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Smoothing is an estimation technique that takes into account both past and future observations and can

be more accurate than filtering alone. In this Letter, a quantum theory of smoothing is constructed using a

time-symmetric formalism, thereby generalizing prior work on classical and quantum filtering, retro-

diction, and smoothing. The proposed theory solves the important problem of optimally estimating

classical Markov processes coupled to a quantum system under continuous measurements, and is thus

expected to find major applications in future quantum sensing systems, such as gravitational wave

detectors and atomic magnetometers.
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Estimation theory is concerned with the inference of
unknown signals, given their a priori statistics as well as
noisy observations [1]. Depending on the time at which the
signal is to be estimated relative to the observation time
interval, estimation problems can be divided into four
classes: Prediction, the estimation of a signal at time �
given observations before �; Filtering, given observations
before and up to �; Smoothing, given observations before
and after �; and Retrodiction, given observations after �
[2]. Among the four classes, prediction and filtering have
received the most attention, given their importance in
applications that require real-time knowledge of a system,
such as control, weather forecast, and quantitative finance.
If we allow delay in the estimation, however, we can take
into account the more advanced observations to produce a
more accurate estimation of the signal some time in the
past via smoothing techniques. For this reason, smoothing
is mainly used in communication and sensing applications,
when accuracy is paramount but real-time data are not
required.

Conventional quantum theory can be regarded as a
prediction theory. The quantum state in the Schrödinger
picture represents our maximal knowledge of a system
given prior observations. In particular, the quantum filter-
ing theory developed by Belavkin and others [3,4] can be
regarded as a generalization of the classical nonlinear
filtering theory devised by Stratonovich and Kushner [5].
Quantum smoothing and retrodiction theories, on the other
hand, have been proposed by Aharonov et al. as an alter-
native formulation of quantummechanics [6], Barnett et al.
for the purpose of parameter estimation [7], and
Yanagisawa for initial quantum state estimation [8]. In
this Letter, I generalize these earlier results on classical
and quantum estimation to a quantum theory of smoothing
for continuous waveform estimation. I am primarily inter-
ested in the estimation of classical random processes, such
as gravitational waves and magnetic fields, coupled to a
quantum object, such as a quantum mechanical oscillator
or an atomic spin ensemble, under continuous measure-

ments. Previous studies on the use of filtering for these
estimation problems [9] model the classical signals in
terms of constant parameters or waveforms with determi-
nistic evolution, but it is more desirable to model them as
Markov processes for generality and robustness, in which
case smoothing can be significantly more accurate than
filtering [1]. Quantum estimation of a random optical phase
process has recently been studied by Wiseman and co-
workers [10,11] and Tsang et al. [12], but a general quan-
tum smoothing theory is still lacking. The theory proposed
here is thus expected to find important applications in
future quantum sensing systems, such as gravitational
wave detectors and atomic magnetometers.
Consider the estimation problem schematically shown in

Fig. 1. A vectoral classical random process xt �
½x1ðtÞ; . . . ; xnðtÞ�T is coupled to a quantum system. The
backaction of the quantum system on the classical system
that produces xt is assumed to be negligible, so that the
statistics of xt remain unperturbed and classical. This
assumption should be satisfied for the purpose of sensing
and avoids the contentious issue of quantum backaction on
classical systems [13]. The quantum system is measured

continuously, via a weak measurement operator M̂ðdytÞ,
where dyt � ½dy1ðtÞ; . . . ; dymðtÞ�T is the vectoral measure-
ment outcome at time t. Define the observations in the time
interval ½t1; t2Þ as dy½t1;t2Þ � fdyt; t1 � t < t2g. My ultimate

goal is to calculate the fixed-interval smoothing probability

FIG. 1 (color online). Schematic of the continuous waveform
estimation problem.

PRL 102, 250403 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
26 JUNE 2009

0031-9007=09=102(25)=250403(4) 250403-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.250403


density Pðx�jdy½t0;TÞÞ at time �, conditioned upon past and

future observations in the time interval t0 � � � T so that
the conditional expectations of x� and the associated errors
can be determined.

Central to my derivation is the use of a hybrid classical-
quantum density operator �̂tðxtÞ, which provides joint
classical and quantum statistics at time t [13,14]. The
classical probability density for xt and the unconditional
density operator can be determined from the hybrid opera-
tor by

PðxtÞ ¼ tr½�̂tðxtÞ�; �̂t ¼
Z

dxt�̂tðxtÞ; (1)

respectively. To derive the smoothing density, I will need
the conditional hybrid density operator �̂�ðx�jdy½t0;�ÞÞ
given past observations, and also a hybrid effect operator,

Ê�ðdy½�;TÞjx�Þ, which determines the joint statistics of fu-

ture observations dy½�;TÞ given an arbitrary hybrid density

operator �̂�ðx�Þ at time �,

P½dy½�;TÞj�̂�ðx�Þ� ¼
Z

dx�tr½Ê�ðdy½�;TÞjx�Þ�̂�ðx�Þ�: (2)

The smoothing probability density is then

Pðx�jdy½t0;TÞÞ ¼ Pðx�jdy½t0;�Þ; dy½�;TÞÞ

¼ Pðx�; dy½�;TÞjdy½t0;�ÞÞ
Pðdy½�;TÞjdy½t0;�ÞÞ

¼ tr½Ê�ðdy½�;TÞjx�Þ�̂�ðx�jdy½t0;�ÞÞ�R
dx�tr½Ê�ðdy½�;TÞjx�Þ�̂�ðx�jdy½t0;�ÞÞ�

:

(3)

To calculate the conditional hybrid density operator
�̂�ðx�jdy½t0;�ÞÞ, which also solves the filtering problem, first

consider the conditional density operator �̂�ðjx½t0;�ÞÞ in

discrete time, which describes the quantum state given a
particular trajectory of x½t0;�Þ � fxt0 ; xt0þ�t; . . . ; x���tg,

�̂ �ðjx½t0;�ÞÞ ¼ Kðx���tÞ . . .Kðxt0þ�tÞKðxt0Þ�̂t0
; (4)

where �̂t0
is the initial a priori density operator, KðxtÞ �

exp½�tLðxtÞ� is a superoperator that governs the quantum
system evolution for the time interval �t independent of the
measurement process, L is a superoperator in Lindblad
form, and xt acts as a parameter of the evolution. Averaging
over trajectories of x½t0;�Þ, the hybrid density operator

�̂�ðx�Þ can be expressed as

�̂ �ðx�Þ ¼
Z

dx���t . . . dxt0�̂�ðjx½t0;�ÞÞPðx½t0;�Þ; x�Þ: (5)

This expression can be verified by substituting it into
Eqs. (1). If xt is a Markov process, Pðx½t0;�Þ; x�Þ ¼
Pðx½t0;��Þ ¼ Pðx�jx���tÞ . . .Pðxt0þ�tjxt0ÞPðxt0Þ, Pðxt0Þ
being the initial a priori probability density. Rearranging
the terms in Eqs. (4) and (5), �̂�ðx�Þ can be solved by
iterating the formula

�̂ tþ�tðxtþ�tÞ ¼
Z

dxtPðxtþ�tjxtÞKðxtÞ�̂tðxtÞ; (6)

with the initial condition �̂t0
ðxt0Þ ¼ �̂t0

Pðxt0Þ. Pðxtþ�tjxtÞ
for an important class of Markov processes can be deter-
mined from the Itō stochastic differential equation [1]

dxt ¼ Aðxt; tÞdtþ Bðxt; tÞdWt; (7)

where dWt is a vectoral Wiener increment with EfdWtg ¼
0 and EfdWtdW

T
t g � QðtÞdt.

To calculate the a posteriori hybrid state after a mea-
surement, the quantum Bayes theorem [4] can be general-
ized as

�̂ tðxtj�ytÞ ¼ J ð�ytÞ�̂tðxtÞR
dxttr½J ð�ytÞ�̂tðxtÞ� ; (8)

where J ð�ytÞ�̂ � M̂ð�ytÞ�̂M̂yð�ytÞ. The evolution of the
hybrid density operator conditioned upon past observations
�y½t0;tÞ � f�yt0 ; �yt0þ�t; . . . ; �yt��tg is therefore given by

�̂ tþ�tðxtþ�tj�y½t0;tÞ; �ytÞ ¼
R
dxtPðxtþ�tjxtÞKðxtÞJ ð�ytÞ�̂tðxtj�y½t0;tÞÞR

dxttr½J ð�ytÞ�̂tðxtj�y½t0;tÞÞ�
: (9)

Assuming Gaussian measurements, the measurement op-
erator in the continuous limit is [3,4,15]

M̂ðdztÞ / 1̂þX
�

��ðtÞ
�
1

2
ðdztÞ�ĉ� � dt

8
ĉy�ĉ�

�
; (10)

where �� is assumed to be positive, dzt is a vectoral
observation process, and ĉ is a vector of arbitrary opera-
tors. Defining dyt � Udzt and Ĉ � Uĉ, U being a unitary
matrix, the measurement operator can be cast into an
equivalent but slightly more useful form as

M̂ðdytÞ / 1̂þ 1

2
dyTt R

�1ðtÞĈ� dt

8
ĈyTR�1ðtÞĈ; (11)

where R is a real positive-definite matrix with eigenvalues
1=��. The stochastic master equation for �̂tðxt ¼
xjdy½t0;tÞÞ � F̂ðx; tÞ in the Itō sense is hence

dF̂ ¼ dt

�
LðxÞF̂�X

�

@

@x�
ðA�F̂Þ

þ 1

2

X
�;�

@2

@x�@x�
½ðBQBTÞ��F̂�

þ 1

8
ð2ĈTR�1F̂Ĉy � ĈyTR�1Ĉ F̂�F̂ĈyTR�1ĈÞ

�

þ 1

2
½d�T

t R
�1ðĈ� hĈiF̂ÞF̂þ H:c:�; (12)
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where d�t � dyt � dthĈþ ĈyiF̂=2 is a real vectoral
Wiener increment with covariance matrix Rdt, hĈiF̂ �R
dxtr½Ĉ F̂ðx; tÞ�, and H.c. denotes the Hermitian conju-

gate. Equation (12) solves the filtering problem for the
hybrid classical-quantum system and generalizes the
Kushner equation [1,5] and the Belavkin equation [3].
The continuous phase estimation theory proposed in
Ref. [11] may be considered as a special case of Eq. (12).
A linear version of the master equation for an unnormal-
ized F̂ðx; tÞ, analogous to the classical Zakai equation [16],
is

df̂ ¼ dt

�
LðxÞf̂�X

�

@

@x�
ðA�f̂Þ

þ 1

2

X
�;�

@2

@x�@x�
½ðBQBTÞ��f̂�

þ 1

8
ð2ĈTR�1f̂Ĉy � ĈyTR�1Ĉ f̂�f̂ĈyTR�1ĈÞ

�

þ 1

2
ðdyTt R�1Ĉ f̂þH:c:Þ; (13)

and F̂ðx; tÞ is given by f̂ðx; tÞ=R dxtr½f̂ðx; tÞ�.
To solve for Ê�ðdy½�;TÞjx�Þ, rewrite Eq. (2) in discrete

time as

P½�y½�;TÞj�̂�ðx�Þ� ¼
Z

dx�tr½Ê�ð�y½�;TÞjx�Þ�̂�ðx�Þ� (14)

¼
Z

dxTtr

�Z
dxT��tPðxTjxT��tÞKðxT��tÞJ ð�yT��tÞ . . .

�
Z

dx�Pðx�þ�tjx�ÞKðx�ÞJ ð�y�Þ�̂�ðx�Þ
�
: (15)

Comparing Eq. (14) with Eq. (15) and defining the adjoint

of a superoperator O as O�, such that tr½ÊðO�̂Þ� ¼
tr½ðO�ÊÞ�̂�, the hybrid effect operator can be expressed as

Ê�ð�y½�;TÞjx�Þ ¼ J �ð�y�ÞK�ðx�Þ
Z

dx�þ�tPðx�þ�tjx�Þ . . .
� J �ð�yT��tÞK�ðxT��tÞ
�

Z
dxTPðxTjxT��tÞ1̂: (16)

The stochastic master equation for an unnormalized

Êtðdy½t;TÞjxt ¼ xÞ / ĝðx; tÞ in continuous time becomes

�dĝ ¼ dt

�
L�ðxÞĝþX

�

A�

@

@x�
ĝþ 1

2

X
�;�

ðBQBTÞ��

� @2

@x�@x�
ĝþ 1

8
ð2ĈyTĝR�1Ĉ� ĝĈyTR�1Ĉ

� ĈyTR�1Ĉ ĝÞ
�
þ 1

2
ðdyTt R�1ĝ ĈþH:c:Þ; (17)

which is the adjoint equation of Eq. (13), to be solved
backward in time using the backward Itō rule and the final

condition ĝðx; TÞ / 1̂. The smoothing probability density
is hence

hðx; �Þ � Pðx� ¼ xjdy½t0;TÞÞ ¼
tr½ĝðx; �Þf̂ðx; �Þ�R
dxtr½ĝðx; �Þf̂ðx; �Þ� :

(18)

This form of smoothing, which combines the solutions of
adjoint Eqs. (13) and (17), has a pleasing time symmetry
and can be regarded as a generalization of the classical
nonlinear two-filter smoothing theory proposed by
Pardoux [17].
Equations (12), (13), (17), and (18) are the central results

of this Letter and form the basis of a general quantum
prediction, filtering, smoothing, and retrodiction theory for
continuous waveform estimation. One way of solving them
is to convert them to stochastic partial differential equa-
tions for quasiprobability distributions. For quantum sys-
tems with continuous degrees of freedom, the Wigner
distribution is especially helpful. Let fðq; p; x; tÞ and

gðq; p; x; tÞ be the Wigner distributions of f̂ðx; tÞ and
ĝðx; tÞ, respectively. They have the desired propertyR
dqdpgðq; p; x; tÞfðq; p; x; tÞ / tr½ĝðx; tÞf̂ðx; tÞ�, which is

unique among generalized quasiprobability distributions
[18]. The smoothing density can then be rewritten as

hðx; �Þ ¼
R
dqdpgðq; p; x; �Þfðq; p; x; �ÞR

dxdqdpgðq; p; x; �Þfðq; p; x; �Þ : (19)

As an illustration of the smoothing theory, consider the
estimation of a classical force, say x1ðtÞ, acting on a
quantum mechanical harmonic oscillator, and the position
of the oscillator is monitored, via an optical phase-locked

loop for example [10–12]. Let L�̂ ¼ �L��̂ ¼ �ði=@Þ�
½Ĥ; �̂�, Ĥ ¼ ðp̂2 þ!2q̂2Þ=2� x1q̂, and Ĉ ¼ q̂. The linear
stochastic equations for the Wigner distributions become

df ¼ dt

�
�p

@f

@q
þ ð!2q� x1Þ @f@p�X

�

@

@x�
ðA�fÞ

þ 1

2

X
�;�

@2

@x�@x�
½ðBQBTÞ��f� þ @

2

8R

@2f

@p2

�
þ dytq

R
f;

(20)

and

� dg ¼ dt

�
p
@g

@q
� ð!2q� x1Þ @g@pþX

�

A�

@g

@x�

þ 1

2

X
�;�

ðBQBTÞ��

@2g

@x�@x�
þ @

2

8R

@2g

@p2

�
þ dytq

R
g:

(21)

These equations are then identical to the classical forward
and backward Zakai equations [16,17]. If xt is Gaussian
and the initial f is Gaussian, the means and covariances of
the Gaussian f, g, and h can be obtained using the Mayne-
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Fraser-Potter two-filter smoother [12,19], which calculates
those of f and g using forward and backward Kalman-
Bucy filters [1], and then combines them to give the means
and covariances of h. As is well known in classical esti-
mation theory, unless x1 is constant, the smoothing esti-
mates and covariances cannot be obtained from a filtering
theory alone. The reduced estimation errors associated
with quantum smoothing can in principle be verified ex-
perimentally in future quantum sensing systems.
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