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I propose a quantum imaging method that can beat the Rayleigh-Abbe diffraction limit and achieve

de Broglie resolution without requiring a multiphoton absorber or coincidence detection. Using the same

nonclassical states of light as those for quantum lithography, the proposed method requires only optical

intensity measurements, followed by image postprocessing, to produce the same complex quantum

interference patterns as those in quantum lithography. The method is expected to be experimentally

realizable using current technology.
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It has been suggested that an ensemble of photons, under
appropriate measurements, can be regarded as a single
quantum object with a much smaller effective wavelength,
called the photonic de Broglie wavelength [1]. The
de Broglie wavelength of N photons, each with classical
wavelength �, can be as small as �=N. It is especially
desirable for imaging applications to take advantage of the
small de Broglie length scale, since the resolution of
classical optical imaging is limited by the size of �, ac-
cording to the Rayleigh-Abbe diffraction limit [2]. A semi-
nal paper by Boto et al. suggests that the N-photon
absorption patterns of certain nonclassical N-photon states
exhibit de Broglie resolution [3]. Subsequent work by
various researchers on quantum imaging has sought to
improve upon the original ‘‘quantum lithography’’ tech-
nique [4–8], yet all of these proposals still require a multi-
photon absorber as the detector [4–6,8] or coincidence
detection [7]. The low efficiency of N-photon absorption
and coincidence detection, especially for large N, is a
significant obstacle to the use of quantum technology in
real-world imaging applications.

In this Letter, I propose a quantum imaging method that
achieves de Broglie resolution without requiring a multi-
photon absorber or coincidence detection. I shall show how
the same images as those in quantum lithography can be
reconstructed simply by intensity measurements, followed
by image postprocessing. Given the availability of high-
efficiency single-photon detectors, the proposed method
has the potential to beat the diffraction limit by a large
amount using current technology.

A different way of achieving de Broglie resolution is via
optical-beam displacement measurements, using a split
detector or homodyne detection, as investigated by Fabre
and co-workers [9]. The standard quantum limit to the

displacement uncertainty is on the order of �x=
ffiffiffiffi
N

p
, where

�x is the classical beam width, while the ‘‘Heisenberg’’
limit is on the order of �x=N [9]. The quantum imaging
theory I propose here can be considered as a generalization
of Fabre et al.’s results, and therefore presents a unified
view of different quantum strategies that take advantage of

the photonic de Broglie wavelength. I show that the dis-
placement measurements can not only be considered as a
Gaussian single-parameter estimation technique, but re-
peated measurements of the parameter can also yield com-
plex quantum interference patterns identical to those in
quantum lithography. The proposed method thus provides
an accessible way of detecting nonclassical and non-
Gaussian signatures of multimode quantum optical states,
and is expected to become an important tool in the study of
quantum optics and quantum physics in general.
I shall first briefly review the configuration-space theory

of quantum lithography [10]. For simplicity, I consider
only free-space photons observed at the image plane in
one transverse dimension, x, in the paraxial regime.
Generalization to two transverse dimensions and the non-
paraxial regime is possible [10,11], but does not add much
insight, and the results should remain qualitatively the
same. Let âðkÞ and âyðkÞ be the photon annihilation
and creation operators, respectively, in the transverse-
momentum space, with the bosonic commutation relation
½âðkÞ; âyðk0Þ� ¼ �ðk� k0Þ. First, consider a pure N-photon
quantum state jNi. The multiphoton momentum eigenket

is jk1; . . . ; kNi � ðN!Þ�1=2âyðk1Þ . . . âyðkNÞj0i. The mo-
mentum wave function representation of jNi is then

�ðk1; . . . ; kNÞ � hk1; . . . ; kNjNi: (1)

The Rayleigh-Abbe diffraction limit [2] restricts the trans-
verse momenta of photons to a finite bandwidth:

�ðk1; . . . ; kNÞ ¼ 0 for any jknj> 2� sin�

�
; (2)

where sin� is the numerical aperture of the optical system
and sin� � 1 defines the paraxial regime.

The spatial annihilation operator is defined as ÂðxÞ �
ð2�Þ�1=2

R
dkâðkÞ expðikxÞ and can be used to construct

N-photon states with definite positions jx1; . . . ; xNi �
ðN!Þ�1=2Âyðx1Þ . . . ÂyðxNÞj0i. A multiphoton-position
positive operator-valued measure (POVM) can be defined
as
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�̂ðx1; . . . ; xNÞ ¼ jx1; . . . ; xNihx1; . . . ; xNj; (3)

with normalization
R
dx1 . . . dxN�̂ðx1; . . . ; xNÞ ¼ 1̂. The

position wave function is then

c ðx1; . . . ; xNÞ � hx1; . . . ; xNjNi; (4)

which is the N-dimensional Fourier transform of
�ðk1; . . . ; kNÞ. Changing the position variables to the cen-
troid and relative-position coordinates, defined as

X � 1

N

XN
n¼1

xn; �n � xn � X; (5)

respectively, a new POVM and a new wave function are
obtained:

�̂ðX; �1; . . . ; �N�1Þ � N�̂ðX þ �1; . . . ; Xþ �NÞ; (6)

fðX; �1; . . . ; �N�1Þ �
ffiffiffiffi
N

p
c ðXþ �1; . . . ; X þ �NÞ; (7)

where �N ¼ �P
N�1
n¼1 �n. It is not difficult to show that the

N-photon-absorption probability distribution of the
N-photon state �̂N � jNihNj is given by

h:ÎNðxÞ:i ¼ h½ÂyðxÞ�N½ÂðxÞ�Ni / Tr½�̂ðx; 0; . . . ; 0Þ�̂N�
¼ jfðx; 0; . . . ; 0Þj2; (8)

which is proportional to the conditional centroid

probability distribution pcðxÞ � Tr½�̂ðx; 0; . . . ; 0Þ�̂N�=R
dxTr½�̂ðx; 0; . . . ; 0Þ�̂N�, given that all relative positions

are zero. The variable conjugate to the centroid position X
is the total momentum K � PN

n¼1 kn. The bandwidth limit

onK becomes jKj � 2�N sin�=�, so the minimum feature
size of the centroid distribution is on the order of
�=ð2N sin�Þ. See Fig. 1 for an illustration of the
configuration-space theory.

Multiphoton absorption is not the only way of accessing
the centroid degree of freedom. Consider the intensity
centroid operator,

X̂ � 1

N

Z
dxxÂyðxÞÂðxÞ; (9)

which can be measured by spatially resolving intensity
measurements, using, for example, a photon-counting de-
tector array, followed by a calculation of the centroid of the
intensity pattern, as shown schematically in Fig. 2. The
effect of finite detector pixel size is to discretize the image
plane or equivalently limit the spatial bandwidth of the
photons by virtue of the sampling theorem, so the size of
each pixel should be much smaller than �=ð2 sin�Þ. If the
pixel size is small enough, such that the probability of more
than one photon falling on each is much smaller than one,
single-photon detectors can be used instead. The intensity
operator can be rewritten as

X̂ ¼ X̂ 1̂ ¼ X̂
Z

dx1 . . .dxNjx1; . . . ; xNihx1; . . . ; xNj

¼
Z

dx1 . . . dxN

�
1

N

XN
n¼1

xn

�
�̂ðx1; . . . ; xNÞ

¼
Z

dXd�1 . . . d�N�1X�̂ðX; �1; . . . ; �N�1Þ: (10)

Thus, measurements of the intensity centroid realizes the
marginal POVM

�̂ðXÞ �
Z

d�1 . . .d�N�1�̂ðX; �1; . . . ; �N�1Þ; (11)

and the probability distribution of the intensity centroid

FIG. 1 (color online). Configuration-space picture of quantum
imaging for N ¼ 2. The Rayleigh-Abbe diffraction limit restricts
the momentum wave function inside an N-dimensional box
jknj � k0 � 2� sin�=�. The magnitude of the total momentum
K ¼ P

N
n¼1 kn is then limited by jKj � Nk0. The minimum

feature size of the wave function with respect to the centroid
coordinate X is then �1=ðNk0Þ � �=N.

FIG. 2 (color online). (a) To measure the intensity centroid
distribution, first make an ideal spatially resolving intensity
measurement [ÂyðxÞÂðxÞ]. This can be done by, for example,
an array of photon-counting detectors, each with size a �
�=ð2 sin�Þ. (b) The centroid X is calculated from the measured
intensity pattern. (c) The intensity centroid distribution pmðXÞ
can then be obtained after repeated measurements of X.
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measurements is

Tr ½�̂ðXÞ�̂N� ¼
Z

d�1 . . .d�N�1jfðX; �1; . . . ; �N�1Þj2;
(12)

which is the marginal centroid probability distribution,
hereafter denoted as pmðXÞ. The minimum feature size of
the marginal centroid probability distribution is similarly
limited by the bandwidth of the total momentum jKj �
2�N sin�=�, and can therefore also reach the de Broglie
length scale ��=N. Unlike quantum lithography, which
requires an N-photon absorber for an N-fold resolution
enhancement, intensity centroid measurements require
only photon counting and postprocessing to achieve the
N-fold resolution enhancement for an arbitrary number of
photons. Moreover, as the probability distribution of inten-
sity centroid measurements is marginal and not condi-
tioned upon specific values of the relative positions, the
efficiency of intensity centroid measurements is fundamen-
tally higher than that of multiphoton absorption or any
other coincidence detection method. This is the central
result of this Letter.

In general, the conditional centroid distribution, pcðxÞ,
obtained by multiphoton absorption, and the marginal
centroid distribution, pmðXÞ, obtained by intensity centroid
measurements, are not the same, except for certain special
quantum states. One such class of states are the
momentum-correlated or position-anti-correlated states,
of which the ‘‘NOON’’ state (j�i / jNikj0i�k þ
j0ikjNi�k) is a famous example [3,10]. These states have
small uncertainties in the relative momenta (�n � kn � K)
and large uncertainties in the relative positions �n, such
that the wave function can be approximated as

fðX; �1; . . . ; �N�1Þ � gðXÞ; (13)

and pcðXÞ � pmðXÞ � jgðXÞj2. pcðXÞ and pmðXÞ become
the magnitude squared of a complex wave function, and
can therefore exhibit the same interference patterns as
those in classical coherent imaging. The momentum-
correlated states are also the ones that achieve de Broglie
resolution, since the bandwidth of the relative momenta �n

is negligible, allowing the bandwidth of the total momen-
tum K to reach its maximum value �2�N sin�=� [10].
Such states can be created, for example, by spontaneous
parametric down conversion, and have been experimen-
tally demonstrated by D’Angelo et al. [5]. The time-
domain version of momentum-correlated states has also
been studied theoretically and experimentally by
Giovannetti and co-workers [12].

Another class of quantum states with identical pcðXÞ and
pmðXÞ are the ones with separable wave functions, as
follows:

fðX; �1; . . . ; �N�1Þ ¼ gðXÞhð�1; . . . ; �N�1Þ; (14)

of which the quantum Gaussian beams [10] and quantum
solitons [13] are notable examples. Classical Gaussian

beams are a special instance of quantum Gaussian beams,
and both multiphoton absorption and intensity centroid
measurements of a classical Gaussian beam produce a

Gaussian spot with a width on the order of �=ð ffiffiffiffi
N

p
sin�Þ,

as one would expect from a classical theory. At the
‘‘Heisenberg’’ limit, the width of the centroid distribution
of quantum Gaussian beams is on the order of �=ðN sin�Þ.
One can use the quantum Gaussian beam centroid as a
‘‘laser pointer’’ to transmit and reconstruct an image in a
point-by-point fashion [6,8,9].
Next, I shall generalize the preceding results to quantum

states with indefinite photon numbers and show that the
effect of indefinite photon numbers does not significantly
affect pattern formation by intensity centroid measure-
ments. Define a pure state as j�i ¼ P1

N¼0 CNjNi, and
denote the wave function of each Fock-state component
by a subscript N. The M-photon absorption distribution is

h:ÎMðxÞ:i / X1
N¼M

�
N

M

�
jCNj2

Z
dxMþ1 . . . dxN

� jc Nðx; . . . ; x|fflfflffl{zfflfflffl}
Mterms

; xMþ1; . . . ; xNÞj2; (15)

which ceases to be the centroid distribution unless N ¼ M.
This result places stringent requirements on both the gen-
eration and the detection of nonclassical states for quantum
lithography.
To properly define an intensity centroid measure-

ment, on the other hand, first define the total photon-

number operator as N̂ � R
dxÂyðxÞÂðxÞ. Noting that

½N̂;
R
dxxÂyðxÞÂðxÞ� ¼ 0, the intensity centroid operator

can be more generally defined as

X̂ � 1

N̂

Z
dxxÂyðxÞÂðxÞ; (16)

which can be measured by first recording the intensity
pattern, discarding the results when the total photon num-
ber is zero, and calculating the centroid of the intensity
pattern. The corresponding POVM is

�̂ðXÞ � X1
N¼1

Z
d�1 . . . d�N�1�̂ðX; �1; . . . ; �N�1Þ; (17)

�̂ 0 � j0ih0j; �̂0 þ
Z

dX�̂ðXÞ ¼ 1̂: (18)

The postselected intensity centroid distribution is then

pmðXÞ /
X1
N¼1

jCNj2
Z

d�1 . . . d�N�1jfNðX; �1; . . . ; �N�1Þj2;

(19)

which is the incoherent superposition of all Fock-state
marginal centroid distributions. For mixed states, the dis-
tributions are simply the statistical average of pure-state
results. If a quantum state has a small photon-number
uncertainty and most Fock components have similar cen-
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troid distributions, the intensity centroid distribution, being
an average of the Fock-state centroid distributions, would
only be slightly smoothed by the incoherent superposition
effect, whereas for quantum lithography, the effect of N �
M can be more drastic [4,6].

The centroid measurement can also be used to estimate
the shift of an optical beam transverse position, due to
deflection by a mirror in an atomic force microscope, for
example. The results concerning the quantum uncertainty
of the beam displacement obtained by Fabre et al. [9] can
be understood using the theory proposed here. Making the

strong mean-field approximation ÂðxÞ ¼ AðxÞ þ �ÂðxÞ, N̂
and X̂ can be linearized as N̂ ¼ N þ �N̂ and X̂ ¼ X þ
�X̂, where �N̂ � R

dxA	ðxÞ�ÂðxÞ þ H:c:, �X̂ � 1
N �R

dxxA	ðxÞ�ÂðxÞ þ H:c:, H.c. denotes Hermitian conju-

gate, and ½�N̂;�X̂� ¼ 0. �X̂ becomes a quadrature opera-
tor that can be measured by homodyne detection with a
local oscillator field / xA	ðxÞ. The theory presented in this
Letter is in fact more general; it shows that repeated

measurements of X̂, without the linearization, can not
only produce a Gaussian spot, but also complex quantum
interference patterns like those in quantum lithography at
the de Broglie resolution. For position tracking applica-
tions, such as atomic force microscopy, the proposed
method can therefore accurately determine the position
of a deflecting object even if the position significantly
deviates from the mean. If the object is quantum, intensity
centroid measurements also enable the imaging of its
position wave function at the photonic de Broglie
resolution.

Optical loss and imperfect detector efficiency are major
issues for the use of nonclassical states for quantum imag-
ing. For the specific case of a quantum Gaussian beam, the
width of pmðXÞ after the beam propagates through a lossy
channel can be analytically calculated using the quantum

Langevin analysis described in Ref. [14]. Assuming hX̂i ¼
0 without loss of generality, the result is

h�X̂2iz ¼ h�X̂2i0 þ �x2

	Nz

ð1� 	e�
zÞ; (20)

where h�X̂2i is the centroid variance, the subscript (z or 0)
denotes the propagation distance, Nz ¼ N0e

�
z is the re-

duced photon number, �x2 � hN�1
R
dxxÂyðxÞÂðxÞi is the

classical beam width squared, given by

�x2 ¼ 1

4�k2

�
R0

N0

þ ð1� 1=N0Þ2
1� 1=ðN0R0Þ

�
; (21)

	 is the detector efficiency, 
 is the power loss coefficient,
and �k� 4� sin�=� is the root-mean-square momentum
bandwidth. �x and �k remain constant in a lossy channel

[14]. R0 � 4N0�k
2h�X̂2i0 is the initial normalized cen-

troid variance, with R0 ¼ 1 at the standard quantum limit
(SQL) for classical Gaussian beams and R0 ¼ 1=N0 at the
‘‘Heisenberg’’ limit. In the classical case, R0 ¼ 1, �x ¼

1=ð2�kÞ, h�X2iz ¼ �x2=ð	NzÞ, and the centroid variance
remains at the SQL for the detected photon number. Close
to the ‘‘Heisenberg’’ limit, however, �x becomes much
larger than 1=ð2�kÞ, and the increase in centroid variance
becomes much more sensitive to loss. As long as R0 

1=N, quantum imaging by intensity centroid measure-
ments is fairly robust to loss. The effect of loss for more
complex quantum images may be similarly studied using
the Langevin method, but is beyond the scope of this
Letter.
Given the recent progress in the spatial engineering of

biphoton states [4,5] and photon-counting detector tech-
nology, the proposed method is expected to be immediately
realizable using current technology, at least for N ¼ 2. For
N > 2, it is more challenging to create the required non-
classical states of light. The proposed method nonetheless
greatly simplifies the detection of multimode nonclassical
optical states, and should be useful, at the very least, as a
diagnostic tool in the study of quantum physics.
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