

2ð2N þ 1Þ2
X2N
k¼0

1

2kþ 1

! 	 lnð4N þ 1Þ
4ð2N þ 1Þ2 for largeN; (18)

approaching a slower lnN=N2 scaling for large N. The
additional factor of lnN makes the QZZB diverge from
the QCRB, as shown in Fig. 1(d). The lnN=N2 scaling was
also observed previously for the phase-squeezed state us-
ing other methods [26].
As the final example, consider the superposition of the

vacuum with a state j
i that has a large photon-number
variance, viz., jc ij ¼ c0j0i þ c1j
i with jc1j2 � 1, as

proposed by Rivas and Luis [12]. jc ij can be rewritten

as jc ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p j0i þ ffiffiffi
�

p jc si, where jc si is j
i minus

the vacuum component and renormalized. If jc si has a
mean photon number Ns and photon-number variance
given by �N2

s with � a constant, the mean and variance
for jc ij are Nj ¼ �Ns and �N2

j ¼ ½ð1þ �Þ=�� 1�N2
j .
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�N2
j can be made arbitrarily larger than N2

j by reducing �,

and the QCRB can be made arbitrarily small. With � copies
and a total photon number N � �Nj,

�C ¼ 1

4½ð1þ �Þ=ð��Þ � 1=��N2 þ�
(19)

can decrease faster than the H-limit scaling 1=N2 if �� also
decreases with N [12].

The fidelity tells a very different story. Defining
the fidelity for jc si as Fs, the fidelity for jc ij is Fj ¼
ð1� �Þ2 þ 2�ð1� �Þhc sj cosn�jc si þ �2Fs � ð1� �Þ2 �
2�ð1� �Þ ¼ 1� 4�þ 3�2. Regardless of jc si, Fj is

bounded from below by a constant close to 1 if � � 1.
For � copies, F ¼ F�

j � ð1� 4�þ 3�2Þ�, and a bound on

the QZZB follows:

�Z � W2

12

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� 4�þ 3�2Þ�

q �
: (20)

This bound means that the actual error cannot deviate
substantially from the prior value W2=12 until ��� 1,
by which point even if the error catches up with the
QCRB, it can no longer beat the 1=N2 scaling. This result
is unsurprising in light of the now proven H limit.
To study the behavior of the Rivas-Luis state in

more detail, let jc ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p j0i þ ffiffiffiffiffiffiffiffiffiffi
�=M

p P
M
m¼1 jmi.

Figure 1(e) plots the fidelities for some products of the
Rivas-Luis states with � ¼ 0:1 and N ¼ 1, showing sharp
features due to jc si near � ¼ 0 but quickly dropping off to
the nonzero backgrounds due to j0i. Figure 1(f) plots the
QZZB (calculated by numerically integrating Eq. (10) with
W ¼ 2	) and the QCRB given by Eq. (19) versus the total
photon numberN. TheQZZB ismuch higher than theQCRB
for smallN and comes down onlywhenN * 10 and�� * 1.
The QZZB then reaches a threshold, beyondwhich it follows
closely the QCRB. This threshold behavior is encountered
frequently in classical parameter estimation [1,2] and also
observed in a numerical study of quantum phase estimation
[13].
In conclusion, the QZZBs are shown to be versatile error

bounds that can predict different types of quantum limits
using one unified formalism and can be much tighter than
the popular QCRB for optical phase estimation in certain
cases. To model quantum sensors more realistically, the
QZZBs may be generalized for waveform estimation in a
way similar to the QCRB [8], if an error bound for con-
tinuous quantum hypothesis testing [27] can be found.
Discussions with L. Maccone, V. Giovannetti, M. J.W.

Hall, S. Lloyd, L. Davidovich, B.M. Escher, R. L. de
Matos Filho, M.G.A. Paris, Á. Rivas, A. Luis, S. Guha,
A. Tacla, C.M. Caves, L. C. Kwek, A. Ling, and J. P.
Dowling are gratefully acknowledged. This work is sup-
ported by the Singapore National Research Foundation
under NRF Grant No. NRF-NRFF2011-07.
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