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The equations that govern the temporal evolution of two photons in the Schrödinger picture are derived,
taking into account the effects of loss, group-velocity dispersion, temporal phase modulation, linear coupling
among different optical modes, and four-wave mixing. Inspired by the formalism, we propose the concept of
quantum temporal imaging, which uses dispersive elements and temporal phase modulators to manipulate the
temporal correlation of two entangled photons. We also present the exact solution of a two-photon vector
soliton, in order to demonstrate the ease of use and intuitiveness of the proposed formulation.
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I. INTRODUCTION

In quantum optics, the Heisenberg picture, where optical
fields are treated as conjugate positions and momenta of
quantized harmonic oscillators, is often preferred, as it is
easy to substitute the optical fields in classical electromag-
netic problems with noncommutative operators and obtain
the Heisenberg equations of motion. Once the operator equa-
tions are solved, one can then obtain various quantum prop-
erties of the optical fields via noncommutative algebra. How-
ever, the Heisenberg picture is not without shortcomings. It
can be hard to analytically or numerically solve the complex
or nonlinear operator equations without approximations. It is
also difficult to grasp any intuition about how the quantum
correlations among the photons evolve until the Heisenberg
equations are solved. These difficulties have led to a growing
appreciation of the Schrödinger picture, where the photons
are treated as an ensemble of bosons and the evolution of the
many-photon probability amplitude is studied. This arguably
more intuitive approach has led to great success in the quan-
tum theory of solitons �1�, where instead of solving the for-
midable nonlinear operator equations, one can obtain ana-
lytic solutions from the linear boson equations in the
Schrödinger picture. The many-boson interpretation has been
applied to the study of entangled photons as well, where the
two-photon probability amplitude is shown to obey the Wolf
equations by Saleh, Teich, and Sergienko �STS� �2�. Instead
of treating the entanglement properties of the photons and
the optical propagation as two separate problems, with the
STS equations, one can now use a single quantity—namely,
the two-photon amplitude—to keep track of the spatiotem-
poral entanglement evolution in free space. This is analogous
to the Wolf equations, which reformulate the laws of optics
in terms of coherence propagation �3�.

In this paper, we utilize the STS treatment of two photons
to study various temporal effects, in the hope that the
Schrödinger picture would offer a more accessible interpre-
tation of temporal entanglement propagation for analytic or
numerical studies of two-photon systems. Loss, group-
velocity dispersion, temporal phase modulation—via an

electro-optic modulator, for example—linear mode
coupling—via a beam splitter or a fiber coupler, for
example—and four-wave mixing—in a coherently prepared
atomic gas �4�, for example—are all included in our pro-
posed formalism, thus extending the STS model for use in
many more topics in quantum optics, such as nonlocal dis-
persion cancellation �5,6�, fourth-order interferometry �7�,
and two-photon nonlinear optics �4,8�. The analysis of a two-
photon vector soliton, consisting of two photons in orthogo-
nal polarizations under the cross-phase modulation effect, is
presented in the final section, in order to demonstrate the
ease of use and intuitiveness of the Schrödinger picture.

Inspired by the formalism set forth, we propose the
concept of quantum temporal imaging, which uses dispersive
elements and temporal phase modulators to manipulate
the temporal entanglement properties of two photons.
Most significantly, we show that it is possible to convert
positive-time correlation to negative-time correlation, or
vice versa, using a temporal imaging system. This conver-
sion technique should be immensely useful for applications
that require negative-time correlation, such as quantum-
enhanced clock synchronization �9�. Although there have
been theoretical �10–13� and experimental �14� proposals of
generating negative-time correlation directly, they have vari-
ous shortcomings compared with the conventional tried-and-
true schemes that generate positive-time correlation. Our
proposed technique should therefore allow more flexibility
in choosing two-photon sources for quantum optics
applications.

The paper is structured as follows: Section II derives the
equations that describe the evolution of the two-photon am-
plitude in two separate modes, Sec. III introduces the prin-
ciples of quantum temporal imaging, Sec. IV includes linear-
mode coupling in the formalism, Sec. V generalizes the
formalism to two photons in more than two modes, Sec. VI
includes the effect of four-wave mixing, and Sec. VII pre-
sents the exact solution of a two-photon vector soliton.

II. TWO PHOTONS IN TWO SEPARATE MODES

Let us first consider two photons in two optical modes,
such as two polarizations, two propagation directions, or two
waveguide modes. The corresponding two-photon wave
function is*Electronic address: mankei@sunoptics.caltech.edu
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��� = C12�1,1� + C11�2,0� + C22�0,2� , �1�

where the constants Cjk’s are the overall amplitudes of the
quantum states, �1,1� is the quantum state in which one pho-
ton is in each mode, �2,0� is the state in which both photons
are in mode 1, and �0,2� is the state which both photons are
in mode 2. The positive-frequency forward-propagating
component of the electric field in each mode is given by
�15,16�

Êj
�+��z,t� = i�

0

�

d�� ��� j���
4��0c�nj����2S

	1/2

âj�z,��exp�− i�t� ,

�2�

where nj is the complex, frequency-dependent refractive in-
dex in mode j ,� j is the real part of nj, S is an area of quan-
tization in the x-y plane, and âj is the photon annihilation
operator, related to the corresponding creation operator via
the equal-space commutator �15,16�,

�âj�z,��, âj
†�z,���� = ��� − ���, j = 1,2. �3�

In the Heisenberg picture, the creation and annihilation op-
erators evolve according to the equations �15,16�

� â1�z,��
�z

= i
�n1���

c
â1�z,�� + i�2�	1���

c
	1/2

f̂1�z,�� ,

�4�

� â2�z�,���
�z�

= i
��n2����

c
â2�z�,���

+ i�2��	2����
c

	1/2

f̂2�z�,��� , �5�

where 	 j is the imaginary part of nj and f̂ j is the Langevin
noise operator, satisfying the commutation relation

� f̂ j�z,��, f̂ j
†�z�,���� = ��z − z����� − ��� . �6�

To proceed, we replace �nj��� /c by the following phenom-
enological approximation �17�:

�nj���
c


 i

 j

2
+ �

n=0

2
�nj

n!
�� − �0�n +

�0

c
�nj , �7�

where 
 j =2Im�kj��0�� is the loss coefficient, �nj

=�nRe�kj���� /��n��=�0
is the nth-order dispersion coeffi-

cient, and �nj encompasses any other refractive index per-
turbation. Defining the slowly varying envelope operators as

Âj�z,t� = exp�− i�0jz + i�0t��
0

� d�

�2�
âj�z,��exp�− i�t� ,

�8�

where �0 is the carrier frequency of the two modes, one can
obtain two evolution equations for the envelope operators,

�

�z
Â1�z,t� = iK1�t,i

�

�t
	Â1�z,t� + F̂1, �9�

�

�z�
Â2�z�,t�� = iK2�t�,i

�

�t�
	Â2�z�,t�� + F̂2, �10�

Kj�t,i
�

�t
	 =  i
 j

2
+ i�1j

�

�t
−

�2j

2

�2

�t2 +
�0

c
�nj�t�� , �11�

where F̂j is defined as

F̂j�z,t� = exp�− i�0jz + i�0t�

�
0

� d�

�2�
i�2�	 j���

c
	1/2

f̂ j�z,��exp�− i�t� ,

�12�

and Kj is the complex wave number for the slowly varying
envelope. �nj can explicity depend on time if the perturba-
tion is much slower than the optical-frequency oscillation so
that an adiabatic approximation can be made, such as in an
electro-optic modulator.

We now define the two-photon probability amplitudes as

�12�z,t,z�,t�� = �0�Â1�z,t�Â2�z�,t����� , �13�

�11�z,t,z�,t�� =
1
�2

�0�Â1�z,t�Â1�z�,t����� , �14�

�22�z,t,z�,t�� =
1
�2

�0�Â2�z,t�Â2�z�,t����� . �15�

The physical significance of each amplitude � jk is that its
magnitude squared gives the probability density Pjk of coin-
cidentally measuring one photon in mode j at �z , t� and an-
other photon in mode k at �z� , t��,

Pjk�z,t,z�,t�� = �� jk�z,t,z�,t���2. �16�

Temporal entanglement is defined as the irreducibility of
��12�2 into a product of one-photon amplitudes in the form of
a�t�b�t��. This means that the probability of detecting a pho-
ton in mode 1 at time t is correlated to the probability of
detecting a photon in mode 2 at t�. The most popular ways of
generating entangled photons are spontaneous parametric
down-conversion �18� and four-wave mixing �19�, where the
wave-mixing geometry and the spatiotemporal profile of the
pump beam determine the initial �12.

To obtain the evolution equations for the two-photon am-
plitude �12�z , t ,z� , t�� in the Schrödinger picture, we employ
the same trick as in Ref. �2�. First we multiply Eq. �9� by

Â2�z� , t�� and Eq. �10� by Â1�z , t� to produce two equations

�

�z
Â1�z,t�Â2�z�,t�� = iK1�t,i

�

�t
	Â1�z,t�Â2�z�,t�� + F̂1Â2,

�17�
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�

�z�
Â1�z,t�Â2�z�,t�� = iK2�t�,i

�

�t�
	Â1�z,t�Â2�z�,t�� + F̂2Â1.

�18�

Using the definition of �12 in Eq. �13� and assuming that the
thermal reservoirs are in the vacuum state so that the Lange-
vin operators evaluate to zero when applied to the wave
function �20�, a pair of equations in terms of �12 are derived,

�

�z
�12�z,t,z�,t�� = iK1�t,i

�

�t
	�12�z,t,z�,t�� , �19�

�

�z�
�12�z,t,z�,t�� = iK2�t�,i

�

�t�
	�12�z,t,z�,t�� . �20�

Equations �19� and �20� are the temporal version of the STS
equations �2�, including the effects of loss, dispersion, and
phase modulation. They can also be written in the frequency
domain as

�12�z,�,z�,��� = �
−�

�

dt�
−�

�

dt��12�z,t,z�,t��

exp�i�t + i��t�� , �21�

�

�z
�12�z,�,z�,��� = iK1�1

i

�

��
,�	�12�z,�,z�,��� ,

�22�

�

�z�
�12�z,�,z�,��� = iK2�1

i

�

���
,��	�12�z,�,z�,��� .

�23�

For entangled photons, because �12 or �12 cannot be sepa-
rated into a product of one-photon amplitudes, distortions
experienced in one arm can coherently add to the distortions
experienced in the other arm, leading to various nonlocal
quantum effects.

For example, considering group-velocity dispersion only,
the output �12 is given by

�12�z,�,z�,��� = exp�i�11�z + i�12��z� +
i�21

2
�2z

+
i�22

2
��2z�	�12�0,�,0,��� . �24�

If the photons are initially entangled with negative-frequency
correlation, �12�0,� ,0 ,��� can be approximated by
�������+���. Ignoring the unimportant linear spectral
phase, the output is

�12�z,�,z�,��� = exp i�2

2
��21z + �22z���������� + ��� .

�25�

Hence, if �21z=−�22z�, the dispersion effects in both arms
can nonlocally cancel each other, as originally discovered by
Franson �5�.

III. QUANTUM TEMPORAL IMAGING

In the Schrödinger picture, the two-photon amplitude
evolves under temporal effects. Since the entanglement prop-
erties of the photons are contained in the two-photon ampli-
tude, the Schrödinger picture allows one to use the temporal
effects to engineer the entanglement.

First, consider the evolution of the two-photon amplitude
when one of the modes—say, mode 1—is subject to group-
velocity dispersion,

��12

�z
= − �11

��12

�t
−

i�21

2

�2�12

�t2 , �26�

�12�L,t,z�,t�� = �
−�

�

d�b1�t − ���12�0,�,z�,t�� , �27�

b1�t − �� = � i

2��21L
	1/2

exp− i�t − �11L − ��2

2�21L
� . �28�

Group-velocity dispersion is well known to be analogous to
Fresnel diffraction.

Next, consider a quadratic temporal modulation of refrac-
tive index imposed on mode 1 by a short or traveling-wave
electro-optic modulator,

��12

�z
=

ik0�n2�t − t0�2

2
�12, �29�

�12�l,t,z�,t�� = q�t��12�0,t,z�,t�� , �30�

q�t� = exp ik0�n2l

2
�t − t0�2� . �31�

Quadratic temporal phase modulation is analogous to a lens.
�n2 is assumed to be a constant, and t0 is the time delay of
the modulation. The Kerr effect by a copropagating classical
pulse would also suffice.

Two dispersive elements and a quadratic phase modulator
in between form a temporal imaging system, which has been
well studied in the classical domain �21�. Suppose that the
photon in mode 1 propagates through the first dispersive el-
ement, with an effective dispersion coefficient �21 and effec-
tive length L, then passes through a time lens with refractive
index modulation �n2�t− t0�2 /2, and finally propagates
through the second dispersive element, with an effective dis-
persion coefficient �21� and effective length L�. The output
two-photon amplitude can be expressed in terms of the input
as

�12�z,t,z�,t�� = �
−�

�

d��
−�

�

d��b1��t − ���q����b1��� − ��

�12�0,�,z�,t�� , �32�

b1��t − ��� = � i

2��21� L�
	1/2

exp− i�t − �11� L� − ���2

2�21� L�
� .

�33�

When the “lens law” for the time domain is satisfied,
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1

�21L
+

1

�21� L�
= k0�n2l , �34�

the impulse response of the system becomes

h�t,�� = �
−�

�

d��b1��t − ���q����b1��� − ��

=
i

2���21L�21� L�
exp− i�t − �11� L��2

2�21� L�
�

exp− i�� + �11L�2

2�21L
��

−�

�

d��P� ��

Ta
	 �35�

expi� t − �11� L�

�21� L�
+

� + �11L

�21L
− k0�n2lt0	��� , �36�

where P��� /Ta� is the normalized temporal aperture function
of the time lens that can be used to describe any deviation of
the actual temporal phase modulation from the ideal qua-
dratic profile, such as truncation or higher-order phase modu-
lation, and Ta is the aperture width. If

Ta �
�2L

T0
, �37�

where T0 is the smallest feature size of �12 along the t axis,
the integral in Eq. �36� can be approximated by a � function.
We then arrive at the input-output relation for the two-photon
amplitude,

�12�z,t,z�,t�� =
1

�M
�12�0,

t − td

M
,z�,t�	 , �38�

td = �11� L� + M�11L + �1 − M�t0, �39�

M = −
�21� L�

�21L
, �40�

where an unimportant quadratic phase factor is omitted, td is
the time delay of the system, and M is the magnification,
which can be positive or negative depending on the signs of
�2 and �2�.

The most interesting case is when M =−1 and one of the
photons is time reversed. If the two photons are initially
entangled with positive-time correlation, �12 can be written
as

�12�0,t,z�,t�� = a�t�b�t − t�� , �41�

where b is assumed to be much sharper than a. After photon
1 has passed through the temporal imaging system with
M =−1,

�12�z,t,z�,t�� = a�td − t�b�td − t − t�� . �42�

The photons hence become anticorrelated in time. See Fig. 1
for an illustration of this process. Since most conventional
two-photon sources generate positive-time correlation, but
negative-time correlation is desirable for many applications,
one can use the temporal imaging system to convert the

former to the latter. In particular, using the aforementioned
technique for the specific application of clock synchroniza-
tion, the subclassical uncertainty of arrival time difference,
�t− t�� /2, can be converted to a subclassical uncertainty of
mean arrival time, �t+ t�� /2, leading to a quantum enhance-
ment of clock synchronization accuracy by a factor of �2
over the classical limit. In practice, the clock can be synchro-
nized with the electro-optic modulator, so that the mean ar-
rival time is controlled by t0 and thus the clock. The pro-
posed setup is drawn in Fig. 2.

The fidelity of time reversal is limited by parasitic effects,
such as higher-order dispersion and phase modulation, and
the temporal aperture Ta, which adds a factor ��21� L� /Ta to
the width of � along the t axis and increases the overall
uncertainty of the mean arrival time. The ultimate limit, apart
from instrumental ones, is set by the failure of the slowly
varying envelope approximation, which only concerns ul-
trashort pulses with few optical cycles.

Besides the above application, one can also convert
negative-time correlation, which can be generated by ul-
trashort pulses for improved efficiency �11,13,22�, to
positive-time correlation. As evident from Eq. �38�, any de-
sired correlation can actually be imposed on already en-
tangled photons, by multiplying the original correlation with
a factor of 1 /M.

As group-velocity dispersion and temporal phase modula-
tion play analogous roles in the time domain to diffraction
and lenses, one can use Fourier optics �23�, temporal imag-
ing �21�, and quantum imaging �24� techniques to design
more complex quantum temporal imaging systems.

FIG. 1. �Color online� Two-dimensional sketches of the two-
photon probability amplitude before and after one of the photons is
time reversed. Uncertainty in arrival time difference is transformed
to uncertainty in mean arrival time.

FIG. 2. �Color online� A quantum temporal imaging system for
quantum-enhanced clock synchronization.
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IV. TWO PHOTONS IN TWO LINEARLY COUPLED
MODES

Suppose that the two modes are now coupled to each
other, via, for example, a beam splitter or a fiber coupler.
Equations �9� and �10� become the coupled-mode equations

� �

�z
− iK1	Â1 = i��z�Â2 + F̂1, �43�

� �

�z�
− iK2�	Â2� = i�*�z��Â1� + F̂2�, �44�

where � is the coupling coefficient and, for simplicity, the
coupling is assumed to be codirectional. The primes denote
the evaluations of the functions at �z� , t��. Any phase mis-
match can be incorporated into � as a z-dependent phase.

Procedures similar to those in Sec. II produce four
coupled equations for �11, �22, and �12,

� �

�z
− iK1	�2�11�z,t,z�,t�� = i��12�z�,t�,z,t� , �45�

� �

�z�
− iK2�	�2�22�z,t,z�,t�� = i�*��12�z�,t�,z,t� , �46�

� �

�z
− iK1	�12�z,t,z�,t�� = i��2�22�z,t,z�,t�� , �47�

� �

�z�
− iK2�	�12�z,t,z�,t�� = i�*��2�11�z,t,z�,t�� . �48�

Any pair of Eqs. �46� and �47� or Eqs. �45� and �48� can be
combined to yield a single equation for �12,

� �

�z
− iK1	� �

�z�
− iK2�	�12�z,t,z�,t��

= − ��z��*�z���12�z�,t�,z,t� . �49�

Equation �49� allows one to calculate the coupled-mode
propagation of two photons in terms of �12 only, given the
initial conditions of �12, �11, and �22. �11 and �22 can then
be obtained from Eqs. �47� and �48� after �12 is calculated.

To obtain some insight into Eq. �49�, consider only
constant-mode coupling, so that Eq. �49� becomes

�

�z

�

�z�
�12�z,t,z�,t�� = − �2�12�z�,t�,z,t� . �50�

The solution is

�12�z,t,z�,t�� = cos��z�cos��z���12�0,t,0,t��

− sin��z�sin��z���12�0,t�,0,t�

+ i sin��z�cos��z���2�22�0,t,0,t��

+ i cos��z�sin��z���2�11�0,t,0,t�� .

�51�

At the coupler output, z=z�=L,

�12�L,t,L,t�� = T�12�0,t,0,t�� − R�12�0,t�,0,t�

+ i�2TR�22�0,t,0,t�� + i�2TR�11�0,t,0,t�� ,

�52�

where T=cos2��L� and R=1−T=sin2��L�. If we have one
photon in each mode initially, only the initial condition of
�12 is nonzero and

�12�L,t,L,t�� = T�12�0,t,0,t�� − R�12�0,t�,0,t� . �53�

From Eq. �53�, one can see that the output amplitude is
the destructive interference between the original amplitude
and its replica but with the two photons exchanging
their positions in time. In particular, for a 50%-50% coupler,
T=R=1/2, complete destructive interference is produced if
the two input photons are temporally indistinguishable. See
Fig. 3 for a graphical illustration of the destruction interfer-
ence. The introduction of variable distinguishability to pho-
tons, in order to produce varying degrees of destructive in-
terference of �12 via a beam splitter and to measure the two-
photon coherence time, is the basic principle of the Hong-
Ou-Mandel interferometer �7�.

V. TWO PHOTONS IN MANY MODES

If the two photons are optically coupled to more than two
modes, such as four modes for two polarizations in each of
the two propagation directions or N modes in an array of N
fibers coupled to each other, one in general needs N�N
+1� /2 two-photon amplitudes to describe the system. The
propagation of the amplitudes in many modes is described by

� �

�z
− iKj	�1 + � jk� jk�z,t,z�,t��

= i�
l�j

� jl
�1 + �lk�lk�z,t,z�,t�� , �54�

where

FIG. 3. �Color online� The quantum destructive interference via
a coupler is determined by the overlap �dark grey area� of the two-
photon amplitude �12�0, t ,0 , t�� with its mirror image with respect
to the t+ t� axis, �12�0, t� ,0 , t�.
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� jk�z,t,z�,t�� = �kj�z�,t�,z,t�, � jk = �kj
* . �55�

Further simplications can also be made if any of the coupling
terms are zero.

For example, let there be four modes; mode 1 corresponds
to arm 1 with x polarization, mode 2 corresponds to arm 2
with x polarization, mode 3 corresponds to arm 1 with y
polarization, and mode 4 corresponds to arm 2 with y polar-
ization. If only the same polarizations are coupled, the two-
photon equations are

�
�

�z
− i�x 0 0

− i�x
�

�z
0 0

0 0
�

�z
− i�y

0 0 − i�y
�

�z

�
�

�2�11 �12 �13 �14

�21 �2�22 �23 �24

�31 �32 �2�33 �34

�41 �42 �43 �2�44

� = 0. �56�

The following solution for the orthogonally polarized ampli-
tudes can be obtained:

�
�13�L,t,L,t��
�24�L,t,L,t��
�14�L,t,L,t��
�23�L,t,L,t��

�
=�

�TxTy − �RxRy i�TxRy i�TyRx

− �RxRy
�TxTy i�TyRx i�TxRy

i�TxRy i�TyRx
�TxTy − �RxRy

i�TyRx i�TxRy − �RxRy
�TxTy

�
�

�13�0,t,0,t��
�24�0,t,0,t��
�14�0,t,0,t��
�23�0,t,0,t��

� , �57�

where Tx,y =cos2��x,yL� and Rx,y =1−Tx,y. In particular, if
only the initial condition of �14 is nonzero,

�13�L,t,L,t�� = i�TxRy�14�0,t,0,t�� , �58�

�24�L,t,L,t�� = i�TyRx�14�0,t,0,t�� , �59�

�14�L,t,L,t�� = �TxTy�14�0,t,0,t�� , �60�

�23�L,t,L,t�� = − �RxRy�14�0,t,0,t�� . �61�

The singlet state for orthogonally polarized photons is pro-
duced if Tx=Ty =1/2 �25�.

VI. FOUR-WAVE MIXING

As envisioned by Lukin and Imamoglu, the third-order
nonlinear effects among two photons can become significant
in a coherently prepared atomic gas �4�. The coupled-mode
equations �43� and �44� then become nonlinear,

� �

�z
− iK1	Â1 = i�Â2 + i�Â1

†Â1Â1 + i�Â2
†Â2Â1

+ i�Â2Â2Â1
† + F̂1, �62�

� �

�z�
− iK2�	Â2� = i�*�Â1� + i�A�ˆ 2

†Â2�Â2� + i�A�ˆ 1
†Â1�Â2�

+ i�*�Â1�Â1�A�ˆ 2
† + F̂2�, �63�

where � is the self-phase modulation coefficient, � is the
cross-phase modulation coefficient, and � is the four-wave
mixing coefficient. If we define equal-space two-photon am-
plitudes as

� jk�z,t,t�� = � jk�z,t,z,t�� , �64�

three linear coupled-mode equations for the two-photon am-
plitudes can be derived,

� �

�z
− iK1 − iK1�	�2�11 = i��21 + i���t − t���2�11

+ i���t − t���2�22, �65�

� �

�z
− iK2 − iK2�	�2�22 = i�*�21 + i���t − t���2�22

+ i�*��t − t���2�11, �66�

� �

�z
− iK1 − iK2�	�12 = i�*�2�11 + i��2�22 + i���t − t���12.

�67�

The advantage of the Schrödinger picture is most evident
here; whereas in the Heisenberg picture one needs to solve
nonlinear coupled-mode operator equations such as Eqs. �62�
and �63�, in the Schrödinger picture, one only needs to solve
linear equations such as Eqs. �65� to �67�, which are similar
to the configuration-space model applied to the quantum
theory of solitons �1,26�.

The delta function ��t− t�� couples the two subspaces of
�12�z , t , t��, so entanglement can emerge from unentangled
photons �4�. To see this effect, assume that we only have
four-wave mixing, so that Eq. �67� becomes

�

�z
�12�z,t,t�� = i���t − t���12�z,t,t�� , �68�

which yields

�12�L,t,t�� = exp�i�L��t − t����12�0,t,t�� . �69�

If the nonlinearity has a finite bandwidth ��, the � function
in time should be replaced by a finite-bandwidth function—
for example, a sinc function
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�12�L,t,t�� = exp� i�L

��t − t��
sin��

2
�t − t�����12�0,t,t�� .

�70�

Equation �70� is the exact solution of the two-photon ampli-
tude under the cross-phase modulation effect, while Eq. �7�
in Ref. �4�, presumably derived in the Heisenberg picture,
is only correct in the first order. As �12�L , t , t�� cannot be
written as a product of one-photon amplitudes even if the
two photons are initially unentangled, entanglement is gen-
erated. The physical interpretation is that the two input pho-
tons act as pump photons to the spontaneous four-wave mix-
ing process and are annihilated to generate two new
entangled photons.

Unlike temporal imaging techniques, which can only ma-
nipulate the two-photon amplitude along the horizontal axis t
or the vertical axis t�, cross-phase modulation allows some
manipulation of the two-photon amplitude along the diagonal
time-difference axis t-t�. Unfortunately, cross-phase modula-
tion by itself cannot generate any temporal correlation, as it
only imposes a phase on the two-photon temporal amplitude.
In order to have more control along the t-t� axis, one can
combine the effects of cross-phase modulation and disper-
sion, as shown in the following section.

VII. TWO-PHOTON VECTOR SOLITONS

In this section we study a toy example—namely, a soliton
formed by two photons in orthogonal polarizations exerting
cross-phase modulation on each other �17�. Although similar
studies of two photons in the same mode under the self-
phase modulation effect have been performed in Ref. �8�,
cross-phase modulation offers the distinct possibility of en-
tangling two photons in different modes.

Consider the case in which two polarizations have the
same group-velocity dispersion, so that �21=�22=�2, and
there is one photon in each polarization. The evolution equa-
tion for �12�z , t , t�� is

� �

�z
+ �11

�

�t
+ �12

�

�t�
	�12

= −
i�2

2
� �2

�t2 +
�2

�t�2	 + i���t − t����12. �71�

Defining time coordinates in a moving frame,

� = t − �̄1z, �� = t� − �̄1z , �72�

�̄1 =
�11 + �12

2
, � =

�11 − �12

2
, �73�

we obtain the following equation for �12�z ,� ,���:

� �

�z
+ �

�

��
− �

�

���
	�12

= −
i�2

2
� �2

��2 +
�2

���2	 + i���� − �����12. �74�

Equation �74� is a simple linear Schrödinger equation, de-

scribing a two-dimensional “wave function” �12�z ,� ,��� in a
moving frame subject to a � potential. To solve for �12 ex-
plicity, we define new time coordinates

�+ =
� + ��

2
, �− =

� − ��

2
. �75�

Then Eq. �74� becomes

� �

�z
+ �

�

��−
	�12 = −

i�2

4
� �2

��+
2 +

�2

��−
2	 +

i�

2
���−���12.

�76�

As evident from Eq. �76�, the cross-phase modulation effect
only offers confinement of �12 along the time difference ��−�
axis, but not the mean arrival time ��+� axis.

The only bound-state solution of �12 is

�12�z,�+,�−� = exp− i��2

4
S2 +

�2

�2
	z�

exp�− S��−� + i
2�

�2
�−	�

−�

� d�

2�
����

exp�− i��+ +
i�2

4
�2z	 . �77�

The � potential enforces S to take on the value

S = −
�

�2
, �78�

where � and �2 must have opposite signs. The final solution
of �12 in the frame of � and �� is therefore

FIG. 4. �Color online� Quantum dispersive spreading of the
mean arrival time of a two-photon vector soliton. The cross-phase
modulation effect only preserves the two-photon coherence time,
giving rise to temporal entanglement with positive-time correlation.
One can also manipulate the coherence time independently by adia-
batically changing the nonlinear coefficient along the propagation
axis.
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�12�z,�,��� = exp− i��2/4 + �2

�2
	z�exp− � �

2�2
��� − ���

+ i
�

�2
�� − �����

−�

� d�

2�
����exp− i�� � + ��

2
	

+
i�2

4
�2z� . �79�

The two-photon coherence time of a vector soliton is fixed,
but the average arrival time is still subject to dispersive
spreading and becomes increasingly uncertain as they propa-
gate. See Fig. 4 for an illustration. Hence, a two-photon vec-
tor soliton generates temporal entanglement with positive-
time correlation as it propagates. Similar to the idea of
soliton momentum squeezing �27�, one can also adiabatically
change � or �2 along the propagation axis to control inde-
pendently the two-photon coherence time.

Notice that the center frequencies of the two photons are
shifted slightly, by an amount of ±� /�2, to compensate for
their group-velocity mismatch, so that they can copropagate
at the average group velocity. This is commonly known as
soliton trapping �17�.

If the nonlinearity has a finite bandwidth, then the poten-
tial becomes a finite-bandwidth function like the one in Eq.

�70� and multiple bound-state solutions can be obtained via
conventional techniques of solving the linear Schrödinger
equation.

VIII. CONCLUSION

We have derived the general equations that govern the
temporal evolution of two-photon probability amplitudes in
different coupled optical modes. The formalism inspires the
concept of quantum temporal imaging, which can manipulate
the temporal entanglement of photons via conventional im-
aging techniques. The theory also offers an intuitive interpre-
tation of two-photon entanglement evolution, as demon-
strated by the exact solution of a two-photon vector soliton.
To conclude, we expect the proposed formalism to be useful
for many quantum signal processing and communication
applications.
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