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Consider a degenerate optical parametric oscillator (OPO) [1]. The equation of motion for the

optical-mode analytic signal is

da(t)

dt
= −γ

2
a(t)− iωma(t) + 2λa∗(t) +

√
γA(t), (1)

where γ is the coupling rate, ωm is the resonance frequency, λ is the pump coefficient, and A(t) is

the input field. The output field is given by

Aout(t) =
√
γa(t)−A(t) +A′(t), (2)

where A′ is an excess noise. Suppose that Aout is measured by continuous heterodyne detection,

and A and A′ are white phase-insensitive noises with noise powers Sin and S′. After some lengthy

but standard calculations, the output power spectral density is given by

S(ω) = [1 + 2V (ω)]Sin + S′, (3)

where V (ω) is the idler gain. In terms of normalized frequency and parameters,

V (Ω) =
Γ2

[Ω2 − (g−2 − 1− Γ2/4)]2 + (g−2 − 1)Γ2
, (4)

Ω ≡ ω

2|λ| , g ≡ 2|λ|
ωm

, Γ ≡ γ

2|λ| . (5)

To compute the Fisher information for estimating ωm from Aout, we start with the Bhattacharyya

distance [2]:

B(g, g′) = 2|λ|t
∫

∞

−∞

dΩ

2π
ln

S(Ω|g) + S(Ω|g′)
2
√

S(Ω|g)S(Ω|g′)
, (6)

and find the Fisher information through the identity [2]:

G(ωm) = 4

(

∂g

∂ωm

)2 ∂2

∂g2
B(g, g′)

∣

∣

∣

g′=g
. (7)
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If the noise powers are quantum-limited,

Sin = S′ = 0.5, (8)

S(Ω) = V (Ω) + 1. (9)

After more algebra, we get

G(ωm) =
8|λ|3t
ω4
m

∫

∞

−∞

dΩ

2π

(

∂V

∂g

)2 1

(V + 1)2
. (10)

Focusing on the OPO threshold, which occurs at

g =
(

1− Γ2/4
)

−1/2
, (11)

we obtain

G =
16ω2

mt

γ3

∫

∞

−∞

dx

2π

1

(x2 + 1)2
1

[1 + Γ2x2(x2 + 1)]2
. (12)

To obtain an analytic result, suppose Γ < 2, such that we can lower-bound G:

G >
16ω2

mt

γ3

∫

∞

−∞

dx

2π

1

(x2 + 1)2
1

[1 + 4x2(x2 + 1)]2
=

1.532ω2
mt

γ3
. (13)

In the limit of Γ → 0, on the other hand, G → 4ω2
mt/γ3, so

4ω2
mt

γ3
> G >

1.532ω2
mt

γ3
, 0 < Γ < 2, (14)

which is the result quoted in the main text. This result suggests that the parameter estimation

accuracy can be improved significantly if γ is reduced.

Below threshold, the Fisher information can be investigated by numerical integration using this

formula:

G =
16ω2

mt

γ3Γ

∫

∞

−∞

dΩ

2π

[

Ω2 −
(

g−2 − 1 + Γ2/4
)]2 V 4

(V + 1)2
. (15)

For example, Fig. 1 plots the normalized G versus g on logarithmic scale for Γ = 0.01. The plot

demonstrates significant enhancement near g = 1.

So far all the results are derived for below-threshold operations. If the perturbation causes

the threshold to be exceeded, the system becomes unstable, and we can no longer rely on the

frequency-domain analysis. The analysis in the main text hints that instability should improve the

sensitivity even further, however.

[1] C. W. Gardiner and P. Zoller, Quantum Noise (Springer-Verlag, Berlin, 2004).

[2] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part III: Radar-Sonar Signal Processing

and Gaussian Signals in Noise (John Wiley & Sons, New York, 2001).



3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

g

G
γ
3
/
(4
ω
2 m
t)

FIG. 1. Normalized Fisher information versus g on logarithmic scale for Γ = 0.01.


