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Spectral phase conjugation via extended
phase matching
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It is shown that the copropagating three-wave-mixing parametric process, with appropriate type-II extended
phase matching and pumped with a short second-harmonic pulse, can perform spectral phase conjugation and
parametric amplification, which shows a threshold behavior analogous to backward-wave oscillation. The pro-
cess is also analyzed in the Heisenberg picture, which predicts a spontaneous parametric downconversion rate
in agreement with the experimental result reported by Kuzucu et al. [Phys. Rev. Lett. 94, 083601 (2005)]. Ap-
plications in optical communications, signal processing, and quantum information processing can be
envisaged. © 2006 Optical Society of America

OCIS codes: 190.3100, 190.4410, 190.4970, 190.5040, 270.4180.
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. INTRODUCTION
n contrast with the more conventional optical phase con-
ugation schemes that perform phase conjugation with
pectral inversion,1 spectral phase conjugation (SPC) is
he phase conjugation of an optical signal in the frequency
omain without spectral inversion. Equivalently, in the
ime domain, SPC is the phase conjugation and time re-
ersal of the signal complex pulse envelope.2 SPC is use-
ul for all-order dispersion and nonlinearity
ompensation,3,4 as well as optical signal processing.5 Al-
hough SPC has been experimentally demonstrated using
hoton echo,6,7 spectral hole burning,8,9 temporal
olography,3 spectral holography,10 and spectral three-
ave mixing11 (TWM), all the demonstrated schemes suf-

er from the use of cryogenic setups, non-real-time opera-
ion, or extremely high pump energy. Pulsed TWM12 and
our-wave-mixing2,13 (FWM) processes in the transverse-
umping geometry have been theoretically proposed to ef-
ciently perform SPC but have not yet been experimen-
ally realized. All the holographic and wave-mixing
chemes also have strict requirements on the transverse
eam profile of the signal, limiting their appeal for simul-
aneous diffraction and dispersion compensation applica-
ions.

There is a correspondence between classical SPC and
uantum coincident frequency entanglement, as shown in
ef. 14 for the transversely pumped TWM12,15 and
WM2,13 processes. It is then interesting to see if other co-

ncident frequency entanglement schemes are also ca-
able of performing SPC when an input signal is present.
his paper studies one of such schemes, which makes use
f extended phase matching16 (EPM) and has been experi-
entally demonstrated17 in a periodically poled potas-

ium titanyl phosphate (PPKTP) crystal.18 It is shown in
ection 3, for the first time to the author’s knowledge,
hat this EPM scheme is indeed capable of performing
PC and optical parametric amplification (OPA) more ef-
ciently than previous proposals.
The analysis also yields a surprising result, namely,
0740-3224/06/050861-7/$15.00 © 2
hat the parametric gain can be theoretically infinite even
or a pump pulse with finite energy, analogous to
ackward-wave oscillation, where counterpropagating
aves are parametrically coupled and can give rise to
irrorless optical parametric oscillation19–25 (OPO). The

eason for the similarity is that, in the scheme presented
ere, even though the signal and the idler copropagate
ith the pump pulse in the laboratory frame, they coun-

erpropagate in the frame of the moving pump pulse be-
ause one is faster than the pump and one is slower.
ence the moving pump pulse provides both an effective

avity and a parametric gain, leading to oscillation. In re-
lity, however, the interaction among the pulses should be
ltimately limited by the finite device length. It is shown

n Section 4, with a Laplace analysis, that the parametric
ain should abruptly increase above the threshold, where
nfinite gain is predicted by the Fourier analysis, but a fi-
ite medium length would always limit the gain to a finite
alue. Still, as previous proposals of TWM mirrorless
PO have never been experimentally achieved owing to

he requirement of a continuous-wave (CW) pump and the
ifficulty in phase matching counterpropagating waves,
he presented analysis suggests the exciting possibility
hat mirrorless OPO can be realized with an ultrashort
ump pulse and a practical poling period for phase match-
ng of copropagating modes, if a long-enough medium can
e fabricated and parasitic effects can be controlled. By
nalysis of the scheme in the Heisenberg picture in Sec-
ion 5, a high spontaneous parametric downconversion
ate is also predicted, in excellent agreement with the ex-
erimental result reported in Ref. 17. The result should
e useful for many quantum information processing ap-
lications, such as quantum-enhanced synchronization26

nd multiphoton entanglement for quantum
ryptography.27 Finally, numerical results are presented
n Section 6, which confirm the theoretical predictions.

. SETUP
onsider the copropagating TWM process (Fig. 1), assum-

ng that the basic type-II phase-matching condition �k
s

006 Optical Society of America
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ki=kp+2� /��, with a quasi-phase-matching period �, is
atisfied. The coupled-mode equations are

�Ap

�z
+ kp�

�Ap

�t
= j�pAsAi, �1�

�As

�z
+ ks�

�As

�t
= j�sApAi

*, �2�

�Ai
*

�z
+ ki�

�Ai
*

�t
= − j�iAp

*As, �3�

here Ap is the pump pulse envelope of carrier frequency
p ,As,i are the signal and idler envelopes of frequencies
s and �i, respectively, kp,s,i� are the group delays of the

hree modes, �p,s,i��p,s,i�
�2� / �2cnp,s,i� are the nonlinear

oupling coefficients, �p,s,i are the center frequencies of
he modes such that �s+�i=�p, and np,s,i are the refrac-
ive indices. Group-velocity dispersion within each mode
nd diffraction are neglected. Define �� t−kp�z as the re-
arded time coordinate that follows the propagating pump
ulse. The change of coordinates yields

�Ap

�z
= j�pAsAi, �4�

�As

�z
+ �ks� − kp��

�As

��
= j�sApAi

*, �5�

�Ai
*

�z
+ �ki� − kp��

�Ai
*

��
= − j�iAp

*As. �6�

hroughout the theoretical analysis, the pump is as-
umed to be undepleted and unchirped, so that Ap
Ap0�t−kp�z�=Ap0���, hereafter regarded as real without

oss of generality.

. FOURIER ANALYSIS
quations (5) and (6) are space invariant if the nonlinear
edium length L is much longer than the signal or idler

patial pulse width in the frame of z and �, or

L �
Ts,i

�ks,i� − kp��
, �7�

here Ts,i is the signal or idler pulse width. One can then
erform Fourier transform on the equations with respect
o z, as defined by the following:

ig. 1. Schematic of SPC via type-II EPM. The signal and idler
ulses, in orthogonal polarizations, have carrier frequencies of �s
nd �i, while the pump pulse has a carrier frequency of �p=�s
�i. The EPM condition requires that the signal and the idler
ounterpropagate with respect to the pump, which should be
uch shorter than the input signal.
Ãs��,�� � �
−�

�

As�z,��exp�− j�z�dz, �8�

Ãi
*��,�� � �

−�

�

Ai
*�z,��exp�− j�z�dz. �9�

otice that Ãi
* is defined as the Fourier transform after

he conjugation of Ai. The coupled-mode equations be-
ome

j�Ãs + �ks� − kp��
�Ãs

��
= j�sAp0���Ãi

*, �10�

j�Ãi
* + �ki� − kp��

�Ãi
*

��
= − j�iAp0���Ãs. �11�

et

	s � ks� − kp�, 	i � ki� − kp�, r � �	s�i

	i�s
� . �12�

onsider the case in which 	s and 	i are nonzero and have
pposite signs, implying that the signal and the idler
ropagate in opposite directions with respect to the pump.
his can be achieved for a range of wavelengths in KTP.
ithout loss of generality, assume that 	s
0 and 	i�0,

o that ks�
kp� 
ki�. Making the following substitutions,

A = �rÃs exp�j
�

	s
�	, B = Ãi

* exp�j
�

	i
�	 , �13�

ne obtains

�A

��
= j���s�i

	s	i
�Ap0���B exp
j�� 1

	s
−

1

	i
	�� , �14�

�B

��
= j���s�i

	s	i
�Ap0���A exp
− j�� 1

	s
−

1

	i
	�� .

�15�

wing to linear space invariance, the wave-mixing pro-
ess cannot generate new spatial frequencies ��� for A and
. The magnitude of � then depends only on the initial
andwidths of A and B and is of the order of 2�	s,i /Ts,i. As
result, if the pump pulse width Tp is much shorter than

he minimum period of the detuning factor exp�±j��1/	s
1/	i��
, or

Tp � � 2�

��1/	s − 1/	i�
� � � Ts,i

	s,i�1/	s − 1/	i�
� , �16�

he pump can effectively sample the detuning factor, say,
t �=0. Defining a normalized coupling function,

g��� ����s�i

	s	i
�Ap0���, �17�

ne can obtain two simple coupled-mode equations:
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�A

��
= jg���B, �18�

�B

��
= jg���A. �19�

ecause the signal and the idler counterpropagate with
espect to the pump, the signal should begin to mix with
he pump at the leading edge of the pump pulse, say, at
=−Tp /2, while the idler should begin to mix at the trail-
ng edge of the pump, say, at �=Tp /2. The solutions of
qs. (18) and (19) can then be written as

A��,�� = sec�G��A��,−
Tp

2 	cos
�
Tp/2

�

g����d���
+ jB��,

Tp

2 	sin
�
−Tp/2

�

g����d���� , �20�

B��,�� = sec�G��jA��,−
Tp

2 	sin
�
Tp/2

�

g����d���
+ B��,

Tp

2 	cos
�
−Tp/2

�

g����d���� , �21�

here

G ��
−Tp/2

Tp/2

g���d� ��
−�

�

g���d�. �22�

he input signal pulse is required to be placed in advance
f the pump (by ts�Ts), and the input idler pulse is re-
uired to be placed behind the pump (delayed by ti�Ti),
o that the signal and the idler overlap the pump pulse
nly inside the nonlinear medium. Consequently, the out-
ut solutions are

As�L,t� = As0�t − ks�L + ts�sec�G�

+ j
1

�r
Ai0

* 
−
1

r
�t − ks�L − ti��tan�G�, �23�

Ai�L,t� = Ai0�t − ki�L + ti�sec�G�

+ j�rAs0
* �− r�t − ki�L + ts�
tan�G�. �24�

o see how the device is able to perform SPC, assume that
he center frequencies of the two modes are the same,
s=�i ,�s=�i, and the type-II EPM condition,

ks� + ki� = 2kp�, ks� � ki�, �25�

hich depends on the material dispersion properties and
ypically occurs at a single set of center frequencies, is
atisfied.16 Then r=1, and the output idler becomes the
hase-conjugated and time-reversed replica of the input
ignal, if the input idler is zero. SPC is hence performed.
he SPC efficiency 
, or the idler gain, defined as the out-
ut idler fluence divided by the input signal fluence, is

 �

�
−�

�

�Ai�L,t��2dt

�
−�

�

�As�0,t��2dt

= tan2�G�. �26�

his SPC efficiency can be fundamentally higher than
hat of the transversely pumped TWM device12 because of
wo reasons. One is the copropagation of the three pulses,
hich makes G higher than a similar parameter in the

atter case by a factor of �1−kp� /ks��
−1, of the order of 40 for

TP. The second reason is that for 

1, owing to the tan-
ent function dependence, the SPC efficiency of the EPM
cheme increases with respect to G much faster than that
f the latter, which only depends on a similar parameter
xponentially. That said, the transversely pumped FWM
evice13 can still be more efficient in the small-gain re-
ime 
�1 if a highly nonlinear material, such as polydi-
cetylene, is used. Furthermore, the EPM device requires

longer nonlinear medium length by a factor of �1
kp� /ks��

−1 and depends crucially on the material disper-
ion, thus severely limiting the flexibility in the choice of
perating wavelengths.

Equations (23) and (24) are obtained from the analysis
f the coupled-mode equations (5) and (6), after Fourier
ransform with respect to z is performed. The solutions
re therefore formally valid only when the nonlinear me-
ium length L goes to infinity. In practice, in the
oderate-gain regime 
�O�1�, the approximation given

y expression (7) should be adequate, where the length L
an be, say, ten times larger than the signal spatial pulse
idth in the frame of z and �. Numerical analysis in Sec-

ion 6 will validate the accuracy of the Fourier solutions.

. LAPLACE ANALYSIS
ntriguingly, the Fourier solutions, Eqs. (23) and (24),
ave the same form as those of backward-wave
scillation,19–25 suggesting that the device studied here,
ith an ultrashort pump pulse and a practical quasi-
hase-matching period (�=46 �m as reported in Ref. 18),
an also perform mirrorless OPO, as long as ks,i� 
kp�
ki,s� . However, the prediction of infinite gain is based on

he assumption of infinite medium length and therefore
ay not be valid. In this case, Laplace transform should

e used.
For the CW-pumped mirrorless OPO schemes, a

aplace analysis28 with respect to time shows that, be-
ond threshold, poles appear on the right-hand plane in
he Laplace domain, meaning that the temporal impulse
esponse increases exponentially with time, leading to
elf-oscillation when enough time has elapsed. The same
rocedures of utilizing the two-sided Laplace transform29

s in Ref. 28 are followed here in order to be consistent
ith the relevant literature, but, since the proposed

cheme is the opposite limit of the CW devices, the
aplace transform should be performed with respect to z

nstead:

Ās�p,�� � �
−�

�

As�z,��exp�− pz�dz, �27�
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Āi
*�p,�� � �

−�

�

Ai
*�z,��exp�− pz�dz. �28�

or simplicity but without affecting the qualitative be-
avior of the solutions, it is assumed that the pump pulse

s square, there is no input idler, 	=	s=−	i, and �=�s
�i. The output solutions in the Laplace domain are then
iven by

Ās�p,
Tp

2 	 =
�1 − P2 csc�G�1 − P2�

P + �1 − P2 cot�G�1 − P2�
Ās�p,−

Tp

2 	 ,

�29�

Āi
*�p,−

Tp

2 	 =
− j

P + �1 − P2 cot�G�1 − P2�
Ās�p,−

Tp

2 	 ,

�30�

P �
p

�Ap0
, G � �Ap0�Tp

	
	 . �31�

f we let p= j�, the transfer functions in Eqs. (29) and (30)
re well known to be low-pass filters,30 the bandwidth of
hich decreases as G increases. If the spatial bandwidth

f the input signal, of the order of 	 /Ts, is much smaller
han the bandwidth of the low-pass filters, the transfer
unctions can be regarded as flat-top functions, and, by
lugging P=0 into Eqs. (29) and (30), one can recover the
ourier solutions in Eqs. (23) and (24). For G�1, the
ransfer functions are sinc functions with a bandwidth
	 /Tp, so the Fourier solutions are valid if Tp�Ts, which

s essentially the same assumption used in the Fourier
nalysis, expression (16). As G increases and the filter
andwidth decreases, however, the Fourier solutions be-
ome less and less accurate for a finite-bandwidth input
ignal.

The poles of the transfer functions, p�, can be obtained
y setting the denominators of Eqs. (29) and (30) to zero,

p� + ���Ap0�2 − p�
2 cot�G�1 − p�

2/��Ap0�2
 = 0. �32�

Figure 2 plots the normalized poles p� / ��Ap0� against

ig. 2. Normalized poles p� / ��Ap0� plotted against G, obtained
y numerically solving Eq. (32), indicating the onset of spatial in-
tability beyond the threshold G
� /2. More poles appear as G is
ncreased.
. Positive poles begin to appear when G
� /2; hence the
patial impulse response increases exponentially with re-
pect to z beyond threshold.

It is interesting to compare the scheme studied here
ith the case in which the pump, signal, and idler have
egenerate group delays �kp�=ks�=ki��.

31 The coupled-mode
quations of the latter case are

�As,i�z,��

�z
= j�Ap0���Ai,s

* �z,��, �33�

here the � derivatives vanish. The solutions are easily
een to be

As,i�z,�� = As,i�0,��cosh��Ap0���z
 + jAi,s
* �0,��sinh��Ap0���z
.

�34�

his corresponds to the G→� limit of the former scheme,
here p� / ��Ap0�→1 and all the poles approach the
rowth rate of the degenerate case, �Ap0.

. SPONTANEOUS PARAMETRIC DOWN
ONVERSION
iven the input–output signal–idler relationship in Eqs.

23) and (24), it is straightforward to obtain a quantum
icture of the parametric process in the moderate-gain a
egime by replacing the signal and idler envelopes with
eisenberg operators, so that

Âs = Âs0 sec�G� + jÂi0
† tan�G�, �35�

Âi = jÂs0
† tan�G� + Âi0 sec�G�. �36�

f the inputs are Fock states,

ns,i � �Âs,i
† Âs,i� = �Âs,iÂs,i

† � − 1, �37�

�Âs0
† Âi0� = �Âi0

† Âs0� = �Âs0Âi0
† � = �Âi0Âs0

† � = 0. �38�

he average output photon number of each mode is

ns = ns0 sec2�G� + �ni0 + 1�tan2�G�, �39�

ni = ni0 sec2�G� + �ns0 + 1�tan2�G�. �40�

he average number of spontaneously generated photon
airs per pump pulse is therefore the same as the idler
ain, or 
=tan2�G�. Moreover, the unitary transform
iven by Eqs. (35) and (36) has the same form as the CW
WM process. One then expects the photon wave function

o be similarly given by32

��� = cos�G��
n=0

�

sinn�G��n�s�n�i, �41�

here �n�s,i is the Fock state in the signal or idler mode.
he scheme thus has a significant advantage in efficiency
nd robustness for multiphoton entanglement, compared
ith other schemes that often require feedback.33 The ef-
cient multiphoton coincident frequency entanglement
hould be useful for quantum-enhanced synchronization26

nd quantum cryptography applications.27
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The preceding quantum analysis assumes that there is
nly one spatial mode in each signal or idler mode and is
ccurate only when the Fourier solutions are accurate.
his restricts the applicability of the quantum analysis to
he moderate-gain regime 
�O�1�, depending on how
losely the assumption in expression (7) is observed. It is
eyond the scope of this paper to investigate what hap-
ens in the quantum picture when more than one spatial
ode is involved, but, qualitatively, one expects that each

patial mode should have a varying parametric gain de-
ending on the spatial frequency, as suggested by the
aplace solutions in Eqs. (29) and (30), so the photon
ave function would be given by a superposition of simul-

aneous eigenstates of spatial frequency and photon num-
er.
Using the parameters described in Refs. 17 and 18,

here �0=1584 nm, ��2�=7.3 pm/V, n0=2, 	=1.5
10−10 s /m, Tp=100 fs, average pump power=350 mW,

iameter=200 �m, and pump repetition rate frep
80 MHz, the spontaneously generated photon pairs per
econd is theoretically given by frep tan2�G�� frepG2=3.6
106/s, in excellent agreement with the experimental re-

ult reported in Ref. 17, which is �4�106/s. G is then
iven by �0.2, so the operations of SPC, OPA, and multi-
hoton entanglement �G
� /4� should be realizable by in-
reasing the pump field amplitude.

. NUMERICAL ANALYSIS
quations (5) and (6) are solved numerically via a Fourier
plit-step approach to confirm the above theoretical pre-
ictions. Figure 3 plots the intensities and phases of input
ignal, output signal, and output idler from the numerical
nalysis when G=� /4. The plots clearly show that the
utput idler is the time-reversed and phase-conjugated
eplica of the signal.

Figure 4 plots the numerical signal gain and idler gain
ompared with Fourier theory for 0�G�� /3. The nu-
erical results are all within 3% of the theoretical values.
Figure 5 plots the idler gain on the logarithmic scale for
wider range of G’s and two different lengths, obtained

rom the numerical analysis of the complete TWM equa-
ions (4)–(6), with a single photon as the input signal, ap-
roximately emulating parametric fluorescence. For the
=10 cm case, the curve can be clearly separated into

hree regimes. For G�� /2 and moderate gain �
�0 dB�,
he idler gain approximately follows the Fourier solution
dashed curve). For G
� /2, the system becomes unstable
nd an exponential growth (linear ramp on the logarith-
ic curve) is observed, until the pump is significantly de-

leted, parametric oscillation occurs, and the exponential
rowth abruptly stops.

For L=1 cm, the numerical solution departs from
heory for a smaller G, and the slope of the logarithmic
urve in the unstable regime, proportional to L, is too
mall to initiate oscillation in the parameter range of in-
erest.

A medium length of 10 cm may be pushing the limit of
urrent technology. Even if one is able to fabricate such a
ong periodically poled nonlinear crystal, the effective-

edium length is always limited by parasitic effects, such
s diffraction, group-velocity dispersion, and competing
ig. 3. Plots of intensity and phase of the input signal, output
ignal, and output idler, from numerical analysis of Eqs. (5) and
6). Parameters used are kp�=1/ �1.5�108 ms−1�, ks�=1.025kp�, ki

0.975kp�, Tp=100 fs, Ts=2 ps, L=10 cm, ts=4Ts, beam
iameter=200 �m, As0=0.5exp�−�t−2Ts�2 / �2Ts

2�
−exp�−�1+0.5j�
�t+2Ts�2 / �2Ts

2�
, Ap0=exp�−t2 / �2Tp
2�
, and G=� /4. The plots

learly show that the idler is the time-reversed and phase-
ig. 4. Signal gain 
+1 and idler gain 
 versus G from numeri-
al analysis compared with theory. See the caption of Fig. 3 for
arameters used.
ig. 5. Plot of numerical idler gain 
 in decibels against G for
=10 cm (solid curve) and L=1 cm (dashed–dotted curve), com-
ared with the Fourier theory (dashed curve), tan2�G� in deci-
els. Three distinct regimes can be observed for the L=10 cm
ase: the moderate-gain regime where the Fourier theory is ac-
urate, the unstable regime where the gain increases exponen-
ially, and the oscillation regime where significant pump deple-
ion occurs. For L=1 cm, the medium is not long enough for
scillation to occur in the parameter range of interest.



t
c
p
t
i
t
i
l
s
l
n
o
o
f
i

7
I
w
m
p
t
e
m
l
d
t
c
f
g
i
f
u
q

o
f
u
o
a
s
e
o

s

@

R

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2
2

2

866 J. Opt. Soc. Am. B/Vol. 23, No. 5 /May 2006 Mankei Tsang
hird-order nonlinearities, so it might be difficult to fabri-
ate an ideal EPM device for the aforementioned pur-
oses. For instance, in the experiment by Kuzucu et al.,17

he diameter of the beam is W�200 �m, so the character-
stic diffraction length is �W2 /�0=4 cm, and the charac-
eristic group-velocity dispersion length is 20 cm accord-
ng to Ref. 16, all of which are of the order of the medium
ength required for mirrorless OPO. That said, techniques
uch as diffusion bonding34 can be used to increase the
ength of a nonlinear crystal, diffraction can be elimi-
ated by waveguiding, and there exists a variety of meth-
ds to compensate for group-velocity dispersion and third-
rder nonlinearities.35 Hence with careful engineering,
abricating an EPM device for the proposed applications
s still a distinct possibility.

. CONCLUSION
n summary, it is proven that the copropagating three-
ave-mixing process, with appropriate extended phase
atching and pumped with a short second-harmonic

ulse, is capable of performing spectral phase conjuga-
ion, parametric amplification, and efficient multiphoton
ntanglement. The main technical challenges of experi-
ental implementation seem to be the long medium

ength required and the control of parasitic effects such as
iffraction, group-velocity dispersion, and competing
hird-order nonlinearities. However, a shorter proof-of-
oncept device has already been experimentally realized
or the purposes of broadband second-harmonic
eneration18 and coincident frequency entanglement,17 so
t is not unrealistic to expect that a longer device can be
abricated for the proposed applications, which should be
seful for optical communications, signal processing, and
uantum information processing.
Theoretically, much remains to be explored. The study

f parasitic effects, not considered in this paper, is vital
or experimental realization. The analysis of the
ltrashort-pump limit can be potentially generalized to
ther TWM and FWM geometries, and the quantum
nalysis of this limit is by no means complete. In conclu-
ion, the analysis presented here should stimulate further
xperimental and theoretical investigations of a new class
f parametric devices.

The author thanks Demetri Psaltis for helpful discus-
ions and a reviewer for pointing out Refs. 19–22.

The author may be reached by e-mail at mankei
sunoptics.caltech.edu.
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