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Physics-inspired forms of the Bayesian Cramér-Rao bound
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Using differential geometry, I derive a form of the Bayesian Cramér-Rao bound that remains invariant under
reparametrization. With the invariant formulation at hand, I find the optimal and naturally invariant bound
among the Gill-Levit family of bounds. By assuming that the prior probability density is the square of a wave
function, I also express the bounds in terms of functionals that are quadratic with respect to the wave function
and its gradient. The problem of finding an unfavorable prior to tighten the bound for minimax estimation is
shown, in a special case, to be equivalent to finding the ground state of a Schrödinger equation, with the Fisher
information playing the role of the potential. To illustrate the theory, two quantum estimation problems, namely,
optomechanical waveform estimation and subdiffraction incoherent optical imaging, are discussed.
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I. INTRODUCTION

Differential geometry has been useful in the study of
statistical divergence measures, Cramér-Rao bounds, and
asymptotic statistics [1–3], but its usefulness for Bayesian
and minimax statistics is less clear. The Bayesian Cramér-Rao
bounds [4,5], pioneered by Schützenberger [6] and Van Trees
[7], may serve as a bridge.

To set the stage, consider a p-dimensional parameter θ =
(θ1, . . . , θ p) ∈ � ⊆ Rp, a scalar parameter of interest β(θ ) ∈
R that is a function of θ , and an estimator β̌(X ), where X is a
set of n independent and identically distributed (i.i.d.) obser-
vation random variables with a family of probability densities
{ f (n)(x|θ ) = ∏n

j=1 f (x j |θ ) : θ ∈ �} and a reference measure
μ that gives dμ(n)(x) = ∏n

j=1 dμ(x j ). Generalization of the
theory for a vectoral β is straightforward but tedious and
deferred to the Appendix. Define the mean-square risk as

R(θ ) ≡
∫

[β̌(x) − β(θ )]2 f (n)(x|θ )dμ(n)(x). (1.1)

The Cramér-Rao bound for any unbiased estimator is given by

R(θ ) � C(θ )

n
, (1.2)

C(θ ) ≡ ua(θ )[F (θ )−1]abub(θ ), (1.3)

where

ua ≡ ∂aβ, ∂a ≡ ∂

∂θa
. (1.4)

Einstein summation is assumed, F is the Fisher information
matrix defined as

Fab ≡
∫

(∂a ln f )(∂b ln f ) f dμ, (1.5)
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F−1 is its inverse such that Fab(F−1)bc = δc
a, and δ is the

Kronecker delta. For simplicity, hereafter I call Eqs. (1.2) and
(1.3) the local bound and the theory concerning C(θ ) the local
theory, as C(θ ) depends only on the local properties of the
statistical model in the neighborhood of θ .

The restriction to unbiased estimators is one of the biggest
shortcomings of the local bound. A fruitful remedy is to con-
sider bounds on the Bayesian risk,

〈R〉 = E[(β̌ − β )2] =
∫

R(θ )π (θ )d pθ, (1.6)

where E denotes the expectation over both the observation and
the parameter as random variables and π is a prior probability
density [4]. In particular, Gill and Levit proposed a general
family of Bayesian Cramér-Rao bounds, valid for any biased
or unbiased estimator, given by [5]

〈R〉 � B ≡ 〈A〉2

n〈F〉 + 〈P〉 , (1.7)

A ≡ vaua, (1.8)

F ≡ vaFabv
b, (1.9)

P ≡
[

1

π
∂a(πva)

]2

, (1.10)

where v, A, F, and P are all functions of θ , πv is assumed
to vanish on the boundary of �, and 〈·〉 denotes the prior
expectation, as in Eq. (1.6).

This work studies only the bound B; the attainability of
the bound is outside the scope of this work. Some recently
proposed Bayesian Cramér-Rao bounds [8] may not fall under
the Gill-Levit family and are also outside the scope of this
work. There also exist many other types of Bayesian bounds
that may be tighter, such as the Ziv-Zakai bounds and the
Weiss-Weinstein bounds [4], but the Cramér-Rao bounds are
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often much easier to compute because they are based on the
Fisher information, a well-studied quantity.

In Eqs. (1.8)–(1.10), v : Rp → Rp is a free term, and by
choosing it judiciously, many useful forms of B can be ob-
tained [5]. An arbitrarily chosen v, however, may lead to a B
that varies if the parametrization of the underlying model with
respect to θ is changed. To give a simple example, suppose
that p = 1, θ is a scalar, and β = θ . Consider the Gill-Levit
bound for v1 = 1. If the parametrization of the underlying
statistical model is changed, say, via the relation θ = θ̃1/3 and
θ̃ = θ3, then the Gill-Levit bound for β = θ = θ̃1/3 and v1 =
1 would usually be different when computed with respect to
the new parameter θ̃ , even if the statistical problem remains
the same. This property is unpleasant, as there can be infinitely
many parametrizations for the same model and it is not clear
which parametrization leads to the tightest bound for a given
problem. Note that the local bound given by Eq. (1.3) does not
suffer from such a problem, as it is well known to be invariant
upon reparametrization [9]. In Sec. II, I propose a condition
on v that makes B invariant. I also derive an invariant form of
B using the language of differential geometry [10]. With the
invariant form, B is guaranteed to give the same value for a
model, regardless of the parametrization.

A related question is how v should be chosen. Although
Gill and Levit suggested a few options based on prior works
or convenience, it is unclear which is better or whether there
exists an optimal choice. In Sec. III, I show that there is indeed
an optimal choice, and it agrees with a couple of popular
options in special cases. The inspiration comes from the geo-
metric picture of v as a vector field, which generalizes the role
of a tangent vector in the local theory [2,9]. By virtue of the
invariant formalism, the resultant bound is naturally invariant.

Bayesian bounds are also useful for minimax statistics [11]
by providing lower bounds on the worst-case risk via

sup
θ∈�

R(θ ) � 〈R〉 (1.11)

for any prior. In this context, one should no longer choose the
prior according to Bayesian principles. Instead, one should
choose an unfavorable prior as a mathematical device to
tighten a lower bound. Given Eqs. (1.7)–(1.10), it is unclear
how the prior should be chosen, as 〈P〉 is highly nonlinear
with respect to π . To help with this problem, in Sec. IV I
rewrite Eqs. (1.7)–(1.10) in a form that looks more famil-
iar, at least to physicists. To be specific, I identify the prior
density with the square of a wave function, such that 〈A〉,
〈F〉, and, most importantly, 〈P〉 all become quadratic func-
tionals of the wave function and its gradient. In a special
case, n〈F〉 + 〈P〉 becomes the average energy of a wave that
obeys a Schrödinger equation. Finding the tightest bound for
minimax estimation then becomes equivalent to finding the
ground-state energy of the wave, and insights from quantum
mechanics turn out to be handy.

In terms of other prior works, Refs. [12,13] also study
Bayesian Cramér-Rao bounds in geometric terms but do
not discuss the question of invariance or find the optimal
Gill-Levit bound. References [14] derive the asymptotically
optimal form of the Gill-Levit bounds but do not find the
exact optimal form. Example 4.2 in Ref. [15] studies the
optimization of a Bayesian Cramér-Rao bound for a special

problem, but not in the generality considered here. Regarding
the wave picture, the fact that F is quadratic with respect
to ∂a( f 1/2) is well known in statistics [1], and Frieden even
claimed that it serves as a fundamental principle for physics
[16]. He assumed that f is the square of a wave function and
derived wave equations from this fact but had to introduce fur-
ther creative assumptions. He also did not consider Bayesian
bounds. To my knowledge, the wave picture of a Bayesian
Cramér-Rao bound is first proposed in Ref. [17], which con-
siders the special case β = θ with a scalar θ and uses the wave
picture as a trick to solve a parameter-estimation problem in
optical imaging. Here, as before [17], I do not claim that my
results have any foundational implications for physics, merely
that the correspondence is interesting and useful for statistics
problems.

Section V comes full circle and applies the statistical the-
ory to quantum estimation [18,19], where actual quantum
systems are considered. I consider two important problems
in quantum optics, namely, optomechanical waveform estima-
tion [20,21] and subdiffraction incoherent imaging [18,22].
The first problem is relevant to gravitational-wave detec-
tors, where quantum noise is now playing a major role [23];
I show the importance of including prior information in
deriving a meaningful quantum limit in terms of spectral
quantities, following Ref. [21]. The second problem is, of
course, a fundamental one in optics and relevant to both flu-
orescence microscopy and observational astronomy. Recent
studies, based on quantum estimation theory, have shown
that judicious measurements can substantially improve the
imaging of subdiffraction objects [22], although most prior
works are based on the local bound, which is valid for unbi-
ased estimators only. By considering the minimax perspective,
the Bayesian bound, and the wave picture, I discuss the
implication of a zero information for the estimator conver-
gence rate for the multisource localization problem studied in
Refs. [22,24,25].

II. INVARIANCE

To model reparametrization, consider a bijective differen-
tiable map θ̃ (θ ). The transformation laws are

∂a = Jb
a ∂̃b, ∂̃a ≡ ∂

∂θ̃a
, (2.1)

d pθ = d pθ̃

‖J‖ , π = ‖J‖π̃ , (2.2)

ua = Jb
a ũb, Fab = Jc

a F̃cd Jd
b , (2.3)

where

Jb
a ≡ ∂aθ̃

b (2.4)

is the Jacobian matrix, |J| denotes its determinant, and ‖J‖
denotes the absolute value of the determinant. Equations (2.3)
imply that the components of u are covariant and F is a (0,2)
tensor. On the other hand, β, β̌, f , μ, R, and 〈·〉 remain in-
variant in the sense that β(θ ) = β̃(θ̃ (θ )), f (x|θ ) = f̃ (x|θ̃ (θ )),
R(θ ) = R̃(θ̃ (θ )), etc., as these quantities depend on the statis-
tical problem and should not depend on the parametrization of
the underlying model.
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It is well known that the local bound is invariant under
reparametrization [9], in the sense of

ua
(
F−1

)ab
ub = ũa

(
F̃−1

)ab
ũb. (2.5)

The Gill-Levit bounds can also be made invariant.
Proposition 1. B is invariant under reparametrization if v

obeys the transformation law

vaJb
a = ṽb. (2.6)

Proof. Given Eq. (2.6), it is obvious that

A = ṽaũa, F = ṽaF̃abṽ
b (2.7)

remain invariant upon reparametrization. To deal with P, de-
fine the inverse Jacobian matrix as

J̃b
a ≡ ∂̃aθ

b, (2.8)

which obey

Jb
a J̃c

b = J̃b
a Jc

b = δc
a, |J̃| = 1

|J| . (2.9)

Consider

1

π
∂a(πva) = Jb

a

|J|π̃ ∂̃b
(|J|π̃ ṽcJ̃a

c

)
(2.10)

= ṽc Jb
a

|J| ∂̃b
(|J|J̃a

c

) + 1

π̃
∂̃b(π̃ ṽb). (2.11)

The first term can be shown to vanish as follows:

Jb
a

|J| ∂̃b
(|J|J̃a

c

) = ∂̃c ln |J| + Jb
a ∂̃bJ̃a

c (2.12)

= −∂̃c ln |J̃| + Jb
a ∂̃bJ̃a

c (2.13)

= −Jb
a ∂̃cJ̃a

b + Jb
a ∂̃bJ̃a

c (2.14)

= −Jb
a (∂̃c∂̃bθ

a − ∂̃b∂̃cθ
a) = 0, (2.15)

where Eq. (2.14) uses Jacobi’s formula to simplify ∂̃c ln |J̃|.
Hence

1

π
∂a(πva) = 1

π̃
∂̃b

(
π̃ ṽb

)
, (2.16)

and P is invariant. As the prior expectation 〈·〉 is also invariant,
B is invariant. �

In the language of differential geometry, Eq. (2.6) means
that the components of v are contravariant. In other words, v

defines a vector field in the parameter space �, with compo-
nents (v1, . . . , vp) with respect to a parametrization. If one
does not transform the components as per Eq. (2.6) upon
reparametrization, B changes—the reason, from the geometric
perspective, is that it has become a bound for a different
vector field. For someone familiar with differential geometry,
Proposition 1 may seem trivial in hindsight, but this triviality
should be regarded as a virtue—it is evidence that differential
geometry is useful in simplifying the problem here.

A “natural” choice of the v components according to Gill
and Levit is [5]

va = (F−1)abub. (2.17)

This form is contravariant, in the sense that Eq. (2.17) for one
parametrization and ṽa = (F̃−1)abũb for another parametriza-
tion obey Eq. (2.6) and must give the same bound for a given
problem. This choice also leads to the simplification

A = F = ua(F−1)abub = C, (2.18)

which coincides with the local bound given by Eq. (1.3). The
resultant Bayesian bound is

B = 〈C〉2

n〈C〉 + 〈P〉 . (2.19)

For a scalar θ , this becomes an inequality of Borovkov
and Sakhanenko [26]; see also Ref. [27]. Most importantly,
Eq. (2.19) agrees with some classic theorems in the asymp-
totic local theory by Hájek and Le Cam that generalize the
Cramér-Rao bound but are much more sophisticated [5,28].
Equation (2.17) is not the only contravariant choice, however.
It does not even exist if u is not in the range of the F matrix
[29]. It is also not the optimal choice for the Gill-Levit bounds
in general, as Sec. III shows.

Another useful choice of the v components is

va = [(n〈F 〉 + 〈G〉)−1]ab〈ub〉, (2.20)

Gab ≡ 1

π
(∂aπ )

1

π
(∂bπ ), (2.21)

leading to

B = 〈ua〉[(n〈F 〉 + 〈G〉)−1]ab〈ub〉. (2.22)

If u is θ independent, Eq. (2.22) coincides with the orig-
inal version by Schützenberger and Van Trees [6,7]. 〈G〉
plays the role of prior information and can regularize the
inverse when 〈F 〉 is ill conditioned. The regularization is es-
pecially important for waveform-estimation problems [7,21].
The form of Eq. (2.20) is usually not contravariant, however,
in the sense that, except for special cases, Eq. (2.20) for
one parametrization and ṽa = [(n〈F̃ 〉 + 〈G̃〉)−1]ab〈ũb〉 for an-
other parametrization do not obey Eq. (2.6), and the resultant
bounds may be different for a given problem.

In the following, I generalize �, the parameter space, to a
p-dimensional manifold and assume that v is a vector field on
the manifold. The formalism can then be made more elegant
by defining the invariant quantities

ε ≡
√

|g|d pθ, ρ ≡ π√|g| , πd pθ = ρε, (2.23)

where |g| is the determinant of a Riemannian (positive-
definite) metric gab. It should be emphasized that the
metric here is merely a mathematical tool to keep track of
parametrization invariance and deal with more general man-
ifolds for �, and this work is not concerned with the concept
of statistical manifolds and distances between probability
measures in information geometry [1]. Although many have
argued that the Fisher information is a natural metric in infor-
mation geometry [1], there is no particular reason to pick the
Fisher information as the metric here. That choice may also
cause problems if |F | = 0, so I keep the metric unspecified
here for generality. The divergence term in Eq. (1.10) becomes

1

π
∂a(πva) = 1√|g|ρ ∂a(

√
|g|ρva) = 1

ρ
∇a(ρva), (2.24)
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where ∇a is the Riemannian covariant derivative. With these
suggestive expressions at hand, I propose the following.

Proposition 2 (invariant Gill-Levit bounds). If ρv vanishes
on any boundary of the parameter manifold �, the Bayesian
mean-square risk has a lower bound given by Eq. (1.7), where

〈A〉 =
∫

(vaua)ρε, (2.25)

〈F〉 =
∫

(vaFabv
b)ρε, (2.26)

〈P〉 =
∫ [

1

ρ
∇a(ρva)

]2

ρε. (2.27)

Proof. For completeness, I provide a proof that proceeds in
a manifestly invariant way, so that the proposition is proved
also for a curved metric. Define the bias as

b ≡
∫

(β̌ − β ) f (n)dμ(n) (2.28)

and write, via the Leibniz rule for the covariant derivative,∫
∇a(bρva)ε =

∫∫
(β̌ − β )∇a( f (n)ρva)dμ(n)ε

−
∫

(va∇aβ )ρε. (2.29)

It can be shown that the left-hand side of Eq. (2.29) is 0
by applying the Stokes theorem [10,30] and requiring that
ρv vanishes on the boundary of � if there is a boundary.
With ∇aβ = ∂aβ when ∇a acts on a scalar, the last term in
Eq. (2.29) is precisely 〈A〉 in Eq. (2.25). I obtain

〈A〉 =
∫∫

(β̌ − β )∇a( f (n)ρva)dμ(n)ε (2.30)

= E[(β̌ − β )s], (2.31)

where s is a generalized score function given by

s ≡ 1

f (n)ρ
∇a( f (n)ρva) (2.32)

= 1

f (n)
va∇a f (n) + 1

ρ
∇a(ρva). (2.33)

The expectation can be regarded as an inner product. The
Cauchy-Schwarz inequality then gives

〈A〉2 � E[(β̌ − β )2]E(s2). (2.34)

With the usual premise∫
∇a f dμ =

∫
∂a f (x|θ )dμ(x) = ∂a

∫
f dμ = 0, (2.35)

it can be shown that

E(s2) = n〈F〉 + 〈P〉, (2.36)

with 〈F〉 given by Eq. (2.26) and 〈P〉 given by Eq. (2.27).
Hence, Eq. (2.34) leads to Eq. (1.7), together with Eqs. (2.25)–
(2.27). �

The original Gill-Levit bounds given by Eqs. (1.7)–(1.10)
may be viewed as a special case of Proposition 2 if one
can pick a parametrization (coordinate system) with gab = δab

everywhere in �. If the Riemann curvature tensor with respect
to the metric is 0 everywhere, then one can always find a

parametrization for which gab = δab [10], and the two formu-
lations are equivalent in essence. But if not, the metric is said
to be curved, and Proposition 2 is more general. Proposition
2 may also be regarded as a special case of Theorem 2.1 in
Ref. [12], although the latter is so general that the bound there
may depend on the estimator.

While it is unclear whether curved metrics are useful for
the kind of problems considered here, one immediate advan-
tage of the invariant formulation is that all the ensuing results
are guaranteed to be invariant.

III. OPTIMAL GILL-LEVIT BOUND

To derive the optimal Gill-Levit bound, it is illuminating
to first recall the concept of least favorable submodels in the
local theory, as outlined in Ref. [9]; see also Ref. [31]. Pick a
curve in the parameter space that passes through the true value
and denote a tangent vector there as v. The local bound for the
one-dimensional submodel is given by

C(v) = (vaua)2

vaFabvb
. (3.1)

Define an inner product between two vectors as

〈v,w〉g ≡ vawa = vagabw
a, (3.2)

where the usual convention of index lowering and raising via
gab and its inverse gab in differential geometry is assumed. Let
F be an operator that obeys (Fv)a = Fabv

b. If F is positive-
definite, F−1 and the square roots F 1/2 and F−1/2 exist [32].
The Cauchy-Schwarz inequality gives

C(v) = 〈v, u〉2
g

〈v, Fv〉g
= 〈F 1/2v, F−1/2u〉2

g

〈v, Fv〉g
(3.3)

� 〈u, F−1u〉g = ua(F−1)abub, (3.4)

which coincides with Eq. (1.3) for the full model. A least
favorable tangent vector that attains the equality must satisfy

va ∝ (F−1)abub. (3.5)

Thus, Eq. (1.3) can be evaluated by considering the tangent
space at the true parameter and picking the worst direction.

For the Gill-Levit bounds, the “natural” choice of v given
by Eq. (2.17) is a least favorable choice in the local theory.
Thus, one may intuit that v plays an analogous role of picking
out directions in the Bayesian bound, except that v should
now be considered as a vector field, as depicted in Fig. 1. In
differential geometry, a vector field can generate a family of
integral curves, called a flow, in the manifold, and vice versa
[30]. In the context of statistics, each curve corresponds to
a one-dimensional submodel, so the concept of locally least
favorable submodels may be generalized to a concept of least
favorable flows. Following this intuition, I can generalize the
strategy of optimizing over v to obtain the tightest bound, as
follows.

Theorem 1 (optimal Gill-Levit bound).

max
v

B = 〈u, L−1u〉ρ ≡ Bmax, (3.6)
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FIG. 1. Left: A geometric picture of a one-dimensional submodel
as a curve in the manifold and a tangent vector v at the true parameter
value θ in the local theory. Right: A picture of v as a vector field in
the Bayesian theory.

where the inner product between two vector fields is defined
as

〈v, u〉ρ ≡
∫

vauaρε, (3.7)

the linear, self-adjoint, and positive-semidefinite operator L is
defined as

(Lv)a ≡ nFabv
b − ∇a

[
1

ρ
∇b(ρvb)

]
, (3.8)

and u is assumed to be in the range of L, such that L−1u exists.
A least favorable vector field, defined as a v that maximizes
B, must satisfy

v ∝ L−1u. (3.9)

Proof. In terms of the inner product given by Eq. (3.7),
Eqs. (2.25)–(2.27) can be expressed as

〈A〉 = 〈v, u〉ρ, (3.10)

〈F〉 = 〈v, Fv〉ρ, (3.11)

〈P〉 =
∫

[∇a(ρva)]
1

ρ
∇b(ρvb)ε (3.12)

= −
∫

ρva∇a

[
1

ρ
∇b(ρvb)

]
ε (3.13)

= 〈v, Pv〉ρ, (3.14)

(Pv)a ≡ −∇a

[
1

ρ
∇b(ρvb)

]
, (3.15)

where Eq. (3.13) comes from integration by parts, as enabled
by the Leibniz rule and the Stokes theorem, and the assump-
tion that ρv vanishes on any boundary of �. One can check
that F and P are linear, self-adjoint, and positive-semidefinite
operators. Furthermore,

n〈F〉 + 〈P〉 = 〈v, Lv〉ρ, L = nF + P. (3.16)

As L−1u is assumed to exist, the Cauchy-Schwarz inequality
yields

B = 〈v, u〉2
ρ

〈v, Lv〉ρ
= 〈L1/2v, L−1/2u〉2

ρ

〈v, Lv〉ρ � 〈u, L−1u〉ρ, (3.17)

and the equality is attained if and only if v obeys Eq. (3.9). �

Within the Gill-Levit family, Bmax is not only the maximum
but also the closest in spirit to the local bound given by
Eq. (1.3), with the L−1 operator generalizing the role of F−1.
Moreover, note that Bmax is naturally invariant. Although it is
also possible to derive Bmax starting from Eqs. (1.7)–(1.10)
without the invariant formalism, at least for a flat metric, the
invariance of Bmax would have been much more tedious to
prove, with a proliferation of Jacobians.

The most difficult part of computing Bmax is solving for
L−1u. Let v = L−1u, which is a least favorable field. It obeys
the second-order field equation

(Lv)a = nFabv
b − ∇a

[
1

ρ
∇b(ρvb)

]
= ua. (3.18)

The solution, expressible in terms of an impulse-response
(Green) function, can be substituted into Eq. (3.6) to give
Bmax. For large n, Eq. (3.18) can be simplified to

nFabv
b ≈ ua, Bmax ≈ 〈C〉

n
, (3.19)

so Eq. (3.5) is asymptotically least favorable to the Gill-Levit
family, in nice agreement with the local theory [28] and earlier
results [14]. Note, however, that the exact optimal choice
according to Eq. (3.18) also depends on the prior and some
derivatives. The correction to the local theory becomes espe-
cially important if u is not in the range of F and Eq. (3.5)
has no solution. The question of what to do when u is not
even in the range of L, and Eq. (3.18) has no solution, remains
open.

Another special case is when a parametrization with
gab = δab is assumed, u and F are θ independent, and π

is Gaussian with covariance matrix G−1. Then the solution
to Eq. (3.18) is

va = [(nF + G)−1]abub, (3.20)

and Bmax becomes

Bmax = ua[(nF + G)−1]abub, (3.21)

which coincides with the Schützenberger–Van Trees version
given by Eq. (2.22), since 〈u〉 = u, 〈F 〉 = F , and 〈G〉 = G in
this case. Furthermore, if f (x|θ ) = f (x − θ ) and f (x − θ ) is
also Gaussian, such that F is the inverse of the covariance
matrix of f , then it is well known that the minimum Bayes
risk minβ̌〈R〉 is also given by the right-hand side of Eq. (3.21)
[7], and Bmax is a tight bound.

IV. WAVE PICTURE

I now switch gears and make the substitution

ρ = ψ2, (4.1)

where ψ is a real function of the parameter. I call ψ a wave
function. All the functionals in Eqs. (2.25)–(2.27) turn out to
be quadratic with respect to ψ and ∇aψ , given by

〈A〉 =
∫

(vaua)ψ2ε, (4.2)

〈F〉 =
∫

(vaFabv
b)ψ2ε, (4.3)
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〈P〉 =
∫

(Dψ )2
ε, (4.4)

Dψ ≡ (∇av
a)ψ + 2va∇aψ. (4.5)

The problem of choosing an unfavorable prior to tighten the
bound for minimax estimation now becomes a problem of
finding the wavefunction that maximizes B. To simplify, I
define yet another inner product as

〈ψ, φ〉 ≡
∫

ψφε. (4.6)

The normalization condition for the prior density becomes∫
ρε = 〈ψ,ψ〉 = 1. (4.7)

It can be shown that

〈A〉 = 〈ψ, Aψ〉, (4.8)

〈F〉 = 〈ψ, Fψ〉, (4.9)

〈P〉 = 〈Dψ, Dψ〉 = 〈ψ, D†Dψ〉, (4.10)

D†ψ = (∇av
a)ψ − 2va∇aψ, (4.11)

B = 〈ψ, Aψ〉2

〈ψ, Hψ〉 , (4.12)

H ≡ nF + D†D. (4.13)

Note that D may be a nonlinear operator, if the choice of v,
such as Eq. (3.18), depends on the prior. To proceed, I assume
that v does not depend on ψ and D is linear. Then I can follow
the approach in Sec. III to obtain

B = 〈H1/2ψ, H−1/2Aψ〉2

〈ψ, Hψ〉 � 〈Aψ, H−1Aψ〉. (4.14)

The equality is attained if and only if

Hψ = (nF + D†D)ψ = λAψ, (4.15)

where λ is an arbitrary nonzero real number. Let ψλ be a
solution of Eq. (4.15) as a function of λ, subject to the nor-
malization constraint given by Eq. (4.7). Then

B = 1

λ
〈ψλ, Aψλ〉, (4.16)

and this expression should be maximized with respect to λ to
obtain the tightest lower bound on supθ R(θ ).

A substantial simplification can be made if a parametriza-
tion with gab = δab can be assumed and u, v, and therefore A
are θ independent. Equation (4.15) becomes

[nF(θ ) − 4(va∂a)2]ψ (θ ) = λAψ (θ ), (4.17)

which is a time-independent Schrödinger equation. The Fisher
information F = vaFabv

b, evaluated in the direction of v, plays
the role of the potential, while −(va∂a)2, in terms of the
directional derivative va∂a, plays the role of the kinetic-energy
operator. The bound becomes

B = A2

〈ψ, Hψ〉 . (4.18)

To maximize B, one should therefore solve for

Bworst ≡ sup
ψ :〈ψ,ψ〉=1

B = A2

Emin
, (4.19)

Emin ≡ inf
ψ :〈ψ,ψ〉=1

〈ψ, Hψ〉, (4.20)

that is, the ground-state energy. The infimum is used here in
case a normalizable ground state does not exist. Adding a
phase to the wave function cannot reduce the energy, so the
consideration of only real wave functions is justified here.

The wave correspondence makes sense, as intuition sug-
gests that an unfavorable prior should be concentrated near the
minimum of the Fisher information, just as the ground state
should be concentrated near the bottom of the potential. If the
prior density is made too sharp, however, the prior information
〈P〉 would become large, and therefore a balance between
n〈F〉 and 〈P〉 should be struck to minimize their sum, just
as the ground state achieves the optimal balance between the
potential and the kinetic energies.

In the limit n → ∞, the ground-state energy is the
classical-mechanics limit given by

Emin = n inf
θ∈�

F(θ ) + o(n), (4.21)

where o(g(n)) denotes a term of a smaller order than g(n) as
n → ∞. Other asymptotic notations [33], including Θ (g(n))
[same order as g(n)] and Ω (g(n)) [order at least as large as
g(n)], are also used in the following. If the infimum of F(θ )
is strictly positive, Bworst obeys the parametric rate Θ (n−1). A
more interesting case is when the infimum is 0, Emin = o(n),
and the bound mandates a convergence rate slower than the
parametric rate. A concrete special case is as follows.

Theorem 2. Suppose that u and v are θ independent
and obey vaua �= 0. Suppose also that there exists a one-
dimensional submodel with parametrization

θa(τ ) = θa(0) + vaτ, (4.22)

τ ∈ (τ1, τ2) ⊆ R, τ1 � 0 � τ2, τ1 �= τ2, and Fisher informa-
tion bounded by

F(τ ) = vaFab(θ (τ ))vb � A|τ |m, (4.23)

where A is a positive constant and m � 0. Then

sup
θ∈�

R(θ ) � Bworst = Ω (n−2/(m+2)). (4.24)

Proof. With the given conditions, the average energy for
the submodel is

〈ψ, Hψ〉 =
∫ τ2

τ1

{
nF(τ )ψ (τ )2 +

[
∂ψ (τ )

∂τ

]2}
dτ. (4.25)

Let ψ (τ ) = φ(τ/W )/
√

W , where φ is a trial function and 0 <

W � 1 scales the width of ψ . Then

〈ψ, Hψ〉 � nAW m
∫ τ2/W

τ1/W
φ(y)2|y|mdy

+ 4

W 2

∫ τ2/W

τ1/W

[
∂φ(y)

∂y

]2

dy (4.26)
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= nAW m
∫ τ2

τ1

φ(y)2|y|mdy

+ 4

W 2

∫ τ2

τ1

[
∂φ(y)

∂y

]2

dy, (4.27)

where the last step uses the fact that τ1/W � τ1 and τ2/W �
τ2, since τ1 � 0 � τ2 and 0 < W � 1, and φ(y) vanishes out-
side (τ1, τ2). It is not difficult to show that, regardless of τ1

and τ2, there always exists a trial function that makes both
integrals in Eq. (4.27) converge. Minimizing Eq. (4.27) with
respect to W , I obtain

W = A1n−1/(m+2), (4.28)

〈ψ, Hψ〉 � A2n2/(m+2), (4.29)

where A1 and A2 are positive constants. For a large
enough n, the assumption W � 1 can be satisfied. The the-
orem then follows from Eqs. (1.7), (1.11), (4.19), (4.20),
and (4.29). �

A concrete example is F(τ ) � Aτ 2, in which case we
can borrow from the theory of quantum harmonic oscillators
to find that the ground-state energy for a potential nAτ 2 is
Θ (n1/2), leading to Bworst = Ω (n−1/2).

V. QUANTUM ESTIMATION THEORY

A. Basics

Assume n = 1 without loss of generality. Let {�(θ ) : θ ∈
�} be a family of density operators that model a quantum
system. The generalized Born’s rule states that the statistics of
any measurement of the system can be modeled by a positive
operator-valued measure (POVM) E [19] via

f (x|θ )dμ(x) = tr [dE (x)�(θ )], (5.1)

where tr denotes the operator trace. For any POVM, an upper
bound on the Fisher information is given by [19,34]

F = vaFabv
b � vaKabv

b ≡ K (5.2)

for any vector v, where K is the Helstrom information matrix
[18], defined as

Kab(θ ) ≡ tr [�(θ )Sa(θ ) ◦ Sb(θ )], (5.3)

A ◦ B ≡ (AB + BA)2 denotes the Jordan product, and Sa, a
score operator, is a solution to

∂a�(θ ) = �(θ ) ◦ Sa(θ ). (5.4)

There exist other quantum versions of the Fisher information
and the Cramér-Rao bound that are of interest when β is
vectoral [19,35–37], but they are outside the scope of this
work, and I focus on the Helstrom information hereafter.

With Eq. (5.2), a quantum lower bound on B for any POVM
can be obtained simply by replacing F with K . To be explicit,

〈R〉 � B � Q ≡ 〈A〉2

〈K〉 + 〈P〉 . (5.5)

For B to attain Q, the equality in Eq. (5.2) must hold for all
θ ∈ �, and that is usually not possible.

Optics

FIG. 2. An optomechanical force sensor under continuous op-
tical measurements. θ (t ) is the unknown classical force, H is the
system Hamiltonian, and X (t ) is the observation process.

As K is also a positive-semidefinite (0,2) tensor, all the
results in the previous sections apply to the quantum bound
as well. In particular, following Theorem 1, the optimal Q is

Qmax ≡ max
v

Q = 〈u, R−1u〉ρ, (5.6)

(Rv)a ≡ Kabv
b − ∇a

[
1

ρ
∇b(ρvb)

]
. (5.7)

It is not difficult to prove that

Qmax � Bmax (5.8)

for any POVM. A simple example is the quantum Gaussian
shift model, where �(θ ) is the quantum state of m harmonic
oscillators with a Gaussian Wigner representation and θ ∈
Rp, with p = 2m, is its displacement in phase space [36,38].
Assuming the standard parametrization with gab = δab, K is
the inverse of the covariance matrix of the Wigner function
and θ independent. By measuring the object together with an
auxiliary in a Gaussian state with the same covariance matrix,
it is possible to produce classical Gaussian shift statistics that
achieves F = K/2 [39]. If π is also Gaussian with covariance
matrix G−1 and u is θ independent, then, by the same rationale
that gives Eq. (3.21), it can be shown that

Qmax = u�(K + G)−1u, (5.9)

and for the measurement just mentioned,

min
β̌

〈R〉 = Bmax = u�(K/2 + G)−1u, (5.10)

Qmax � min
β̌

〈R〉 � 2Qmax. (5.11)

A further optimization of the measurement for a given u
may be possible, but the optimization problem becomes more
difficult in general, especially when u is θ dependent or π is
non-Gaussian.

B. Waveform estimation

Consider a quantum dynamical system, such as the op-
tomechanical force sensor depicted in Fig. 2, under the
influence of a classical waveform θ (t ). Using the principles
of a larger Hilbert space and deferred measurements [40], the
statistics of a sequentially measured quantum system can be
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modeled by a POVM at the final time and a density-operator
family given by

�(θ ) = U (θ ) |�〉 〈�|U (θ )†, (5.12)

U (θ ) = T exp

{
1

ih̄

∫ T/2

−T/2
[H0(t ) − qθ (t )]dt

}
, (5.13)

where |�〉 is the initial state of the quantum system, q is a
position operator, H0(t ) is the rest of the Hamiltonian, T is
the total observation time, and T denotes time ordering of the
operator exponential.

Let the parameter of interest be defined in terms of a weight
function h(t ) as

β =
∫ T/2

−T/2
h(t )θ (t )dt . (5.14)

For example, if β = θ (τ ) at an instant of time τ is of inter-
est, then h(t ) = δ(t − τ ). To derive analytic results, I follow
Ref. [21] and discretize time as

ta = −T

2
+ aδt, T = pδt . (5.15)

Assuming

θ (ta) = θa, h(ta) = ha, (5.16)

and

β ≈ haθ
aδt, (5.17)

U ≈ U (tp, t1) ≡ exp

[
H0(tp)δt

ih̄

]
exp

(
iqθ pδt

h̄

)
. . .

exp

[
H0(t1)δt

ih̄

]
exp

(
iqθ1δt

h̄

)
, (5.18)

it can be shown that

ua ≈ ∂a(haθ
aδt ) = haδt, (5.19)

Kab ≈ 4δt2

h̄2 Cq(ta, tb), (5.20)

Cq(ta, tb) ≡ 〈�| q̂(ta) ◦ q̂(tb) |�〉
− 〈�| q̂(ta) |�〉 〈�| q̂(tb) |�〉 , (5.21)

where

q̂(ta) ≡ U (ta−1, t1)†qU (ta−1, t1) (5.22)

is the Heisenberg picture of q, Cq is its covariance function,
and the right-hand side of Eq. (5.20) is the exact Helstrom
information for �(θ ) = U (tp, t1) |�〉 〈�|U (tp, t1)†. If q̂(t ) is
stationary, the covariance can be written in terms of a power
spectral density Sq(ω) as [20]

Cq(ta, tb) =
∫ ∞

−∞
Sq(ω) exp [iω(tb − ta)]

dω

2π
. (5.23)

With the assumption of stationary processes and a long ob-
servation time (SPLOT) [7], K can be approximated as a
circulant matrix [41] and expressed as

Kab ≈ δt

p

p−1∑
j=0

4Sq(ω j )

h̄2 exp [iω j (tb − ta)], (5.24)

where ω j = ω0 + 2π j/T and ω0 = −π/δt . Similarly, if θ (t )
is a stationary Gaussian random process with power spectral
density Sθ (ω),

Gab ≈ δt

p

p−1∑
j=0

1

Sθ (ω j )
exp [iω j (tb − ta)]. (5.25)

As Vja ≡ exp(−iω jta)/
√

p is a unitary matrix, the inverse of
K + G can be computed analytically to give

[(K + G)−1]ab ≈ 1

T

p−1∑
j=0

exp [iω j (ta − tb)]

4Sq(ω j )/h̄2 + 1/Sθ (ω j )
. (5.26)

u, as given by Eq. (5.19), does not depend on θ . If the dynam-
ics of the system is linear [20], K also does not depend on θ .
Thus, the same argument that leads to Eq. (3.21) can be used
to give

Qmax = ua[(K + G)−1]abub, (5.27)

≈ 1

T

p−1∑
j=0

δt2hahb exp [iω j (ta − tb)]

4Sq(ω j )/h̄2 + 1/Sθ (ω j )
. (5.28)

Taking the continuous and long-time limit with δt → 0, T →
∞, and dω = 2π/T hence results in

Qmax →
∫ ∞

−∞

|h̃(ω)|2
4Sq(ω)/h̄2 + 1/Sθ (ω)

dω

2π
, (5.29)

h̃(ω) ≡
∫ ∞

−∞
h(t ) exp(−iωt )dt . (5.30)

If β = θ (τ ) with h(t ) = δ(t − τ ) and |h̃(ω)| = 1, Eq. (5.29)
agrees with the result in Ref. [21]. Compared with Ref. [21],
which derives a quantum bound on 〈R〉 directly, the derivation
here clarifies the relation of Eq. (5.29) to the Helstrom infor-
mation and the Gill-Levit formalism. The new insight implied
by the theory here is that the bound remains invariant upon any
reparametrization and cannot be further improved by picking
a different v.

While Eq. (5.29) holds for any measurement, it can say
something more about measurements in the linear form of

X (t ) =
∫ ∞

−∞
hX (t − t ′)θ (t ′)dt ′ + Z (t ), (5.31)

where hX is an impulse-response function of the system and
Z is a stationary noise process that is uncorrelated with θ . In
optomechanics, such a process can be obtained by homodyne
detection of the output light. Let the estimator be

β̌ =
∫ ∞

−∞
ȟ(t )X (t )dt, (5.32)

where ȟ(t ) is a linear filter, or more precisely a smoother in
control-theoretic terminology, as it is applied to the whole
observation record to estimate the waveform at an interme-
diate time [42]. By standard Wiener filtering theory [7], the
minimum mean-square risk in the SPLOT limit is

〈R〉 →
∫ ∞

−∞

|h̃(ω)|2
|h̃X (ω)|2/SZ (ω) + 1/Sθ (ω)

dω

2π
, (5.33)

h̃X (ω) ≡
∫ ∞

−∞
hX (t ) exp(−iωt )dt, (5.34)
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where SZ is the power spectral density of Z . Comparing
Eqs. (5.29) and (5.33), one sees that 〈R〉 � Qmax implies

SZ (ω)

|h̃X (ω)|2 � h̄2

4Sq(ω)
, (5.35)

which serves as a fundamental quantum limit on the noise
floor. To reach this limit for an optomechanical system,
backaction evasion and quantum-limited measurements are
necessary [21]. It is possible to derive alternative quantum
limits in terms of the optics by appealing to the interaction
picture and tighter limits that account for loss by choosing the
purification of the quantum state judiciously [43]. Reference
[44] reports an experimental demonstration of mirror-motion
estimation close to such quantum limits.

It is noteworthy that, prior to Ref. [21], Braginsky and
coworkers derived an expression similar to Eq. (5.20) by opti-
mizing a signal-to-noise ratio (SNR) in terms of an observable
[20]. A spectral form of their optimal SNR, derived from a
heuristic energy-time uncertainty relation, can be found in
Ref. [45]. They called their results the energetic quantum
limit. The similarity is not a coincidence, as the Helstrom
information can also be expressed as the solution to the op-
timization problem

K = max
Y

(va∂aȲ )2

tr(Y − Ȳ )2�
, (5.36)

Ȳ ≡ tr Y �, (5.37)

where Y is any observable and the right-hand side of
Eq. (5.36) is similar to the SNR studied in Ref. [20].
Equation (5.36) can be proved by applying the
Cauchy-Schwarz inequality to (va∂aȲ )2 = (tr Y va∂a�)2 =
[tr(Y − Ȳ )va∂a�]2 = {tr[(Y − Ȳ ) ◦ (vaSa)]�}2 � [tr(Y −
Ȳ )2�][tr(vaSa)2�]. While their results are seminal and
capture the basic physics, the results here and in Ref. [21] are
more precise in terms of meaning. The SNR does not have
a direct operational meaning in statistics, whereas here the
statistical problem is clearly defined in terms of a mean-square
risk, and the bound is proven to hold for any POVM and any
biased or unbiased estimator, not just observables. The clear
definition of a risk is important, as different problems have
different types of risk and different optimal measurements,
and no single SNR-based treatment can deal with all of them.
For example, while a linear measurement in the form of
Eq. (5.31) can achieve the optimal SNR and also optimal
waveform estimation, more careful studies reveal that it is
suboptimal with respect to the quantum limits for waveform
detection [46] and spectrum parameter estimation [47], and
photon-counting measurements can perform much better for
those problems.

Equation (5.29) demonstrates the importance of prior in-
formation in the form of 1/Sθ (ω), as the integral may not
converge without it; see Ref. [48] for an example in optical
phase estimation. If β = θ (τ ), Eqs. (5.29) and (5.33) are
steady-state values that do not scale with T . This is an ex-
treme example where the i.i.d. condition does not hold, the
standard asymptotic theory [19,28] fails, the convergence rate
is slower than the parametric rate, and prior information is
indispensable. The information that can be acquired in one
time slot with duration δt is infinitesimal, but a finite risk

image
plane

spatially
incoherent
sources

estimator

measurement

FIG. 3. Basic setup of the optical imaging problem.

can still be achieved because there exist prior correlations in
θ (t ) across different times before and after t = τ , meaning
that information over multiple time slots can contribute to
the estimation of each θ (τ ). This intuition explains why the
optimal estimator is a smoother.

C. Subdiffraction incoherent optical imaging

For another application of quantum estimation theory, con-
sider the far-field paraxial imaging of p spatially incoherent
and equally bright point sources [49], as depicted in Fig. 3.
On the image plane, the density operator of each photon can
be modeled as [22]

�(θ ) = 1

p

p∑
a=1

exp (−ikθa) |�〉 〈�| exp (ikθa), (5.38)

|�〉 =
∫ ∞

−∞
dx�(x) |x〉 , (5.39)

where θ is a vector of the unknown source positions on
the object plane that is assumed to be one-dimensional for
simplicity, |x〉 is the Dirac eigenket for the image-plane
photon position that obeys 〈x|x′〉 = δ(x − x′), with an image-
plane coordinate x that is normalized with respect to the
magnification factor, � is the point-spread function of the
imaging system for the optical field, and k is the momentum
operator.

Direct imaging can be modeled as a measurement of each
photon in the position basis [22]. The probability density of
each observed position is then

f (x|θ ) = 〈x| �(θ ) |x〉 = 1

p

p∑
a=1

h(x − θa), (5.40)

h(x) ≡ |�(x)|2. (5.41)

The Fisher information is

vaFab(θ )vb =
∫ ∞

−∞

[va∂ah(x − θa)]2

p2 f (x|θ )
dx. (5.42)

In particular, at θ = 0,

vaFab(0)vb = (vawa)2
∫ ∞

−∞

1

h(x)

[
∂h(x)

∂x

]2

dx, (5.43)

wa = 1

p
, a = 1, . . . , p. (5.44)
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The kernel of F (0) is then the (p − 1)–dimensional space

ker [F (0)] = {v ∈ Rp : vawa = 0}, (5.45)

while the range is the one-dimensional space

range [F (0)] = {cw : c ∈ R}. (5.46)

Assume hereafter that β is a linear function of θ , such
that u is θ independent. For any β with u /∈ range[F (0)],
a v ∈ ker [F (0)] can always be found such that vaua �= 0
but vaFab(0)vb = 0. Section IV then implies that, from the
minimax perspective, any estimator of this β must have a
convergence rate slower than the parametric rate with respect
to n detected photons. Only a β with u ∈ range[F (0)] has a
nonzero information at θ = 0 for any v with vaua �= 0. This β

is proportional to the object centroid waθ
a = (

∑
a θa)/p, and

the parametric rate is indeed possible by taking the sample
mean of the photon positions, provided that h has a finite
variance [50].

For p = 2, other than the centroid, the second parameter
may be taken as the separation |θ2 − θ1| between the two
sources. Reference [17] uses a special case of Theorem 2 to
prove that, since the exponent of the Fisher information is
m = 2 for u ∝ v ∝ (1,−1), a limit on the convergence rate is
Bworst = Ω (n−1/2). This rate is also observed numerically in
Refs. [17,51]. Paúr and coworkers showed that the exponent
can be improved to m = 1 if the point-spread function has ze-
ros [24], and the limit becomes Bworst = Ω (n−2/3) according
to Theorem 2.

The Helstrom information turns out to be much higher
[22,25]. For n detected photons and i.i.d. quantum states, the
Helstrom information is simply n times that for one photon
[19]. For p = 2, K (θ ) turns out to be full-rank [22], and
separation estimation at the parametric rate is also possible
via spatial-mode demultiplexing [17]. For p � 2, Bisketzi and
coworkers found that K (θ ) has a rank of 2 as θ → 0 [25].
Then Sec. IV implies that any β with a u /∈ range[K (0)] can-
not be estimated at the parametric rate by any measurement,
and only a β with u in the two-dimensional range may be
estimated at the parametric rate.

VI. CONCLUSION

Compared with the local theory, the use of Bayesian
Cramér-Rao bounds has been less systematic in the literature
and often relied on the ingenuity of the researcher to pick the
appropriate form. This work resolves some of the ambiguities
and hopefully inspires further progress via the physics con-
nections.

The formalism here looks ripe for a generalization for
infinite-dimensional parameter spaces in a manner similar to
the local theory [2,3,9]. An important application would be to
derive semiparametric bounds with slow convergence rates [5]
in a more systematic fashion.
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APPENDIX: VECTORAL PARAMETER OF INTEREST

Here I generalize the fundamental results in Secs. II–V for
a vector parameter of interest β(θ ) = (β1, . . . , βq ) ∈ Rq with
1 � q � p. Define the mean-square risk as

R(θ ) ≡
∫

[β̌ j (x) − β j (θ )]γ jk (θ )[β̌k (x) − βk (θ )]

× f (n)(x|θ )dμ(n)(x), (A1)

where γ is a positive-definite weight matrix. For clarity, in-
dices starting from j are used to label the components of
β, to be distinguished from indices that start from a for the
components of θ . The Bayesian risk is

〈R〉 =
∫

R(θ )π (θ )d pθ. (A2)

Define

u j
a ≡ ∂aβ

j . (A3)

The Gill-Levit bounds B still have the form of Eq. (1.7), but
now [5]

A ≡ va
j u

j
a, (A4)

F ≡ γ jkva
j Fabv

b
k , (A5)

P ≡ γ jk

[
1

π
∂a

(
πva

j

)][
1

π
∂b

(
πvb

k

)]
, (A6)

where v now has q × p entries and

γ jk ≡ (γ −1) jk . (A7)

{γ jk} are the entries of the B matrix in Ref. [5], while {va
j } are

the entries of the C matrix in Ref. [5].
Upon reparametrization of θ , γ should remain invariant, in

the sense of γ (θ ) = γ̃ (θ̃ (θ )), so that the statistical problem
remains unchanged.

It is straightforward to generalize Proposition 1.
Proposition 3. B is invariant under reparametrization if v j

for each j obeys the transformation law

va
j J

b
a = ṽb

j . (A8)

Proof. The proof is almost identical to that of Proposition
1 and omitted for brevity. �

For a manifold �, a generalization of Proposition 2 is as
follows.

Proposition 4. If ρv vanishes on any boundary of �,
the Bayesian mean-square risk has a lower bound given by
Eq. (1.7), where

〈A〉 ≡
∫ (

va
j u

j
a

)
ρε, (A9)

〈F〉 ≡
∫ (

γ jkva
j Fabv

b
k

)
ρε, (A10)

〈P〉 ≡
∫

γ jk

[
1

ρ
∇a

(
ρva

j

)][
1

ρ
∇b

(
ρvb

k

)]
ρε. (A11)

Proof. Let

b j ≡
∫

(β̌ j − β j ) f (n)dμ(n). (A12)
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By the Leibniz rule,∫
∇a

(
b jρva

j

)
ε =

∫∫
(β̌ j − β j )∇a

(
f (n)ρva

j

)
dμ(n)ε

−
∫ (

va
j ∇aβ

j
)
ρε. (A13)

The left-hand side is 0 by the Stokes theorem, if ρv vanishes
on any boundary of �. Then

〈A〉 = E[(β̌ j − β j )γ jksk], (A14)

s j ≡ γ jk

f (n)ρ
∇a

(
f (n)ρva

k

)
. (A15)

Considering the right-hand side of Eq. (A14) as an inner
product between (β̌ − β ) and s that is weighted by γ and
applying the Cauchy-Schwarz inequality, I obtain

〈A〉2 � 〈R〉E(
s jγ jksk

)
. (A16)

Standard procedures then lead to Eqs. (1.7) and
(A9)–(A11). �

A generalization of Theorem 1 is as follows.
Theorem 3.

max
v

B = 〈u, L−1u〉ρ ≡ Bmax, (A17)

where the inner product is defined as

〈v, u〉ρ ≡
∫ (

va
j u

j
a

)
ρε, (A18)

the linear, self-adjoint, and positive-semidefinite operator L is
defined as

(Lv) j
a ≡ nγ jkFabv

b
k − ∇a

[
γ jk

ρ
∇b

(
ρvb

k

)]
, (A19)

and u is assumed to be in the range of L, such that L−1u exists.
A least favorable v that maximizes B must satisfy

v ∝ L−1u. (A20)

Proof. The proof is similar to that of Theorem 1 and omit-
ted for brevity. �

With the substitution ρ = ψ2, Eqs. (4.2)–(4.5) can be gen-
eralized to

〈A〉 =
∫ (

va
j u

j
a

)
ψ2ε, (A21)

〈F〉 =
∫ (

γ jkva
j Fabv

b
k

)
ψ2ε, (A22)

〈P〉 =
∫

γ jk (D jψ )(Dkψ )ε, (A23)

D jψ ≡ (∇av
a
j

)
ψ + 2va

j ∇aψ, (A24)

while Eqs. (4.10), (4.11), and (4.13) can be generalized to

〈P〉 = 〈ψ, D†
j (γ

jkDkψ )〉, (A25)

D†
jψ = (∇av

a
j

)
ψ − 2va

j ∇aψ, (A26)

Hψ ≡ nFψ + D†
j (γ

jkDkψ ). (A27)

If a parametrization with gab = δab can be assumed and v is θ

independent, a further simplification is

Hψ = nFψ − 4va
j ∂a

(
γ jkvb

k∂bψ
)
. (A28)

The last term becomes the Laplacian ∂a∂
aψ if q = p and v

and γ are assumed to be identity matrices.
To apply the preceding results to quantum problems,

Eq. (5.2) can be generalized to

F = γ jkva
j Fabv

b
k � γ jkva

j Kabv
b
k , (A29)

as both Kab − Fab and γ jkva
j v

b
k are positive-semidefinite.

Equations (5.6) and (5.7) can then be generalized by redefin-
ing R as

(Rv) j
a ≡ γ jkKabv

b
k − ∇a

[
γ jk

ρ
∇b

(
ρvb

k

)]
. (A30)
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