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Small perturbations to systems near critical points of quantum phase transitions can induce drastic changes in
the system properties. Here I show that this sensitivity can be exploited for weak-signal detection applications.
This is done by relating a widely studied signature of quantum chaos and quantum phase transitions known as the
Loschmidt echo to the minimum error probability for a quantum detector and noting that the echo, and therefore
the error, can be significantly reduced near a critical point. Three examples, namely, the quantum Ising model,
the optical parametric oscillator model, and the Dicke model, are presented to illustrate the concept. For the
latter two examples, the detectable perturbation can exhibit a Heisenberg scaling with respect to the number of
detectors, even though the detectors are not entangled and no special quantum state preparation is specified.
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Phase transitions are characterized by macroscopic changes
to a system due to slight variations in the system parameters.
Sensing is a natural application of this sensitivity. For example,
superconducting transition-edge sensors exploit the highly
temperature-sensitive resistance of a superconductor near
the critical temperature to measure energy deposition and
can detect photons with record efficiency [1]. Such devices
rely on classical phase transitions, which are sensitive to
thermodynamic variables only. This limitation rules out the use
of classical phase transitions for many sensing applications,
such as optical interferometry, force sensing, accelerometry,
gyroscopy, and magnetometry, where the signals of interest can
barely perturb the thermodynamic variables. Here I propose
the concept of quantum transition-edge sensors, which exploit
the sensitivity of quantum phase transitions to Hamiltonian
parameters [2] and should thus be useful for a much wider
range of quantum sensing and system identification applica-
tions. On a fundamental level, the feasibility of the proposal is
demonstrated by relating a well-known measure of quantum
chaos and quantum phase transitions known as the Loschmidt
echo [3] to the theoretical minimum error probability for a
quantum detector [4]. A small echo then directly implies that
an optimal measurement of the system can accurately detect
the perturbation. Three examples, namely, the quantum Ising
model [2], the optical parametric oscillator (OPO) model [5],
and the Dicke model [6,7], are presented to illustrate the
concept.

Suppose that the initial quantum state is |ψ〉 and the
Hamiltonian is H0. After time t , a Hamiltonian −H1 is applied
to reverse the evolution. The final state given by

|ψ ′〉 = U
†
1U0|ψ〉, Um ≡ T exp

[
−i

∫ t

0
dτHm(τ )

]
, (1)

where m ∈ {0,1}, should be different from |ψ〉 if H0 �= H1. A
measure of the difference is the overlap between the initial and
final states called the Loschmidt echo [3],

F ≡ |〈ψ ′|ψ〉|2 = |〈ψ |U †
0U1|ψ〉|2. (2)
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The echo is a measure of how accurately the dynamics of a
quantum system can be reversed by an imperfect time-reversal
operation. An enhanced decay of the echo with respect to a
given difference between H1 and H0 can be used as a signature
of quantum chaos [3] and criticality [8], when time reversibility
is compromised.

Let us now consider a different scenario more conducive to
weak-signal detection applications: The initial state is again
|ψ〉, but imagine that there are two possibilities for the Hamil-
tonian, namely, H0 or H1. For detection problems, assume that
H0 is the unperturbed Hamiltonian and H1 is the perturbed
one. The final state is either |ψ0〉 = U0|ψ〉 or |ψ1〉 = U1|ψ〉.
A measurement is then performed, with outcome y, to detect
the presence of the perturbation. The probability of y given
either hypothesis is P (y|Hm) = tr[E(y)ρm], where E(y) is a
positive operator-valued measure (POVM), the most general
way of specifying the statistics of a quantum measurement [9],
ρm = |ψm〉〈ψm| is a density operator, and Hm denotes the
hypothesis. In the context of quantum information theory,
this is known as the unitary discrimination problem [10–13].
A general decision strategy entails separating the space of
y into two regions ϒ0 and ϒ1; if y is in ϒ0 one decides
that H0 is true and vice versa. Let the error probabilities
be P10 ≡ ∫

ϒ1
dyP (y|H0) and P01 ≡ ∫

ϒ0
dyP (y|H1). Given

prior probabilities P0 and P1, the average error probability is
Pe ≡ P10P0 + P01P1. A seminal result by Helstrom [4] states
that the minimum Pe for any POVM is

min
E(y)

Pe = 1
2 (1 − √

1 − 4P0P1F ), (3)

where

F ≡ |〈ψ0|ψ1〉|2 = |〈ψ |U †
0U1|ψ〉|2 (4)

is called the fidelity, which is exactly the same as the Loschmidt
echo given by Eq. (2). minE(y) Pe decreases monotonically
with decreasing F . It follows that, whenever F 	 1 such that
the minE(y) Pe ≈ P0P1F 	 1, there exists a measurement that
enables one to distinguish the two hypotheses and detect the
perturbation accurately. Conversely, if F is high such that
minE(y) Pe is high, no measurement can accurately tell the two
hypotheses apart.
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Let H0 = H (x) and H1 = H (x + δ), where x and δ are
continuous parameters. Gjk ≡ −2∂2F/∂δj∂δk

∣∣
δ=0 is called

the quantum Fisher information, the inverse of which can be
used to lower-bound the mean-square error in estimating x

via the quantum Cramér-Rao bound (QCRB) [4,14,15]. G has
also been used to study quantum criticality [16] but is a less
conclusive measure from the perspective of quantum metrol-
ogy, as the attainment of the QCRB may require repeated
adaptive measurements [17] that can negate the advantage of
having a high G [18], unlike the one-shot attainability of the
Helstrom bound. Although G also determines the behavior
of F near F = 1 via the approximation F ≈ 1 − δ�Gδ/4, in
the following I shall focus on the more useful F 	 1 regime,
where accurate detection is possible and G has little relevance.

The connection between fidelity measures for quantum
phase transitions and quantum metrology was also pointed
out by Refs. [19], while the use of thermal states near a
quantum critical point of a Dicke-Ising model for metrology
was proposed by Ref. [20], but they all focused on states
at thermal equilibrium and not the dynamics. For sensing,
time is often a limited resource due to a finite signal duration
or deteriorating experimental conditions, so the dynamical
response of a sensor, the main focus here, is more important
and relevant than the equilibrium properties studied in previous
work. On a foundational level, time is of course such a
fundamental physical quantity that makes the finite-time
quantum-information-theoretic measures interesting in their
own right. Another relevant prior work is Ref. [21], which
proposed a Loschmidt echo experiment with a Bose-Hubbard
system for sensing applications but have not studied the
fundamental sensitivity enabled by the system.

Before studying specific examples, it is helpful to first recall
a standard solution for F in quantum detection theory [4]
for comparison. Suppose that |ψ〉 = |φ〉⊗N , H0 = qx0, H1 =
q(x0 + δ), x0 and δ are scalars, and |φ〉 has a Gaussian
distribution with respect to eigenstates of q. Then

F = exp(−N	q2δ2t2), (5)

where 	q2 is the variance of q for |φ〉. In detection applica-
tions, one is usually interested in the error exponent − ln Pe as
measure of detection performance and desire − ln Pe  1. In
this low-error regime, the optimal error exponent is

max
E(y)

(−lnPe) ≈ − ln P0 − ln P1 − ln F, (6)

which differs from the fidelity exponent −lnF by just a
constant factor. I shall hereafter focus on −lnF as a figure
of merit. Given Eq. (5), the fidelity exponent is

−lnF = N	q2δ2t2. (7)

Another useful performance measure is called the detectable
perturbation δ′ [10,12,13], which is the magnitude of δ that
leads to an acceptable error probability P ′

e . Defining F ′ as the
fidelity that leads to Pe = P ′

e via Eq. (3), one obtains

δ′ =
√−lnF ′
√

N	qt
. (8)

δ′ quantifies the sensitivity of a detector with respect to
resources N and t . I define the scalings of Eqs. (7) and (8)
with respect to N , δ, and t as the standard scalings.

As the first example, consider the quantum Ising model [2],

Hm = −J

N∑
j=1

(
σ z

j σ z
j+1 + gmσx

j

)
, (9)

where σx
j and σ z

j are Pauli spin operators, J is the spin interac-
tion strength, g is the transverse magnetic field normalized
with respect to J , and the periodic boundary condition is
assumed. Let δ ≡ g1 − g0 be the perturbation. Conventional
quantum metrology protocols prepare |ψ〉 in a special state
and then apply a simple Hamiltonian ∝∑

j σ x
j [22]. Here I

simply assume |ψ〉 to be the ground state of H0; the additional
terms in the Hamiltonian may be regarded as coherent quantum
control [23] in place of state preparation. An analytic solution
for F is [8]

F =
N/2∏
k=1

{1 − sin2[ε1(k)t] sin2[θ1(k) − θ0(k)]}, (10)

ε1(k) ≡ 2J

√
1 + g2

1 − 2g1 cos φ(k), (11)

θm(k) ≡ arctan
sin φ(k)

gm − cos φ(k)
, φ(k) ≡ 2πk

N
. (12)

Heuristic and numerical analyses in Ref. [8] suggest that the
decay of F with respect to δ is enhanced near the critical
point g = 1. Using a similar analysis and relating F to the
product yield in a chemical reaction, Ref. [24] also suggests
that the criticality may be useful for avian magnetometry [25].
Here I study F more carefully in the thermodynamic limit
(N → ∞), similar to the calculation done for a different
purpose in Ref. [26]. Assume that each Bloch mode contributes
little to the decay of F , and

ε1t 	 1, sin2(ε1t) ≈ ε2
1 t

2, (13)

which can be justified in the N → ∞ limit, as will be shown
later. For a small enough δ, θ1 − θ0 can be approximated
in the first order according to arctan(1/x0) ≈ arctan(1/x1) −
(x0 − x1)/(1 + x2

1 ). Assuming further that δ is small enough
such that |θ1 − θ0| 	 1 and ln[1 − sin2(ε1t) sin2(θ1 − θ0)] ≈
−ε2

1 t
2(θ1 − θ0)2, one obtains

−lnF ≈ 4J 2δ2t2
N/2∑
k=1

sin2 φ

1 + g2
1 − 2g1 cos φ

. (14)

In the N → ∞ limit, the discrete sum over Bloch modes can
be replaced with an integral with respect to φ:

−lnF ≈ 4J 2δ2t2 N

2π

∫ π

0
dφ

sin2 φ

1 + g2
1 − 2g1 cos φ

(15)

=
{

NJ 2δ2t2/g2
1, g1 > 1,

NJ 2δ2t2, g1 � 1.
(16)

With this result, Eq. (13) can now be justified by noting that
any value of F > 0 can be reached by setting the time as

t =
√−lnF√

NJδ
×

{
g1, g1 > 1,

1, g1 � 1,
(17)

which scales with 1/
√

N . Thus, given F , J , and δ, one can
always increase N and find a time that satisfies Eqs. (13).
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The nonanalyticity of F at g1 = 1 indicates a quantum
phase transition. Unfortunately for metrology, Eq. (16) has
the same scalings with respect to N , δ, and t as the standard
limit given by Eq. (7). This result means that the quantum
Ising model in the thermodynamic limit does not provide any
enhancement beyond the standard limit for magnetometry.

The next two examples, both of which involve bosonic
rather than fermionic excitations, turn out to be far more
promising. Consider first the model for a degenerate OPO
under threshold [5],

Hm = ωma†a + iλm(a†2 − a2), (18)

where a and a† are bosonic annihilation and creation operators,
ωm is the frequency detuning, which can be perturbed by the
motion of the cavity mirrors or phase shifts inside the optical
cavity, and λm is the parametric pump strength, assumed to
be a c number. This assumption, common in quantum optics,
is valid when the pump is strong and undepleted. Define the
criticality parameter as gm = 2λm/ωm, with λm assumed to
be real. Assume that the system is biased in such a way
that g0 < 1, for which the system is below threshold, and
the perturbation δ would cause g1 = g0 + δ > 1 and thus
instability. For example, a small change 	ω ≡ ω1 − ω0 in the
detuning, with λ0 = λ1 held fixed, induces a perturbation δ ≈
−2λ0	ω/ω2

0. H0 can be diagonalized using the Bogoliubov
transformation,

b0 = μ0a + iν0a
†, (19)

ν0 = 1√
2

√(
1 − g2

0

)−1/2 − 1, μ0 =
√

1 + ν2
0 , (20)

H0 = ω′b†0b0 + E0, ω′ ≡ ω0

√
1 − g2

0, (21)

where the ground-state energy E0 is irrelevant to subsequent
calculations.

If |ψ〉 is the ground state of H0 and H1 is applied, the system
becomes unstable, initiating a transition to the oscillation
phase [5]. Until the pump is depleted significantly, there is
still a period of time over which Eq. (18) is accurate. The
Hamiltonian can then be expressed by

b1 = μ1a + iν1a
† = μ′b0 + iν ′b†0, (22)

ν1 = 1√
2

√(
1 − g−2

1

)−1/2 − 1, μ1 =
√

1 + ν2
1 , (23)

μ′ = μ1μ0 − ν1ν0, ν ′ = ν1μ0 − μ1ν0, (24)

H1 = iλ′(b†2
1 − b2

1

) + E1, λ′ ≡ λ1

√
1 − g−2

1 , (25)

where E1 is another unimportant scalar. 〈ψ |U †
0U1|ψ〉 =

〈ψ | exp(−iH1t)|ψ〉 can be computed by writing H1 in terms
of b0 and invoking the SU(1,1) disentangling theorem [27].
The result is

F = [1 + (1 + 2ν ′2)2 sinh2(2λ′t)]−1/2, (26)

which decreases with increasing λ′t and ν ′. If g1 is just above
the critical point with g1 = 1 + δ1/2 and 0 < δ1 	 1, λ′ ≈
λ1

√
δ1. For ν ′, the worst case is when δ1 = δ and g0 = 1 − δ/2

such that ν ′ ≈ 0, which leads to

F ≈ sech(2λ1

√
δt). (27)

In the limit of 2λ1

√
δt  1,

−lnF ≈ 2λ1

√
δt − ln 2, (28)

which scales with the much larger
√

δ rather than the δ2

standard scaling in Eq. (7) (since δ 	 1), although the time
dependence here is linear rather than quadratic. The detectable
perturbation given by

δ′ ≈ [−ln(F ′/2)]2

4λ2
1t

2
(29)

decreases with time as 1/t2, which is quicker than the 1/t

standard scaling in Eq. (8). These results confirm the intuition
that quantum criticality can enhance the sensitivity of a
detector to weak perturbations.

A near-optimal measurement analogous to Kennedy’s
receiver for coherent-state discrimination [4,28] can be re-
alized by counting photons in the b0 mode. Let E(n) = |n〉〈n|,
where |n〉 is an eigenstate of b

†
0b0 with b

†
0b0|n〉 = n|n〉. Under

H0, the count is always zero, and under H1, the probability of
counting n photons is

P (n|H1) = |〈n| exp(−iH1t)|0〉|2. (30)

If one decides on H0 when n = 0 and on H1 when n > 0,

P10 = 0, P01 = |〈0| exp(−iH1t)|0〉|2 = F, (31)

−lnPe = −lnP1 − ln F. (32)

This error exponent is smaller than the optimal value in Eq. (6)
by just a constant −lnP0.

The calculations so far are accurate only when the unde-
pleted pump approximation is valid, and for long enough time
the final state under H1 is expected to stabilize, leading to
a saturating F . This is not a problem, however, as long as
the desirable Pe is reached before the saturation occurs; the
saturation can be delayed by reducing the parametric coupling
strength and increasing the pump power.

Instead of one OPO mode, consider N such modes, and
assume that each mode contributes little to the decay of F ,
such that sech(2λ1

√
δt) ≈ 1 − 2λ2

1δt
2. The collective fidelity

and detectable perturbation become

F ≈ (
1 − 2λ2

1δt
2)N ≈ exp

(−2Nλ2
1δt

2), (33)

−lnF ≈ 2Nλ2
1δt

2, δ′ ≈ −lnF ′

2Nλ2
1t

2
. (34)

The fidelity exponent now scales with t2. It is even more
intriguing to see the 1/N “Heisenberg” scaling for δ′ enabled
by the quantum criticality, even though the modes are not
entangled. Using a large N can also alleviate the saturation
problem, as one can reduce the detection time and avoid
saturation by increasing N .

We can consider an even more practical measurement
model by introducing traveling fields that couple to the OPO
and continuous measurements, such as heterodyne detection
[29]. The constant coupling, however, is expected to damp the
instability and cause suboptimal behavior. The Supplemental
Material [30] contains a detailed calculation of the classical
Fisher information G(ωm) for the estimation of the resonance
frequency ωm for such a model with N = 1 and λ held fixed.
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The classical Fisher information is an acceptable metrological
measure here because the mean-square error can approach
G−1 in a large-deviation limit using a maximum-likelihood
estimation [31], which is easy to perform numerically in
practice [32]. The calculation shows that, despite the damping
and the suboptimal heterodyne measurement, G can be
enhanced by orders of magnitude as g approaches the OPO
threshold. At the threshold, 4ω2

mt/γ 3 > G > 1.532ω2
mt/γ 3,

where γ is the coupling rate and 0 < γ < 4λ is assumed. As
expected, γ limits the Fisher information, but it also means that
a reduction of γ can enhance the information significantly.
With the advent of ultrahigh-quality optical resonators [33]
and their experimentally demonstrated parametric instabilities
[34], this enhancement of Fisher information implies that the
concept of transition-edge sensors is immediately relevant to
current technology, even if the quantum-optimal scalings are
less trivial to attain.

As the final example, consider the Dicke model [6,7].
An experimental demonstration of the Dicke quantum phase
transition was recently reported in Ref. [35]. In the normal
phase, the Hamiltonian can be approximated as [7]

Hm ≈ ωma†a + ωmb†b + iλm(a† + a)(b† + b), (35)

where a and b are annihilation operators of two bosonic
modes and their frequencies are assumed to be the same for
simplicity. The criticality parameter is gm = 2λm/ωm, and the
critical point is gm = 1. Assume again that g0 = 1 − δ/2 < 1,
g1 = 1 + δ/2 > 1, |ψ〉 is the ground state of H0, and the
normal-phase approximation of the Hamiltonian is accurate
for the time considered. H0 can be diagonalized in the form of
ε+c

†
+c+ + ε−c

†
−c−, where c± are the normal-mode bosonic

operators, whereas H1 can be expressed in the form of
ε1+c

†
1+c1+ + (λ′c†2

1− + λ′∗c2
1−), with c1+ a function of c+ and

c1− a function of c−, indicating that the c− mode becomes
unstable. Using the same techniques mentioned in the previous
example, it can be shown that the resulting fidelity is

F ≈ F+sech(ω1

√
δt), (36)

where 0 < F+ � 1 is a factor that oscillates with time due to
the c+ mode [36]. Similar to the OPO example, −lnF scales
with

√
δt , rather than the standard scaling δ2t2 in Eq. (7). A

similar behavior is expected if H0 is the superradiant-phase
approximation and H1 initiates a transition to the normal
phase. These results suggest that bosonic phase transitions
can offer significant accuracy improvements for weak-signal
detection.

I have outlined the fundamental principles of quantum
transition-edge detectors, but many open questions remain.
Practical implementations and the effects of excess noise
and decoherence in particular deserve further study, and may
be analyzed using the methods in Refs. [13,37]. Quantum
control methodologies [23] may be useful for finding the best
Hamiltonians and measurements that optimize the sensitivity
in practice. Sensitivity of quantum systems to multiparam-
eter, time-dependent, or stochastic perturbations [12,13,15]
is another interesting problem and may be enhanced by
nonequilibrium quantum phase transitions [38].

Helpful discussions with N. Lambert, F. Nori, S. K.
Ozdemir, V. M. Bastidas, and X. Wang are gratefully acknowl-
edged. This work is supported by the Singapore National Re-
search Foundation under NRF Grant No. NRF-NRFF2011-07.

[1] K. Irwin and G. Hilton, in Cryogenic Particle Detection, edited
by C. Enss, Topics in Applied Physics Vol. 99 (Springer, Berlin,
2005), pp. 63–150.

[2] S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, UK, 2011).

[3] A. Peres, Phys. Rev. A 30, 1610 (1984); T. Gorin, T. Prosen,
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Commun. 3, 1063 (2012); J. Kołodyński and R. Demkowicz-
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