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Spontaneous parametric processes pumped transversely with short pulses are studied under a unified frame-
work, which proves that such processes can efficiently generate entangled photon pairs with time anticorrela-
tion and frequency correlation. Improvements upon previously proposed schemes can be made by the use of
quasi-phase-matching, four-wave mixing, and cross-phase-modulation compensation. The use of frequency-
correlated photons in the Hung-Ou-Mandel interferometer is studied.
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It has recently been proven that if the three-wave-mixing
sTWMd or four-wave-mixingsFWMd parametric process is
transversely pumped with short pulses in a long and thin
nonlinear medium, parametric amplification can be per-
formed, with time reversal and spectral phase conjugation
sSPCd f1,2g. The correspondence between classical paramet-
ric amplification and quantum entanglement makes one won-
der if spontaneous SPC can perform the opposite of what its
continuous-wave-pumped counterpart does, and realize time
anticorrelation or frequency correlation. This distinct kind of
entanglement is useful for applications such as quantum-
enhanced position and clock synchronizationf3g and one-
way autocompensating quantum cryptographyf4g. Various
implementations of such entanglement have been suggested
f5,6g, and the scheme proposed by Waltonet al. f6g looks
intriguingly similar to the TWM scheme for SPCf1g. On the
other hand, while TWM is traditionally the preferred method
to generate entangled photons, recent experimental progress
on entangled photon sources using third-order nonlinear pro-
cessesf7,8g makes FWM a promising candidate for such a
task. In this paper, we prove that spontaneous SPC, by either
TWM or FWM, can indeed efficiently generate time-
anticorrelated and frequency-correlated photon pairs.

Our proposed schemes have several key improvements
over that in Ref.f6g, and make coincident frequency en-
tanglement much more realizable. First, it is unclear in Ref.
f6g how phase matching should be achieved. We propose the
incorporation of quasi-phase-matching to satisfy the require-
ment. Second, we suggest an alternative FWM scheme,
which can be more efficient with focused femtosecond pump
beams. Third, for good efficiency, cross-phase modulation
due to the strong pump becomes a large parasitic effect for
both schemes. We introduce the use of pump phase modula-
tion to compensate for cross-phase modulation. We also per-
form an in-depth Heisenberg analysis of the spontaneous
SPC schemes, predicting that a high gain is possible with
current technology. The high gain enables the generation of
large-photon-number frequency-correlated states, which are
interesting for their use in nonlocal-dispersion cancellation
and noise-reduction experimentsf9g.

Lastly we investigate the use of frequency-correlated pho-
tons generated by our proposed schemes in the Hong-Ou-
Mandel sHOMd interferometerf10g, subject to temporal de-
lays, dispersion, frequency shifts, and temporal phase
modulation. Quantum-dispersion cancellation in the HOM

interferometer with such photons has been studiedf10–13g,
but relatively little attention is given to the distinguishability
introduced by phase modulation in the time domain, for ex-
ample, via the optical Kerr effect, which can be useful in
quantum nondemolition measurementsf14g. Referencef11g
studies the effect of frequency shifts on frequency-correlated
photons, but only in a highly idealized case. Using the for-
malism developed for our schemes, we first review the HOM
dip effect introduced by time delays and dispersion for com-
pleteness, and then study the nonlocal temporal phase-
cancellation properties of the entangled photons.

The spontaneous SPC scheme by TWM is sketched in
Fig. 1, and the FWM scheme in Fig. 2. For the TWM
scheme, the interaction Hamiltonian is

Ĥ ~ wE dxE dzxs2dfszdEp
s+dEs

s−dEi
s−d + H.c., s1d

wherew is the width of the nonlinear medium in they di-
mension,xs2d is the second-order nonlinear susceptibility,
fszd is the pump-beam profile,Es+d andEs−d are the positive-
frequency and negative-frequency electric field operators, re-
spectively, and the subscriptsp, s, andi denote pump, signal,
and idler, respectively. If the pump is assumed to be classi-
cal, the electric field operators can be written in terms of

envelopes Ep
s+d~Apst+x/vxdexps−i2v0t− ikxxd, Es

s−d~ Âs
†st

−z/vdexpsiv0t− ikzzd, and Ei
s−d~ Âi

†st+z/vdexpsiv0t+ ikzzd,
wherekx is the pump carrier-wave vector, andv andvx are
the group velocities inz and x, respectively. Unlike the
scheme in Ref.f5g, spontaneous SPC places no restriction on
the material dispersion properties as long as the signal and
idler are the same but counterpropagating modes. Otherwise
the pump beamssd can be slightly tilted in thez direction to
compensate fo the signal-idler phase mismatch. The interac-
tion Hamiltonian then becomes

Ĥ ~ wE
−d/2

d/2

dxE dzxs2dfszdApSt +
x

vx
DÂs

†St −
z

v
DÂi

†St +
z

v
D

3expF− iSkx −
2p

L
DxG + H.c., s2d
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whereL is the xs2d grating period. Referencef15g assumes
that the transverse dimensiond is small enough so that de-
tuning due tokx can be ignored. However, for a realizable
setup,kx is usually on the order of 1/s1 mmd, while d is on
the order of micrometers for a waveguide. Hence in most
caseskx should not be ignored, and quasi-phase-matching,
not mentioned in Ref.f6g, is in fact needed. The submi-
crometerxs2d grating period required can be fabricated, for
example, in a GaAs/AlxGa1−xAs heterostructuref16g. To
avoid space-time coupling, the spatial pulse width of the
pump, on the order of 100mm for a femtosecond pulse,
should be much larger thand,10 mm, so that thex depen-

dence ofAp can be neglected.Ĥ is then given by

Ĥ ~ wdE dzxs2dfszdApstdÂs
†St −

z

v
DÂi

†St +
z

v
D + H.c. s3d

The FWM process, on the other hand, is automatically
phase matched due to the counterpropagating pump pulses.
The interaction Hamiltonian is

Ĥ ~ wE dxE dzxs3dfszdEp
s+dEq

s+dEs
s−dEi

s−d + H.c. s4d

With similar assumptions as in the TWM scheme, the inter-
action Hamiltonian is given by

Ĥ ~ wdE dzxs3dfszdApstdAqstdÂs
†St −

z

v
DÂi

†St +
z

v
D + H.c.,

s5d

which is almost identical to that of the TWM scheme. Hence
one can analyze both schemes in a unified framework, with
the general Hamiltonian

Ĥ ~E dz fszdgstdÂs
†St −

z

v
DÂi

†St +
z

v
D + H.c., s6d

where gstd~xs2dApstd for the TWM scheme andgstd
~xs3dApstdAqstd for the FWM scheme. To the first order, the
wave function is given byf6g

uc8l ~E dt Ĥu0l s7d

~E dtE dz gstdfszdÂs
†St −

z

v
DÂi

†St +
z

v
Du0l s8d

~E dvsE dvi f̃Svs − vi

v
Dg̃svs + vidâs

†svsdâi
†svidu0l, s9d

where f̃, g̃, and âs,i
† are Fourier transforms off, g, and Âs,i

† ,
respectively. In the time domain, if the width ofgstd is much
narrower than the width offszd divided byv, gstd can sample
the integrand in Eq.s8d, say att=0. Equivalently in the fre-

quency domainf̃ can sample the integrand atvs=vi in Eq.
s9d. The wave function becomes

uc8l ~E dt8gst8dE dt fsvtdÂs
†s− tdÂi

†stdu0l s10d

~E dv8 f̃Sv8

v
DE dv g̃s2vdâs

†svdâi
†svdu0l. s11d

The generated photon pair therefore possesses quantum time
anticorrelation and frequency correlation. In summary, for
optimal entanglement, the assumption

FIG. 1. Spontaneous SPC by TWM.

FIG. 2. Spontaneous SPC by FWM.
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should be satisfied.
The efficiency of spontaneous SPC is best studied in the

Heisenberg picture. The coupled-operator equations, assum-
ing classical undepleted pumps, are given by

Sv
]

]z
+

]

]t
DÂs = igstdÂi

† + icstdÂs, s13d

S− v
]

]z
+

]

]t
DÂi

† = − ig*stdÂs − icstdÂi
†, s14d

where

gstd =
v0vxs2d

2cn0
Apstd s15d

for the TWM scheme and

gstd =
3v0vxs3d

4cn0
ApstdAqstd s16d

for the FWM scheme.

cstd =
3v0vxs3d

4cn0
suApu2 + uAqu2d s17d

is the cross-phase-modulation term, which acts as a time-
dependent detuning factor. Cross-phase-modulation is al-
ways present in the FWM scheme, while it exists in the form
of competing third-order nonlinearity in the TWM scheme.
Equationss13d ands14d can be solved in the same manner as
in the classical SPC analysisf1,2g. The temporary detuning
due to cross-phase-modulation can be compensated ifgstd is
also appropriately detuned. Quantitatively, the phase ofgstd
should be modulated asf2g

ustd = u0 + 2E
−`

t

dt8cst8d. s18d

ustd can be approximated by a linear temporal phase, or a
center-frequency shift ofgstd f2g. In other words, for spon-
taneous SPC under the cross-phase-modulation effect, the
generation of photon pairs will actually be most efficient at a
center frequency different from the center pump frequency in
the FWM scheme, or from half the center second-harmonic
pump frequency in the TWM scheme. This is analogous to
the phenomenon of sideband gain in continous-wave FWM,
although now the signal and idler spectra shouldcoincide
with each other. This feature is actually desirable for the
FWM scheme, since it is easier to separate the scattered
pump from the weak signal and idler by spectral filtering.

The average number of photons in each mode is

ns = C2ns0 + S2sni0 + 1d, s19d

ni = C2ni0 + S2sns0 + 1d, s20d

whereC;coshfedtugstdug, S;sinhfedtugstdug, ns0 is the ini-
tial signal photon number, andni0 is the initial idler photon

number. The number of photon pairs spontaneously gener-
ated in each wave-mixing event is thereforeS2, and the con-
version efficiency, defined as the energy of the generated
photons divided by the energy of the pump photons, is

G =
2S2"v0

Ep
, s21d

whereEp is the total pump energy. The FWM scheme is more
efficient than the TWM scheme whengstd of the former is
larger, or, all else being equal,

xs3d

sn0
s3dd3S Ep

e0cLwTp
D1/2

*
xs2d

sn0
s2dd5/2, s22d

whereTp is the pump pulse width.
For example, polydiacetylene, a conjugated polymer, has

a xs3d,10−18 m2/V2 andn0
s3d,2, while a GaAs/AlxGa1−xAs

heterostructure has axs2d,1010 m/V andn0
s2d,4. For a fo-

cused femtosecond pump beam, sayL,2 mm, w,5 mm,
Tp,100 fs, the FWM scheme is more efficient whenEp is
approximately larger than 1 nJ. Ti:sapphire laser systems can
achieve a pulse energy of 1 mJ or more, so the FWM scheme
can be orders of magnitude more efficient. The FWM
scheme also has the advantage of automatic phase matching
as well as having pump pulses near the fundamental fre-
quency, thus eliminating the need of quasi-phase-matching
and a second-harmonic source in an experiment. That said,
the necessity of synchronizing two short pump pulses in the
FWM scheme may undermine its robustness, while the
TWM scheme may be more efficient for certain parameters
and it is relatively easier to filter out the scattered second-
harmonic pump from the signal and idler. For the parameters
above, the signal and idler gainS2 can achieve 100% for a
pump pulse energy,10 nJ with the FWM scheme and
,2 mJ with the TWM scheme. For such a relatively high
gain the wave function can have higher-order termsf17g,
ucl~on=0

` Tnunlsunli, whereT=S/C, and the weights of large-
photon-number statesT2n with n.1 become appreciable
when S2 approaches unity. Amplification of coincident fre-
quency entanglementf17g also becomes possible.

In the HOM interferometry, variable delays are introduced
to the signal and idler photons, which then pass through a
50-50 beam splitter and finally the coincidence rate of the
two output ports is measuredf10g. For simplicity we also
assume that the distances from the two detectors to the beam
splitter are the same. We start with the more general wave
function in Eq. s8d. The electric field operators of the two
outputs are given by

Â1,2std ~ Âs,is±Ls,i,td + iÂi,ss7Li,s,td, s23d

where Ls,i are the distances traveled by the signal and the
idler from z=0 to the detectors, respectively.Li has a nega-
tive sign in front because the idler travels backward. The
coincidence rate is given byf12,13g

Pc ~E dt1E dt2kc8uÂ1
†st1dÂ2

†st2dÂ1st1dÂ2st2duc8l s24d
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~E dt+UgSt+ −
L+

v
DU2FE dt−ufsL− − vt−du2

− ReE dt−f*sL− − vt−dfsL− + vt−dG , s25d

where t+=st1+ t2d /2, L+=sLs+Lid /2, t−=st1− t2d /2, and L−

=sLs−Lid /2 is half the signal-idler path difference. The
shape of the HOM dip with respect to the path difference
Ls−Li is given by the last term of Eq.s25d, which has a width
on the order ofL, the width of the pump-beam profilefszd.
Referencef11g predicts thatPc is identically zero for allL−
with perfectly frequency-correlated photons, which is simply
a special case whenL→`.

Steinberget al. predicted f18g and demonstratedf19g
even-order dispersion cancellation in the HOM interferom-
eter with frequency-anticorrelated photons. With frequency-
correlated photons, intuition then suggests that one can ob-
tain nonlocal cancellation of dispersion of all orders, which
is proven in Ref.f12g. To see how this effect manifests itself
in our schemes, we shall start with the general wave function
in the frequency domain, Eq.s9d, and apply spectral phase to
the operators just as in Ref.f18g. The coincidence rate can be
expressed in terms of frequency-domain operators asf18g

Pc ~E dv1E dv2kc8uâ1
†sv1dâ2

†sv2dâ1sv1dâ2sv2duc8l

s26d

~E dv1E dv2ug̃sv1 + v2du2HU f̃Sv1 − v2

v
DU2

− ReF f̃Sv1 − v2

v
D f̃*Sv2 − v1

v
Dexphifkssv1d

− kssv2dgLs − ifkisv1d − kisv2dgLijGJ , s27d

whereks and ki are the dispersive propagation constants of
the signal and idler, respectively. The exponential term in Eq.
s27d characterizes the nonlocal dispersion cancellation. If the
photons have perfect frequency anticorrelation,g̃ is infinitely
sharp,v1=−v2, and we recover the even-order dispersion

cancellation results in Ref.f18g. If f̃ is infinitely sharp,v1
=v2, the exponential term evalulates to 1 andPc=0 for dis-

persion of all orders. Iff̃ is not infinitely sharp and disper-
sion is due only to time delay, the result in Eq.s25d is recov-
ered.

Frequency shifts can be introduced to the signal and the
idler by, for example, moving mirrors or acousto-optic
modulators via the Doppler effect. Opposite Doppler shifts
can also occur to the counterpropagating photons if the
source frame is moving alongz relative to the detection

frame. We can then rewriteÂ1 and Â2,

Â1,2std ~ exps− idvs,itdÂs,i + i exps− idvi,stdÂi,s, s28d

wheredvs is the signal frequency shift anddvi is the idler
frequency shift. For intuitiveness we assume that the path

delays for both photons are the same, orLs=Li =L+. Pc be-
comes

Pc ~E dt+UgSt+ −
L+

v
DU2SE dt−ufs− vt−du2

− ReE dt−f*s− vt−dfsvt−dexpf2isdvs − dvidt−gD .

s29d

The last term of Eq.s29d, which is the Fourier transform of
ufsvtdu2 if fsvtd is even, characterizes the HOM dip with re-
spect to the frequency differencedvs−dvi. The width of the
dip is on the order ofv /L, for which the infinitely sharp dip
predicted by Ref.f11g is again a special case whenL→`.

The coincidence rate depends on the time-domain opera-
tors in Eq.s24d in the same way as the expression in Eq.s26d
depends on frequency-domain operators,

Pc ~E dt1E dt2kc8uÂ1
†st1dÂ2

†st2dÂ1st1dÂ2st2duc8l s30d

~E dv1E dv2kc8uâ1
†sv1dâ2

†sv2dâ1sv1dâ2sv2duc8l. s31d

Hence the coincidence rate obeys a kind of Parseval’s rela-
tion, and the frequency-domain results can be directly ap-
plied to the time domain, if we replace frequency-domain
operators with time-domain operators, frequency anticorrela-
tion with time anticorrelation, frequency correlation with
time correlation, and spectral phase modulationsdispersiond
with temporal phase modulation.

One can introduce temporal phase modulation to the pho-
tons by a Doppler shift as mentioned above, or by cross-
phase-modulation via a classical pulse in a Kerr medium if a
more complex phase profile is desired. Given the Parseval
relation for coincidence, we then expect the HOM interfer-
ometry results with frequency-anticorrelated photons subject
to dispersion to be functionally the same as the results with
time-anticorrelated photons subject to temporal phase modu-
lation. The coincidence rate is

Pc ~E dtufsvtdu2h1 − cosffsstd − fss− td − fistd + fis− tdgj,

s32d

wherefs,i are the temporal phases introduced to the signal
and idler photons. The even component of the temporal
phase is canceled, as expected. For a linear temporal phase,
the result in Eq.s29d is recovered. On the other hand, time-
correlated photons are capable of complete nonlocal tempo-
ral phase cancellation. An analogy with classical nonlinearity
compensation by different phase conjugation schemes can
clearly be made; whereas midway SPC can compensate only
for the elastic component of the Kerr effect, midway tempo-
ral phase conjugation can compensate for both the instanta-
neous and delayed Kerr effectsf20g.
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The Parseval relation for coincidence of course holds for
any kind of interferometer, so any result with other interof-
erometers obtained with frequency-anticorrelated photons
subject to dispersion can be applied directly to time-

anticorrelated photons subject to temporal phase modulation.
For instance, the extensive study of Mach-Zehnder interfer-
ometry with frequency anticorrelated photons in Ref.f11g
can be utilized just as well in the time domain.
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