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It is shown that the copropagating three-wave-mixing parametric process, with appropriate type-II extended
phase matching and pumped with a short second-harmonic pulse, can perform spectral phase conjugation and
parametric amplification, which shows a threshold behavior analogous to backward-wave oscillation. The pro-
cess is also analyzed in the Heisenberg picture, which predicts a spontaneous parametric downconversion rate
in agreement with the experimental result reported by Kuzucu et al. [Phys. Rev. Lett. 94, 083601 (2005)]. Ap-
plications in optical communications, signal processing, and quantum information processing can be

envisaged. © 2006 Optical Society of America

OCIS codes: 190.3100, 190.4410, 190.4970, 190.5040, 270.4180.

1. INTRODUCTION

In contrast with the more conventional optical phase con-
jugation schemes that perform phase conjugation with
spectral inversion,! spectral phase conjugation (SPC) is
the phase conjugation of an optical signal in the frequency
domain without spectral inversion. Equivalently, in the
time domain, SPC is the phase conjugation and time re-
versal of the signal complex pulse envelope.2 SPC is use-
ful for all-order dispersion and nonlinearity
compensa‘cion,?”4 as well as optical signal processing.5 Al-
though SPC has been experimentally demonstrated using
photon echo,®’ spectral hole burning,g’9 temporal
holography,® spectral holography,'® and spectral three-
wave mixing'! (TWM), all the demonstrated schemes suf-
fer from the use of cryogenic setups, non-real-time opera-
tion, or extremely high pump energy. Pulsed TWM'? and
four-wave-mixing®'® (FWM) processes in the transverse-
pumping geometry have been theoretically proposed to ef-
ficiently perform SPC but have not yet been experimen-
tally realized. All the holographic and wave-mixing
schemes also have strict requirements on the transverse
beam profile of the signal, limiting their appeal for simul-
taneous diffraction and dispersion compensation applica-
tions.

There is a correspondence between classical SPC and
quantum coincident frequency entanglement, as shown in
Ref. 14 for the transversely pumped TWM'*!® and
FWM?>13 processes. It is then interesting to see if other co-
incident frequency entanglement schemes are also ca-
pable of performing SPC when an input signal is present.
This paper studies one of such schemes, which makes use
of extended phase matching'® (EPM) and has been experi-
mentally demonstrated!” in a periodically poled potas-
sium titanyl phosphate (PPKTP) cryst:al.18 It is shown in
Section 3, for the first time to the author’s knowledge,
that this EPM scheme is indeed capable of performing
SPC and optical parametric amplification (OPA) more ef-
ficiently than previous proposals.

The analysis also yields a surprising result, namely,
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that the parametric gain can be theoretically infinite even
for a pump pulse with finite energy, analogous to
backward-wave oscillation, where counterpropagating
waves are parametrically coupled and can give rise to
mirrorless optical parametric oscillation'® 2% (OPO). The
reason for the similarity is that, in the scheme presented
here, even though the signal and the idler copropagate
with the pump pulse in the laboratory frame, they coun-
terpropagate in the frame of the moving pump pulse be-
cause one is faster than the pump and one is slower.
Hence the moving pump pulse provides both an effective
cavity and a parametric gain, leading to oscillation. In re-
ality, however, the interaction among the pulses should be
ultimately limited by the finite device length. It is shown
in Section 4, with a Laplace analysis, that the parametric
gain should abruptly increase above the threshold, where
infinite gain is predicted by the Fourier analysis, but a fi-
nite medium length would always limit the gain to a finite
value. Still, as previous proposals of TWM mirrorless
OPO have never been experimentally achieved owing to
the requirement of a continuous-wave (CW) pump and the
difficulty in phase matching counterpropagating waves,
the presented analysis suggests the exciting possibility
that mirrorless OPO can be realized with an ultrashort
pump pulse and a practical poling period for phase match-
ing of copropagating modes, if a long-enough medium can
be fabricated and parasitic effects can be controlled. By
analysis of the scheme in the Heisenberg picture in Sec-
tion 5, a high spontaneous parametric downconversion
rate is also predicted, in excellent agreement with the ex-
perimental result reported in Ref. 17. The result should
be useful for many quantum information processing ap-
plications, such as quantum-enhanced synchronization?
and  multiphoton entanglement for  quantum
cryptography.27 Finally, numerical results are presented
in Section 6, which confirm the theoretical predictions.

2. SETUP

Consider the copropagating TWM process (Fig. 1), assum-
ing that the basic type-II phase-matching condition (%,
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Fig. 1. Schematic of SPC via type-II EPM. The signal and idler
pulses, in orthogonal polarizations, have carrier frequencies of w,
and w;, while the pump pulse has a carrier frequency of w,=w,
+w;. The EPM condition requires that the signal and the idler
counterpropagate with respect to the pump, which should be

much shorter than the input signal.

+kj=k,+2m/ A), with a quasi-phase-matching period A, is
satisfied. The coupled-mode equations are
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where A, is the pump pulse envelope of carrier frequency
w,,A,; are the signal and idler envelopes of frequencies
ws and w;, respectively, k, ., are the group delays of the
three modes, xp’syizwp,syix(é)/(chp’syi) are the nonlinear
coupling coefficients, w,,; are the center frequencies of
the modes such that w;+w;=w,, and n, ;; are the refrac-
tive indices. Group-velocity dispersion within each mode
and diffraction are neglected. Define TEt—kl,)Z as the re-
tarded time coordinate that follows the propagating pump

pulse. The change of coordinates yields
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Throughout the theoretical analysis, the pump is as-
sumed to be undepleted and unchirped, so that A,
= po(t—k;2)=Ap0(T), hereafter regarded as real without
loss of generality.

3. FOURIER ANALYSIS

Equations (5) and (6) are space invariant if the nonlinear
medium length L is much longer than the signal or idler
spatial pulse width in the frame of z and 7, or

Ts,i

L>——,
|ks,i_kp|

(7

where T ; is the signal or idler pulse width. One can then
perform Fourier transform on the equations with respect
to z, as defined by the following:
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Ay(k,7) = J A(z,Mexp(— jrz)dz, (8)

Al(k,7) = j Al (z, 7exp(—jkz)dz. 9)

Notice that Al is defined as the Fourier transform after
the conjugation of A;. The coupled-mode equations be-
come

N dA, .
JKA+ (kg — k;); =Jx:Apo(DA;, (10)
. 0A; B
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Consider the case in which y, and vy; are nonzero and have
opposite signs, implying that the signal and the idler
propagate in opposite directions with respect to the pump.
This can be achieved for a range of wavelengths in KTP.
Without loss of generality, assume that y,>0 and y;<0,
so that %, >k; >Fk;. Making the following substitutions,

= K e K
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one obtains
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Owing to linear space invariance, the wave-mixing pro-
cess cannot generate new spatial frequencies («) for A and
B. The magnitude of « then depends only on the initial
bandwidths of A and B and is of the order of 27y, ;/T ;. As
a result, if the pump pulse width T, is much shorter than
the minimum period of the detuning factor exp[£jx(1/ v,
-1/vy;) 7], or

21
k(1 ys = 1/y;)

Ts,i
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the pump can effectively sample the detuning factor, say,
at 7=0. Defining a normalized coupling function,

XsXi
\/ [ == [Apo(D, a7
YsYi

one can obtain two simple coupled-mode equations:

T, < . (16)

g(7)
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0A
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Because the signal and the idler counterpropagate with
respect to the pump, the signal should begin to mix with
the pump at the leading edge of the pump pulse, say, at
7=-T,/2, while the idler should begin to mix at the trail-
ing edge of the pump, say, at 7=T,/2. The solutions of
Eqgs. (18) and (19) can then be written as
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where

The input signal pulse is required to be placed in advance
of the pump (by ¢,>T,), and the input idler pulse is re-
quired to be placed behind the pump (delayed by ¢;>T)),
so that the signal and the idler overlap the pump pulse
only inside the nonlinear medium. Consequently, the out-
put solutions are

AL,t)=Ay(t - kL +t,)sec(G)

1 1
+J'_,—A:o|:— —(t-kL- ti>]tan<G), (23)
r r

A(L,t) = Ayt — kIL + t;)sec(G)
+jrAL[- Tt - k(L +t)Jtan(G).  (24)

To see how the device is able to perform SPC, assume that
the center frequencies of the two modes are the same,
ws=w;, Xs=X;, and the type-II EPM condition,

kg +ki =2k, k. # ki, (25)
which depends on the material dispersion properties and
typically occurs at a single set of center frequencies, is
satisfied.’® Then r=1, and the output idler becomes the
phase-conjugated and time-reversed replica of the input
signal, if the input idler is zero. SPC is hence performed.
The SPC efficiency 7, or the idler gain, defined as the out-
put idler fluence divided by the input signal fluence, is
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f AL, t)|Pde
_ =tan(G). (26)
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This SPC efficiency can be fundamentally higher than
that of the transversely pumped TWM device'? because of
two reasons. One is the copropagation of the three pulses,
which makes G higher than a similar parameter in the
latter case by a factor of (1-k,/ k)71, of the order of 40 for
KTP. The second reason is that for > 1, owing to the tan-
gent function dependence, the SPC efficiency of the EPM
scheme increases with respect to G much faster than that
of the latter, which only depends on a similar parameter
exponentially. That said, the transversely pumped FWM
device'® can still be more efficient in the small-gain re-
gime 7<1 if a highly nonlinear material, such as polydi-
acetylene, is used. Furthermore, the EPM device requires
a longer nonlinear medium length by a factor of (1
—kl',/k;)‘1 and depends crucially on the material disper-
sion, thus severely limiting the flexibility in the choice of
operating wavelengths.

Equations (23) and (24) are obtained from the analysis
of the coupled-mode equations (5) and (6), after Fourier
transform with respect to z is performed. The solutions
are therefore formally valid only when the nonlinear me-
dium length L goes to infinity. In practice, in the
moderate-gain regime 7~ O(1), the approximation given
by expression (7) should be adequate, where the length L
can be, say, ten times larger than the signal spatial pulse
width in the frame of z and 7. Numerical analysis in Sec-
tion 6 will validate the accuracy of the Fourier solutions.

4. LAPLACE ANALYSIS

Intriguingly, the Fourier solutions, Egs. (23) and (24),
have the same form as those of backward-wave
oscillation,'®?® suggesting that the device studied here,
with an ultrashort pump pulse and a practical quasi-
phase-matching period (A=46 um as reported in Ref. 18),
can also perform mirrorless OPO, as long as k;’i>k;
>ki”s. However, the prediction of infinite gain is based on
the assumption of infinite medium length and therefore
may not be valid. In this case, Laplace transform should
be used.

For the CW-pumped mirrorless OPO schemes, a
Laplace analysis®® with respect to time shows that, be-
yond threshold, poles appear on the right-hand plane in
the Laplace domain, meaning that the temporal impulse
response increases exponentially with time, leading to
self-oscillation when enough time has elapsed. The same
procedures of utilizing the two-sided Laplace transform?
as in Ref. 28 are followed here in order to be consistent
with the relevant literature, but, since the proposed
scheme is the opposite limit of the CW devices, the
Laplace transform should be performed with respect to z
instead:

As(p’T) = f As(Z’T)eXp(_pZ)dZ9 (27)
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Al(p,n) = f A;(z,Texp(- pz)dz. (28)

For simplicity but without affecting the qualitative be-
havior of the solutions, it is assumed that the pump pulse
is square, there is no input idler, y=y,=—v;, and x=x;
=x;. The output solutions in the Laplace domain are then
given by

_ ( Tp) V1 -P%csc(G\1-P?) i ( Tp)
As P, = 5 T pa S pP,= )
2 ) P+1-P?cot(Gy1-P? 2

A*( TP) -J A ( Tp)
\p,—— = — A\ P, |»
' 2/ P+\1-P2cot(G\1-P? 2

(30)

p

TP
o G=XAn —): (31)
P

If we let p=jk, the transfer functions in Egs. (29) and (30)
are well known to be low-pass filters,?® the bandwidth of
which decreases as G increases. If the spatial bandwidth
of the input signal, of the order of y/T, is much smaller
than the bandwidth of the low-pass filters, the transfer
functions can be regarded as flat-top functions, and, by
plugging P=0 into Eqs. (29) and (30), one can recover the
Fourier solutions in Eqgs. (23) and (24). For G<1, the
transfer functions are sinc functions with a bandwidth
~v/ T, so the Fourier solutions are valid if T), < T, which
is essentially the same assumption used in the Fourier
analysis, expression (16). As G increases and the filter
bandwidth decreases, however, the Fourier solutions be-
come less and less accurate for a finite-bandwidth input
signal.

The poles of the transfer functions, p.., can be obtained
by setting the denominators of Egs. (29) and (30) to zero,

Pt \(¥Ap0)2 - p2 cot[G\1 - p2/(xA,0)?]1=0.  (32)

Figure 2 plots the normalized poles p../(xA,) against
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Fig. 2. Normalized poles p../(xA,) plotted against G, obtained

by numerically solving Eq. (32), indicating the onset of spatial in-

stability beyond the threshold G > 7/2. More poles appear as G is

increased.
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G. Positive poles begin to appear when G > 7/2; hence the
spatial impulse response increases exponentially with re-
spect to z beyond threshold.

It is interesting to compare the scheme studied here
with the case in which the pump, signal, and idler have
degenerate group delays (k,=k;=k/ ).3! The coupled-mode
equations of the latter case are

(?As,i(z3 T)

pe = jXApo(DA; (2, 7), (33)

where the 7 derivatives vanish. The solutions are easily
seen to be

A, (2,7 =A, ;(0,7)cosh[ YA ,(1z] +jA; (0, Dsinh[ xA,o(7)z].
(34)

This corresponds to the G — = limit of the former scheme,
where p./(xA,0))—1 and all the poles approach the
growth rate of the degenerate case, xA,o.

5. SPONTANEOUS PARAMETRIC DOWN
CONVERSION

Given the input—output signal-idler relationship in Egs.
(23) and (24), it is straightforward to obtain a quantum
picture of the parametric process in the moderate-gain a
regime by replacing the signal and idler envelopes with
Heisenberg operators, so that

A =Ay sec(G) +jA tan(G), (35)

A; =jAl, tan(G) + A sec(G). (36)
If the inputs are Fock states,

ng,=(ALA ) =4 AL ) -1, (37)

AfoA 0y = AfA 0y = (AAly = (ApAly=0. (38)
The average output photon number of each mode is

ng = ng sec?(G) + (n; + 1)tan?(G), (39)

n; =n;sec?(@) + (ng + Dtan?(G). (40)

The average number of spontaneously generated photon
pairs per pump pulse is therefore the same as the idler
gain, or z=tan?(G). Moreover, the unitary transform
given by Egs. (35) and (36) has the same form as the CW
FWM process. One then expects the photon wave function
to be similarly given by32

|[4) = cos(G) Y, sin™(G)[n)/n);, (41)
n=0

where |n),; is the Fock state in the signal or idler mode.
The scheme thus has a significant advantage in efficiency
and robustness for multiphoton entanglement, compared
with other schemes that often require feedback.?® The ef-
ficient multiphoton coincident frequency entanglement
should be useful for quantum-enhanced synchronization®®
and quantum cryptography applications.?’
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The preceding quantum analysis assumes that there is
only one spatial mode in each signal or idler mode and is
accurate only when the Fourier solutions are accurate.
This restricts the applicability of the quantum analysis to
the moderate-gain regime 7~0O(1), depending on how
closely the assumption in expression (7) is observed. It is
beyond the scope of this paper to investigate what hap-
pens in the quantum picture when more than one spatial
mode is involved, but, qualitatively, one expects that each
spatial mode should have a varying parametric gain de-
pending on the spatial frequency, as suggested by the
Laplace solutions in Eqs. (29) and (30), so the photon
wave function would be given by a superposition of simul-
taneous eigenstates of spatial frequency and photon num-
ber.

Using the parameters described in Refs. 17 and 18,
where 2\y=1584 nm, x¥®=7.3pm/V, ny=2, y=15
X107 s/m, T,=100 fs, average pump power=350 mW,
diameter=200 um, and pump repetition rate fip
=80 MHz, the spontaneously generated photon pairs per
second is theoretically given by fi, tan®(G) =f,e,G*=3.6
X 108/s, in excellent agreement with the experimental re-
sult reported in Ref. 17, which is ~4x10%/s. G is then
given by ~0.2, so the operations of SPC, OPA, and multi-
photon entanglement (G > 7/4) should be realizable by in-
creasing the pump field amplitude.

6. NUMERICAL ANALYSIS

Equations (5) and (6) are solved numerically via a Fourier
split-step approach to confirm the above theoretical pre-
dictions. Figure 3 plots the intensities and phases of input
signal, output signal, and output idler from the numerical
analysis when G=m/4. The plots clearly show that the
output idler is the time-reversed and phase-conjugated
replica of the signal.

Figure 4 plots the numerical signal gain and idler gain
compared with Fourier theory for 0<G=</3. The nu-
merical results are all within 3% of the theoretical values.

Figure 5 plots the idler gain on the logarithmic scale for
a wider range of G’s and two different lengths, obtained
from the numerical analysis of the complete TWM equa-
tions (4)—(6), with a single photon as the input signal, ap-
proximately emulating parametric fluorescence. For the
L=10 cm case, the curve can be clearly separated into
three regimes. For G < #/2 and moderate gain (7~ 0 dB),
the idler gain approximately follows the Fourier solution
(dashed curve). For G> 7/2, the system becomes unstable
and an exponential growth (linear ramp on the logarith-
mic curve) is observed, until the pump is significantly de-
pleted, parametric oscillation occurs, and the exponential
growth abruptly stops.

For L=1cm, the numerical solution departs from
theory for a smaller G, and the slope of the logarithmic
curve in the unstable regime, proportional to L, is too
small to initiate oscillation in the parameter range of in-
terest.

A medium length of 10 cm may be pushing the limit of
current technology. Even if one is able to fabricate such a
long periodically poled nonlinear crystal, the effective-
medium length is always limited by parasitic effects, such
as diffraction, group-velocity dispersion, and competing

Vol. 23, No. 5/May 2006/J. Opt. Soc. Am. B 865

Intensity

Intensity (a.u.)
-~ & o

o
13
T

e
o

4o 5 10 s 0 5 10 15 20
©(ps)

Fig. 3. Plots of intensity and phase of the input signal, output
signal, and output idler, from numerical analysis of Egs. (5) and
(6). Parameters used are k1;=1/(1.5>< 108 ms™), ks’=1.025k1;, k;
=0.975k,, T,=100fs, T,=2ps, L=10cm, t,=4T, beam
diameter=200 um, A,,=0.5exp[—(t—27T,)%/(2T?)]-exp[-(1+0.5))
X(t+2T,)?/(2T2)], Ay =exp[-t2/(2T2)], and G=m/4. The plots
clearly show that the idler is the time-reversed and phase-
conjugated replica, i.e., SPC, of the signal.
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Fig. 4. Signal gain »+1 and idler gain 7 versus G from numeri-

cal analysis compared with theory. See the caption of Fig. 3 for
parameters used.
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Fig. 5. Plot of numerical idler gain 7 in decibels against G for
L=10 cm (solid curve) and L=1 cm (dashed—dotted curve), com-
pared with the Fourier theory (dashed curve), tan?(G) in deci-
bels. Three distinct regimes can be observed for the L=10 cm
case: the moderate-gain regime where the Fourier theory is ac-
curate, the unstable regime where the gain increases exponen-
tially, and the oscillation regime where significant pump deple-
tion occurs. For L=1 cm, the medium is not long enough for
oscillation to occur in the parameter range of interest.
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third-order nonlinearities, so it might be difficult to fabri-
cate an ideal EPM device for the aforementioned pur-
poses. For instance, in the experiment by Kuzucu et al.,17
the diameter of the beam is W~ 200 um, so the character-
istic diffraction length is ~W?/\y=4 cm, and the charac-
teristic group-velocity dispersion length is 20 cm accord-
ing to Ref. 16, all of which are of the order of the medium
length required for mirrorless OPO. That said, techniques
such as diffusion bonding34 can be used to increase the
length of a nonlinear crystal, diffraction can be elimi-
nated by waveguiding, and there exists a variety of meth-
ods to compensate for group-velocity dispersion and third-
order nonlinearities.>® Hence with careful engineering,
fabricating an EPM device for the proposed applications
is still a distinct possibility.

7. CONCLUSION

In summary, it is proven that the copropagating three-
wave-mixing process, with appropriate extended phase
matching and pumped with a short second-harmonic
pulse, is capable of performing spectral phase conjuga-
tion, parametric amplification, and efficient multiphoton
entanglement. The main technical challenges of experi-
mental implementation seem to be the long medium
length required and the control of parasitic effects such as
diffraction, group-velocity dispersion, and competing
third-order nonlinearities. However, a shorter proof-of-
concept device has already been experimentally realized
for the purposes of broadband second-harmonic
generation' and coincident frequency entanglement,!” so
it is not unrealistic to expect that a longer device can be
fabricated for the proposed applications, which should be
useful for optical communications, signal processing, and
quantum information processing.

Theoretically, much remains to be explored. The study
of parasitic effects, not considered in this paper, is vital
for experimental realization. The analysis of the
ultrashort-pump limit can be potentially generalized to
other TWM and FWM geometries, and the quantum
analysis of this limit is by no means complete. In conclu-
sion, the analysis presented here should stimulate further
experimental and theoretical investigations of a new class
of parametric devices.

The author thanks Demetri Psaltis for helpful discus-
sions and a reviewer for pointing out Refs. 19-22.

The author may be reached by e-mail at mankei
@sunoptics.caltech.edu.
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