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Quantum enhancement of optical pulse timing accuracy is investigated in the Heisenberg picture. Effects of
optical loss, group-velocity dispersion, and Kerr nonlinearity on the position and momentum of an optical
pulse are studied via Heisenberg equations of motion. Using the developed formalism, the impact of decoher-
ence by optical loss on the use of adiabatic soliton control for beating the timing standard quantum limit
�M. Tsang, Phys. Rev. Lett. 97, 023902 �2006�� is analyzed theoretically and numerically. The analysis shows
that an appreciable enhancement can be achieved using current technology, despite an increase in timing jitter
mainly due to the Gordon-Haus effect. The decoherence effect of optical loss on the transmission of quantum-
enhanced timing information is also studied, in order to identify situations in which the enhancement is able to
survive.

DOI: 10.1103/PhysRevA.75.063809 PACS number�s�: 42.50.Dv, 42.65.Tg, 42.81.Dp

I. INTRODUCTION

It has been suggested that the use of correlated photons is
able to enhance the position accuracy of an optical pulse
beyond the standard quantum limit, and the enhancement can
be useful for positioning and clock synchronization applica-
tions �1�. Generation of two photons with the requisite cor-
relation has been demonstrated experimentally by Kuzucu et
al. �2�, but in practice it is more desirable to produce as
many correlated photons as possible in order to obtain a
higher accuracy. To achieve quantum enhancement for a
large number of photons, a scheme of adiabatically manipu-
lating optical fiber solitons has recently been proposed �3�,
opening up a viable route of applying quantum enhancement
to practical situations. The analysis in Ref. �3� assumes that
the optical fibers are lossless, so the Heisenberg limit �4� can
be reached in principle. In reality, however, the quantum
noise associated with optical loss increases the soliton timing
jitter and limits the achievable enhancement. Compared with
the use of solitons for quadrature squeezing �5�, the adiabatic
soliton control scheme potentially suffers more from deco-
herence, because the soliton must propagate for a longer dis-
tance to satisfy the adiabatic approximation. The effect of
loss on a similar scheme of soliton momentum squeezing has
been studied by Fini and Hagelstein �6�, although they did
not study the timing jitter evolution relevant to the scheme in
Ref. �3� and did not take into account possible departure
from the adiabatic approximation.

In this paper, the decoherence effect of optical loss on the
timing accuracy enhancement scheme proposed in Ref. �3� is
investigated in depth, in order to evaluate the performance of
the scheme in practice. Instead of approaching the problem
in the Schrödinger picture like prior work �1,3,6,7�, this pa-
per primarily utilizes Heisenberg equations of motion, since
they are able to account for dissipation and fluctuation in a
more elegant way. For simplicity, scalar solitons, as opposed
to vector solitons studied in Ref. �3�, are considered here.
The theoretical and numerical analyses show that, despite an
increase in timing jitter due to quantum noise and deviation
from the adiabatic approximation, an appreciable enhance-
ment can still be achieved using a realistic setup.

The developed formalism is also used to study the propa-
gation of an optical pulse with quantum-enhanced timing
accuracy in a lossy, dispersive, and nonlinear medium, such
as an optical fiber, in order to identify situations in which the
enhancement can still survive. The effect of loss on many
correlated photons sent in as many channels has been inves-
tigated by Giovannetti et al. �1�, but their analysis focuses on
a relatively small number of correlated photons and does not
include the effects of dispersion and nonlinearity.

This paper is organized as follows: Section II defines the
general theoretical framework and derives the standard quan-
tum limits and Heisenberg limits on the variances of the
pulse position and momentum operators. Section III studies
the evolution of such operators in the presence of loss,
group-velocity dispersion, and Kerr nonlinearity and deter-
mines the effect of dissipation and fluctuation on the position
and momentum uncertainties. Section IV investigates theo-
retically and numerically the impact of optical loss on the
adiabatic soliton control scheme using realistic parameters,
while Sec. V studies the decoherence effect on the transmis-
sion of the quantum-enhanced timing information in various
linear and nonlinear systems.

II. THEORETICAL FRAMEWORK

A. Definition of pulse position and momentum operators

The positive-frequency electric field of a waveguide mode
at a certain longitudinal position can be defined as �8�

Ê�+��t� = i�
0

�

d�� ���

4��0cn2S
�1/2

ĉ���e−i�t, �1�

where n is the refractive index, � is the real part of n, S is the
transverse area of the waveguide mode, and ĉ��� is the pho-
ton annihilation operator. The annihilation operator is related
to the corresponding creation operator via the commutator
�8�

�ĉ���, ĉ†����� = ��� − ��� . �2�

For a pulse with a slowly varying envelope compared with
the optical frequency, the coefficient in front of the annihila-
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tion operator can be assumed to be independent of frequency
and can be evaluated at the carrier frequency �0, so that the
electric field is proportional to the temporal envelope anni-

hilation operator Â�t�,

Ê�+��t� � Â�t�e−i�0t, �3�

Â�t� �
1

	2�
� d�â���e−i�t, �4�

â��� � ĉ�� + �0� . �5�

The temporal envelope operator Â�t� and the spectral opera-
tor â��� evidently also satisfy the following commutation
relations with their corresponding creation operators:

�Â�t�,Â†�t��� = ��t − t�� , �6�

�â���, â†����� = ��� − ��� . �7�

The total photon number operator can be defined as

N̂ �� dtÂ†�t�Â�t� �8�

and the pulse center position operator as �9�

T̂ �
1

N
� dttÂ†�t�Â�t� , �9�

where

N � 
N̂� �10�

is the average photon number. This definition uses 1/N as the
normalization coefficient, instead of the inverse photon num-

ber operator N̂−1 used by Lai and Haus �10�, in order to
express the position operator in terms of normally ordered
optical field operators that are easier to handle, as well as to

avoid the potential problem of applying N̂−1 on the vacuum
state. As long as the photon-number fluctuation is small, the
position operator naturally corresponds to the measurement
of the center position of the pulse intensity profile. An aver-
age longitudinal momentum operator can be similarly de-
fined,

	̂ �
1

N
� d��â†���â��� =

1

N
� dtÂ†�t��i

�

�t
�Â�t� .

�11�

If the quantum state is close to a large-photon-number coher-

ent state, Â can be approximated as 
Â�+�Â, with

O��Â��O�Â�. Equations �9� and �11� then become the ap-
proximate position and momentum operators defined by
Haus and Lai for solitons in a linearized approach �11�. The
linearized expressions also describe how they can be accu-
rately measured in practice using balanced homodyne detec-
tion �11�.

For simplicity, we shall hereafter assume that 
T̂�=0 and


	̂�=0 �9�. In the systems considered in this paper, these two

quantities remain constant throughout propagation if t is re-
garded as the retarded time in the moving frame of the opti-
cal pulse.

The commutator between the position and momentum op-
erators is

�T̂,	̂� =
iN̂

N2 . �12�

By the Heisenberg uncertainty principle,


T̂2�
	̂2� 
 � 1

2i

�T̂,	̂���2

=
1

4N2 . �13�

B. Derivation of standard quantum limits

The standard quantum limits and Heisenberg limits on


	̂2� and 
T̂2� should be expressed in terms of the pulse
width �t, defined as

�t �� 1

N
� dtt2Â†�t�Â�t�
1/2

, �14�

and the bandwidth ��,

�� �� 1

N
� d��2â†���â���
1/2

= � 1

N
� dtÂ†�t��−

�2

�t2�Â�t�
1/2

. �15�

To calculate the standard quantum limit on the position un-
certainty, consider the expansion


	̂2� =
1

N2�� d��â†â� d����â�†â�
 , �16�

where we have written â= â��� and â�= â���� as shorthand.
Rearranging the operators,


	̂2� =
1

N
� 1

N
� d��2â†â


+
1

N2�� d�� d�����â†â�†ââ�
 . �17�

The first term on the right-hand side of Eq. �17� is propor-
tional to ��2, while the second term contains a normally
ordered cross-spectral density. To derive the standard quan-
tum limit, we shall assume that the cross-spectral density
satisfies the factorization condition


â†â�†ââ�� � 
â†â�
â�†â�� . �18�

This condition is always satisfied by any pure or mixed state
with only one excited optical mode, such as a coherent state
�12,13�. The second term on the right-hand side of Eq. �17�
becomes

1

N2 � d�� d�����
â†â�†ââ�� � 
	̂�2, �19�

which is assumed to be zero, as per the convention of this

paper. Thus, the variance of 	̂ is
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	̂2�coh =
��2

N
, �20�

where the subscript “coh” denotes statistics of coherent fields
�12,13� given by Eq. �18�. By virtue of the Heisenberg un-
certainty principle given by Eq. �13�, the standard quantum
limit on the position variance is hence


T̂2� 
 
T̂2�SQL =
1

4N2
	̂2�coh

=
1

4N��2 . �21�

This limit is applicable to any pure or mixed state and is
consistent with the one suggested by Giovannetti et al. for
Fock states �1�. A very similar derivation of the limit for
Fock states and coherent states is also performed by Vaughan
et al. �9�.

Owing to Fourier duality of position and momentum in
the slowly varying envelope regime, the standard quantum
limit on the momentum can be derived in the same way. The

variance of T̂, assuming coherent-field statistics, is


T̂2�coh =
�t2

N
, �22�

and the standard quantum limit on the momentum variance is


	̂2�SQL =
1

4N2
T̂2�coh

=
1

4N�t2 . �23�

C. Derivation of Heisenberg limits

To derive the Heisenberg limit on the position uncertainty,
one needs an absolute upper bound on the momentum uncer-

tainty 
	̂2�. Consider the following non-negative quantity
proportional to the coherence bandwidth squared,

� d�� d���� − ���2
â†â�†ââ�� 
 0. �24�

This quantity is non-negative because ��−���2 is non-
negative and 
â†â�†ââ�� is also non-negative �13�. It can be
rewritten as

� d�� d���� − ���2
â†â�†ââ��

=� d�� d���� − ���2
â†ââ�†â�� �25�

and expanded as

�� d�� d����2 + ��2 − 2����â†ââ�†â�
 
 0,

2�N̂� d��2â†â
 − 2N2
	̂2� 
 0. �26�

Here we shall approximate N̂ with N and neglect any photon-
number fluctuation. This approximation is exact for Fock
states and acceptable for any quantum state with a small-

photon-number fluctuation, such as a large-photon-number
coherent state. We then obtain the following approximate
inequality:


	̂2� � ��2. �27�

With the Heisenberg uncertainty principle given by Eq. �13�
and the upper bound on 
	̂2� given by Eq. �27�, one can then

obtain the Heisenberg limit on the uncertainty of T̂:


T̂2� 
 
T̂2�H =
1

4N2��2 . �28�

Equation �28� is again consistent with the Heisenberg limit
suggested by Giovannetti et al. �1�, although the derivation
here shows that it is not only valid for Fock states but also
correct to the first order for any quantum state with a small-
photon-number fluctuation.

The Heisenberg limit on 
	̂2� is similar,


	̂2�H =
1

4N2�t2 . �29�

A more exact derivation of the Heisenberg limits is given in

Appendix A, where the inverse photon-number operator N̂−1

is used instead of 1/N in the definitions of T̂, 	̂, ��, and �t.
The difference between the approximate Heisenberg limits
derived here and the exact Heisenberg limits in Appendix A
is negligible for small-photon-number fluctuations.

III. OPTICAL PULSE PROPAGATION
IN THE HEISENBERG PICTURE

The classical nonlinear Schrödinger equation that de-
scribes the propagation of pulses in a lossy, dispersive, and
nonlinear medium, such as an optical fiber, is given by �14�

i
�A

�z
=




2

�2A

�t2 − ��A�2A −
i�

2
A , �30�

where t is the retarded time coordinate in the frame of the
moving pulse, 
 is the group-velocity dispersion coefficient,
� is the normalized Kerr coefficient, and � is the loss coef-
ficient, all of which may depend on z. The phenomenological

quantized version that preserves the commutator between Â

and Â† is �5�

i
�Â

�z
=




2

�2Â

�t2 − �Â†ÂÂ −
i�

2
Â + iŝ . �31�

Â� Â�z , t� is the pulse envelope annihilation operator in the
Heisenberg picture, and ŝ is the Langevin noise operator,
satisfying the commutation relation

�ŝ�z,t�, ŝ†�z�,t��� = ���z − z����t − t�� . �32�

Rewriting the position and momentum operators in Eqs. �9�
and �11� in the Heisenberg picture as T̂�z� and 	̂�z� in terms

of Â�z , t�, differenting them with respect to z, and using Eq.
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�31�, their equations of motion can be derived,

dT̂�z�
dz

= 
�z�	̂�z� + ŜT�z� , �33�

d	̂�z�
dz

= Ŝ	�z� , �34�

where ŜT and Ŝ	 are position and momentum noise operators
defined as

ŜT�z� �
1

N�z� � dttŝ†�z,t�Â�z,t� + H.c., �35�

Ŝ	�z� �
1

N�z� � dtŝ†�z,t��i
�

�t
�Â�z,t� + H.c., �36�

and “H.c.” denotes the Hermitian conjugate. If the noise res-
ervoir is assumed to be in the vacuum state, the noise opera-
tors have the following statistical properties, as shown in
Appendix B:


ŜT�z�� = 0, 
Ŝ	�z�� = 0, �37�


ŜT�z�ŜT�z��� =
��z��t2�z�

N�z�
��z − z�� , �38�


Ŝ	�z�Ŝ	�z��� =
��z���2�z�

N�z�
��z − z�� , �39�


ŜT�z�Ŝ	�z�� + Ŝ	�z�ŜT�z��� =
��z�C�z�

N�z�
��z − z�� , �40�

where C�z� is the pulse chirp factor, defined as

C�z� � � 1

N�z� � dtÂ†�z,t��t�i
�

�t
� + �i

�

�t
�t�Â�z,t�
 .

�41�

The average position 
T̂�z�� and average momentum 
	̂�z��
are constant and assumed to be zero throughout propagation.

The variance of 	̂ is then


	̂2�z�� = 
	̂2�0�� + �
0

z

dz�
��z����2�z��

N�z��
, �42�

while the variance of T̂ is more complicated due to the pres-
ence of dispersion,


T̂2�z�� = 
T̂2�0�� + 
T̂�0�	̂�0� + 	̂�0�T̂�0���
0

z

dz�
�z��

+ 
	̂2�0����
0

z

dz�
�z���2

+ �
0

z

dz�
��z���t2�z��

N�z��

+ �
0

z

dz�
�z���
0

z�
dz�

��z��C�z��
N�z��

+ 2�
0

z

dz�
�z���
0

z�
dz�
�z��

� �
0

z�
dz�

��z����2�z��
N�z��

. �43�

Equation �43� is the central result of this paper. It is similar
to that derived by Haus for optical solitons using a linearized
approach �15�, but Eq. �43� is valid for arbitrary loss, arbi-
trary dispersion profile 
�z�, and arbitrary evolution of pulse
width �t�z�, chirp C�z�, and bandwidth ���z�, so that it is
able to describe the effect of loss on the quantum enhance-
ment scheme proposed in Ref. �3�. The first term on the
right-hand side of Eq. �43� is the initial quantum fluctuation,
while the second and third terms on the right-hand side de-
scribe the quantum dispersion effect �16�. In an ideal sce-

nario described in Ref. �3�, 
T̂2�z�� remains constant if the net
dispersion �0

zdz�
�z�� is zero and quantum dispersion is com-
pensated. With loss, however, noise introduces a diffusive
jitter given by the fourth term on the right-hand side of Eq.
�43�,


T̂2�z��D � �
0

z

dz�
��z���t2�z��

N�z��
, �44�

a less well-known chirp-induced jitter given by the fifth
term,


T̂2�z��C � �
0

z

dz�
�z���
0

z�
dz�

��z��C�z��
N�z��

, �45�

and also the Gordon-Haus timing jitter �17� given by the
sixth term,


T̂2�z��GH � 2�
0

z

dz�
�z���
0

z�
dz�
�z��

� �
0

z�
dz�

��z����2�z��
N�z��

. �46�

In most cases considered here, N�1, 
T̂2���t2, and


	̂2����2, so one can use the classical nonlinear
Schrödinger equation �30� to predict the evolution of �t�z�,
C�z�, and ���z� accurately. The evolution of 
T̂2�z�� can sub-

FIG. 1. �Color online� Schematic �not to scale� of the adiabatic
soliton control scheme. An optical pulse is coupled into a
dispersion-increasing fiber of length L with a negative dispersion
coefficient 
, followed by a much shorter dispersion-compensating
fiber of length L� with a positive dispersion coefficient 
�.
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sequently be calculated analytically or numerically using Eq.
�43� and the classical evolution of �t�z�, C�z�, and ���z�,
analogous to the linearized approach �11,15�.

It is worth noting that the chirp-induced jitter, Eq. �45�,
depends on the cross correlation between the position and
momentum noise in Eq. �40�, so it can be positive as well as
negative, but the sum of the three sources of jitter must ob-
viously remain positive.

IV. EFFECT OF LOSS ON ADIABATIC
SOLITON CONTROL

A. Review of the ideal case

Consider the scheme proposed in Ref. �3� and depicted in
Fig. 1. Assume that the dispersion coefficient of the first
fiber, 
�z�, is negative and its magnitude increases along the
fiber slowly compared with the soliton period. The classical
soliton solution of Eq. �30�, assuming adiabatic change in
parameters 
�z� and N�z�, is �18�

A�z,t� = A0�z�sech� t

��z��exp� i�

2
�

0

z

dz��A0�z���2� ,

�47�

A0�z� =	 N�z�
2��z�

, ��z� =
2�
�z��
�N�z�

. �48�

The adiabatic approximation is satisfied when

� 
�z�
d
�z�/dz

�� �, � N�z�
dN�z�/dz

� =
1

�
� � , �49�

where � is the soliton period,

��z� �
�

2

�2�z�
�
�z��

. �50�

The root-mean-square pulse width �t�z� and bandwidth
���z� then become

�t�z� =
�

2	3
��z� =

�

	3

�
�z��
�N�z�

, �51�

���z� =
1

	3��z�
=

1

2	3

�N�z�
�
�z��

. �52�

The bandwidth ���z� is thus reduced in the first fiber. If the
second fiber has a positive dispersion coefficient 
� so that
the net dispersion is zero ��0

Ldz
�z�+
�L�=0�, the quantum
dispersion effect given by the second and third terms on the
right-hand side of Eq. �43� can be eliminated. Furthermore, if

� has a very large magnitude compared with 
�z� so that the
second fiber can be very short compared with the first fiber,
the effective nonlinearity experienced by the pulse in the
second fiber can be neglected and ���z� remains essentially
constant in the second fiber. In the lossless case, the final

timing jitter 
T̂2�L+L��� is therefore the same as the input


T̂2�0��, but ���L+L�� has been reduced and the standard

quantum limit on 
T̂2�L+L���, Eq. �21�, is raised. Provided
that the initial timing jitter of a laser pulse obeys the
coherent-field statistics given by Eq. �22�, the final timing
jitter is


T̂2�L + L��� = 
T̂2�0�� =
�t2�0�

N
=

�2

3


2�0�
�2N3 , �53�

while the final standard quantum limit is


T̂2�L + L���SQL =
1

4N��2�L + L��
=

3
2�L�
�2N3 . �54�

A timing jitter squeezing ratio, analagous to the squeezing
ratio defined by Haus and Lai �11�, can be defined as

R =

T̂2�L + L���


T̂2�L + L���SQL

=
�2

9


2�0�

2�L�

. �55�

The factor of �2 /9 arises because the initial jitter for a sech
pulse shape is slightly higher than the standard quantum limit
given by Eq. �21� in terms of the bandwidth. As long as 
�L�
at the end of the first fiber is significantly larger than the
initial value, the timing jitter becomes lower than the raised
standard quantum limit, R becomes smaller than 1, and quan-
tum enhancement of position accuracy is accomplished. This
semiclassical analysis is valid in all practical cases, where

N�1, R�1/N, 
T̂2���t2, and 
	̂2����2, and is consis-
tent with the analysis of exact quantum soliton theory in Ref.
�3�. R is related to the quantum enhancement factor � defined
in Ref. �3� by R=1/�2. The semiclassical analysis is no
longer valid when R is close to the Heisenberg limit 1 /N, but
as the next sections will show, owing to decoherence effects,
it is extremely difficult for the enhancement to get anywhere
close to the Heisenberg limit.

B. Numerical analysis of a realistic case

To investigate the impact of noise and the validity of the
adiabatic approximation in practice, a numerical evaluation

of �t�z�, C�z�, ���z�, and 
T̂2�z��, using Eqs. �30� and �43�
and realistic parameters, is necessary. 
�z� is assumed to
have the following profile used in Ref. �19�:


�z� =
− 12.75 ps2/km

1 + �L − z�/L


. �56�

L
=1 km is used here instead of the L
=1/12 km used in
Ref. �19�, in order to satisfy the adiabatic approximation for
a longer pulse in this example. Other fiber parameters are
�=0.4 dB/km, n2=2.6�10−16 cm2/W, Aeff=30 �m2 �19�,
�0=1550 nm, and �0=2�c /�0, so that �=��0��0n2 /cAeff�.
L is assumed to be 2 km. A dispersion-compensating
fiber with 
�=127.5 ps2 /km, �=0.4 dB/km, n2=2.7
�10−16 cm2/W, Aeff=15 �m2 �20�, and L�=110 m is used
in the numerical analysis as the second fiber. The classical
nonlinear Schrödinger equation �30� is numerically solved
using the Fourier split-step method �14�. An initial sech soli-
ton pulse with ��0�=1 ps, N�0�=1.9�107, and an initial en-
ergy of 2.4 pJ is assumed.
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Figure 2 plots the numerical evolution of the pulse inten-
sity and spectrum in the two fibers. As expected, the band-
width is narrowed in the first fiber and remains approxi-
mately constant in the second �z�2000 m�, owing to the
latter’s relative short length. Figure 3 plots the evolution of
pulse width �t�z�, chirp C�z�, and bandwidth ���z�, com-
pared with the adiabatic approximation, Eqs. �51� and �52�.
The adiabatic approximation is evidently not exact, and the
pulse acquires a chirp due to excess dispersion in the first
fiber, leading to a slight refocusing in the second fiber. The
bandwidth is reduced by a factor of 2.2, as opposed to the
ideal factor of 3.6.

Figure 4 plots the evolution of the diffusive jitter given by
Eq. �44�, the chirp-induced jitter given by Eq. �45�, and the
Gordon-Haus jitter given by Eq. �46�. It can be seen that
although the Gordon-Haus jitter increases much more
quickly than the other jitter components in the first fiber, the
former drops abruptly in the second fiber �z�2000 m� due
to the opposite dispersion. This kind of Gordon-Haus jitter
reduction by dispersion management is well known �21�. The
chirp-induced jitter component drops below zero in the sec-
ond fiber, but as noted before, the total noise jitter remains
positive. The final jitter values are numerically determined to

be 
T̂2�L+L���D=0.71
T̂2�0��, 
T̂2�L+L���C=−0.93
T̂2�0��,
and 
T̂2�L+L���GH=1.42
T̂2�0��, resulting in a total jitter of


T̂2�L + L��� = 
T̂2�0�� + 
T̂2�L + L���D + 
T̂2�L + L���C

+ 
T̂2�L + L���GH = 2.19
T̂2�0�� . �57�
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The final squeezing ratio is hence

R =

T̂2�L + L���


T̂2�L + L���SQL

=
�2

9


T̂2�L + L���


T̂2�0��

N�L + L��
N�0�

��2�L + L��
��2�0�

= 0.42 = − 3.8 dB. �58�

Despite taking into account the increased timing jitter and
the nonideal bandwidth narrowing, a squeezing ratio of −3.8
dB is predicted by the numerical analysis, suggesting that
one should be able to observe the quantum enhancement
experimentally using current technology.

C. Potential improvements

As shown in the previous section, the Gordon-Haus effect
contributes the largest amount of noise in the soliton control
scheme, despite its partial reduction by dispersion manage-
ment. Its magnitude at the end of the first fiber can be esti-
mated roughly as


T̂2�L��GH


T̂2�L��SQL

� � L

�
�2

��L� . �59�

As the length of the first fiber must be at least a few times
longer than the soliton period � for the adiabatic approxima-
tion to hold and for the bandwidth to be significantly re-
duced, L /� is approximately fixed and the Gordon-Haus jit-
ter can be reduced only if a figure of merit,

�FOM� �
1

��
=

2

�

�
�
��2 , �60�

is enhanced. Since this is a rough order-of-magnitude esti-
mate, a representative value of �—say, at z=L—can be
used. The figure of merit suggests that the performance of
the soliton control scheme can be improved by reducing the
pulse width, increasing the overall dispersion coefficient, or
reducing the loss coefficient.

Reducing the pulse width is the most convenient way of
obtaining better enhancement, as the adiabatic bandwidth re-
duction can be achieved over a shorter distance with less loss
of photons. For example, using ��0�=500 fs, L=1 km, L


=0.3 km, L�=44 m, and otherwise the same parameters as in
Sec. IV B, the squeezing ratio becomes −6.0 dB, while using
��0�=200 fs, L=500 m, L
=1/12 km, and L�=16.2 m gives
a squeezing ratio of −7.3 dB. The shorter pulse width, how-
ever, significantly enhances higher-order dispersive and non-
linear effects. Raman scattering, in particular, contributes ad-
ditional quantum noise because of coupling to optical
phonons �22�. It is beyond the scope of this paper to inves-
tigate these higher-order effects, so a more conservative
pulse width of 1 ps is used in the preceding section. A larger
overall dispersion coefficient, on the other hand, means that
more photons or a higher nonlinearity are required for a soli-
ton to form, so the Raman effect may also become more
significant with a larger dispersion coefficient. The Raman

effect can be reduced by cooling the fiber and reducing the
number of thermal phonons �22�, if it becomes a significant
problem.

Further advances in optical fiber technology should be
able to increase the figure of merit by reducing loss, since the
specialty fibers assumed in Sec. IV B have a higher loss than
the usual transmission fibers by a factor of 2. Using �
=0.2 dB/km instead of 0.4 dB/km in Sec. IV B, for in-
stance, reduces the squeezing ratio to −4.7 dB. Spectral fil-
tering or frequency-dependent gain �23� provides another
way of controlling the Gordon-Haus effect, although it adds
another level of complexity to the experimental setup, and it
is beyond the scope of this paper to investigate how the
frequency-dependent dissipation or amplification might help
the quantum enhancement scheme. Finally, the design of the
setup assumed in Sec. IV B is not fully optimized, and fur-
ther optimization of parameters, fiber dispersion profiles, and
bandwidth narrowing strategy should be able to improve the
enhancement.

V. EFFECT OF LOSS ON THE TRANSMISSION
OF QUANTUM-ENHANCED TIMING INFORMATION

Provided that quantum enhancement of pulse position ac-
curacy can be achieved, the information still needs to be
transmitted through unavoidably lossy channels. It is hence
an important question to ask how loss affects the quantum-
enhanced information in optical information transmission
systems. Equation �43� governs the general evolution of the
timing jitter under the effects of loss, dispersion, and nonlin-
earity, but in order to estimate the relative magnitude of the
decoherence effects and gain more insight into the decoher-
ence processes, in this section Eq. �43� is explicitly solved
for various systems and compared with the standard quantum
limit.

A. Linear nondispersive systems

Without dispersion, the timing jitter increases only due to

the diffusive component 
T̂2�z��D. An analytic expression for


T̂2�z�� can then be derived from Eq. �43�, as �t�z� and
���z� remain constant,


T̂2�z�� = 
T̂2�0�� +
�t2�0�
N�z�

�1 − e−�z� . �61�

If the initial variance obeys coherent-field statistics—that is,


T̂2�0��=�t2�0� /N�0� according to Eq. �22�—the subsequent
jitter is


T̂2�z��coh =
�t2�0�
N�z�

�62�

and obeys the same coherent-field statistics but for reduced
photon number N�z�. This is consistent with intuition. On the
other hand, in the high-loss limit ��z�1�, the term
�t2�0� /N�z� is likely to dominate over the initial jitter


T̂2�0��, so in most cases the position of a significantly at-
tenuated pulse relaxes to coherent-field statistics independent
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of its initial fluctuation. This justifies the assumption in Sec.
IV that a laser pulse exiting a laser cavity has such statistics,
regardless of the quantum properties of the pulse inside the
cavity.

Equation �61� can be renormalized as

R�z� �

T̂2�z��


T̂2�z��SQL

= R�0�e−�z + 4�t2�0���2�0��1 − e−�z� .

�63�

When 
T̂2���t2 and 
	̂2����2, classical theory predicts
that 4�t2��2�1. Equation �63� then suggests that the rela-
tive increase in timing jitter is independent of the initial
squeezing ratio R�0�. This is nevertheless not true in general,
as �t may depend on both �� and R when the classical
theory fails. In Appendix C, the exact dependence of �t on
�� and R is calculated for a specific multiphoton state with
a Gaussian pulse shape called the jointly Guassian state. The
expression 4�t2��2 is given by

4�t2��2 =
R

N
+

�1 − 1/N�2

1 − 1/�NR�
, �64�

which results in the following exact expression for an initial
jointly Gaussian state:

R�z� = R�0�e−�z + �R

N
+

�1 − 1/N�2

1 − 1/�NR��z=0
�1 − e−�z� . �65�

For a large photon number �N�1� and moderate enhance-
ment �1
R�1/N�, 4�t2��2�1, as classical theory would
predict for a Gaussian pulse. In this regime, the quantum-
enhanced information is just as sensitive to loss as standard-
quantum-limited information. When R gets close to the
Heisenberg limit 1 /N, however, �t�� approaches infinity.
This is because maximal coincident-frequency correlations
are required to achieve the Heisenberg limit �1�, but heuris-
tically speaking, if the photons have exactly the same mo-
mentum, they must have infinite uncertainties in their rela-
tive positions, leading to an infinite pulse width �t. Owing to
the abrupt increase in 4�t2��2 when R approaches 1/N, the
quantum enhancement becomes much more sensitive to loss.
In the Heisenberg limit of R→1/N, �t→�, any loss com-
pletely detroys the timing accuracy and leads to an infinite
jitter, according to Eq. �65�.

B. Linear dispersive systems

If the system is lossy, dispersive, but linear, it is not dif-
ficult to show that

�t2�z� = �t2�0� + C�0��
0

z

dz�
�z�� + ��2�0���
0

z

dz�
�z���2

,

�66�

C�z� = C�0� + 2��2�0��
0

z

dz�
�z�� , �67�

��2�z� = ��2�0� . �68�

The following result can then be obtained from Eq. �43� after
some algebra,


T̂2�z�� = 
T̂2�0�� + 
T̂�0�	̂�0� + 	̂�0�T̂�0���
0

z

dz�
�z��

+ 
	̂2�0����
0

z

dz�
�z���2

+
�t2�z�
N�z�

�1 − e−�z� .

�69�

This result is similar to that in the previous section, except
for the presence of quantum dispersion and the dispersive
spread of the pulse width �t�z� that leads to increased jitter.

With initially coherent-field statistics, 
T̂2�0�� and 
	̂2�0��
are given by Eqs. �22� and �20�, respectively, while by simi-

lar arguments, the coherent-field statistics for 
T̂	̂+	̂T̂� is


T̂	̂ + 	̂T̂�coh =
C

N
. �70�

This leads to the following position variance for a pulse with
initially coherent-field statistics:


T̂2�z��coh =
�t2�z�
N�z�

, �71�

which still maintains the coherent-field statistics for the dis-
persed pulse width and the reduced photon number. In the
high-loss limit ��z�1�, the coherent-field statistics is again
approached regardless of the initial conditions.

For an initial jointly Gaussian quantum state, on the other
hand, the normalized version of Eq. �69� is

R�z� = �R�0� +
4

R�0�
�2�e−�z + �4�t2�0���2�0� + 4�2�

��1 − e−�z� , �72�

where � is the normalized effective propagation distance,

� � ��2�0��
0

z

dz�
�z�� , �73�

and 4�t2�0���2�0� is given by Eq. �64� evaluated at z=0. As
long as the loss is moderate so that e−�z�1−e−�z, quantum
dispersion, given by the term proportional �2 /R�0�, becomes
the dominant effect and overwhelms the initial enhancement
when � exceeds R�0� /2.

If the net dispersion �0
zdz�
�z�� is zero, both quantum and

classical dispersion are eliminated, and the jitter growth be-
comes identical to that in a nondispersive and linear system
given by Eq. �61�.

C. Solitonlike systems

The previous sections show that coherent-field statistics is
maintained in a linear system, but as Sec. IV clearly shows,
nontrivial statistics can arise from the quantum dynamics of
a nonlinear system. The complex evolution of �t�z�, C�z�,

MANKEI TSANG PHYSICAL REVIEW A 75, 063809 �2007�

063809-8



and ���z� in general prevents one from solving Eq. �43�
explicitly, except for special cases such as solitons.

If the dispersion is constant and the pulse propagates in
the fiber as a soliton, C�z� is zero, while �t�z� and ���z� can

be regarded as constant if 
T̂2���t2 and 
	̂2����2

throughout propagation. Equation �43� can then be solved
explicitly,


T̂2�z�� = 
T̂2�0�� + 
	̂2�0��
2z2 +
�t2�0�
N�0�

�e�z − 1�

+
2
2��2�0�

N�0�
� e�z − 1

�2 −
z

�
−

z2

2
� , �74�

where 
T̂�0�	̂�0�+	̂�0�T̂�0�� is asssumed to be zero for sim-

plicity. If 4
T̂2�0��
	̂2�0��= ��2 /9��1/N2�0�� is also assumed
for a soliton pulse for simplicity, Eq. �74� can be normalized
to give

R�z� = R�0�e−�z +
�4

81

1

R�0�
� z

�
�2

e−�z +
�2

12

�2

N�0�
�e�z − 1�

+
2�2

9

e−�z

�2 � e�z − 1

�2 −
z

�
−

z2

2
� . �75�

In the low-loss regime with ���1 and �z�1, Eq. �75� can
be further simplified,

R�z� � R�0� +
�4

81

1

R�0�
� z

�
�2

+
�2

12

�2

N�0�
��z� +

�2

27
� z

�
�2

��z� .

�76�

Quantum dispersion is again the dominant effect in this re-
gime, while decoherence effects are much smaller, by a fac-
tor of �z approximately.

Even if the net dispersion is zero and quantum dispersion
is compensated, the Gordon-Haus effect cannot be com-
pletely eliminated by dispersion management in the presence
of nonlinearity and may become significant, as the numerical
analysis in Sec. IV B shows. An order-of-magnitude estimate
of Gordon-Haus jitter can be performed by considering soli-
ton propagation in a constant negative dispersion fiber, just
as in the previous case, followed by a dispersion-
compensating fiber of length L� with positive dispersion co-
efficient 
�. If L� is short, the effective nonlinearity experi-
enced by the pulse in the second fiber can be neglected and
���z� can be regarded as constant. Assuming that 
L
+
�L�=0, the integral in Eq. �46� can be solved to give the
Gordon-Haus jitter,


T̂2�L + L���GH �
���2�0�

6N�0�

2L2�L + L�� �

���2�0�
6N�0�


2L3.

�77�

The normalized contribution to the squeezing ratio is there-
fore


T̂2�L + L���GH


T̂2�L + L���SQL

�
�2

54
� L

�
�2

��L� . �78�

Compared with the Gordon-Haus jitter at the end of the first
fiber given by the last term of Eq. �76�, dispersion manage-
ment cuts the jitter by half, but the expression maintains its
functional dependence on the parameters of the first fiber.
This estimate also justifies the use of Eq. �59� to estimate the
Gordon-Haus jitter at the end of the two fibers in Sec. IV C.
To minimize the impact of Gordon-Haus jitter on the
quantum-enhanced timing accuracy in a dispersion-managed
soliton system, the condition

L3 �
54

�2��2

�
�R �79�

is required.

VI. CONCLUSION

In conclusion, the decoherence effect by optical loss on
adiabatic soliton control and on the transmission of quantum-
enhanced timing information has been extensively studied. It
is found that an appreciable enhancement can still be
achieved by the soliton scheme using current technology,
despite an increase of timing jitter due to the presence of
loss. It is also found that the quantum-enhanced timing ac-
curacy should be much lower than the Heisenberg-limited
accuracy to avoid increased sensitivity to photon loss during
transmission, and the net dispersion in the transmission sys-
tem should be minimized in order to reduce quantum disper-
sion and the Gordon-Haus effect.

Although the most important pulse propagation effects
have been considered in this analysis, higher-order effects,
such as third-order dispersion, self-steepening, and Raman
scattering �14�, might provide further adverse impact on the
quantum enhancement if the optical pulse is ultrashort. In
particular, the inelastic Raman scattering process is expected
to be a significant source of decoherence for ultrashort pulses
�22�. It is beyond the scope of this paper to investigate these
higher-order effects, but they should be of minor importance
for picosecond pulses and the propagation distances consid-
ered in this paper.

Finally, it is worth noting that while this paper focuses on
optical pulses, the developed formalism is equally valid for
describing the transverse position and momentum of optical
beams �24� and the center-of-mass variables of Bose-
Einstein condensates �9�. Decoherence by loss of particles in
those systems can be studied using the formalism developed
in this paper and parameters specific to those systems.
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APPENDIX A: DERIVATION OF EXACT
HEISENBERG LIMITS

An exact Heisenberg limit can be derived if the inverse

photon-number operator N̂−1 is used instead of 1/N in the

definitions of T̂, 	̂, �t, and �� in Eqs. �9�, �11�, �14�, and
�15�, just as in Refs. �9,10�,

T̂� � N̂−1� dttÂ†Â , �A1�

	̂� � N̂−1� d��â†â , �A2�

�t� ��N̂−1� dtt2Â†Â
1/2

, �A3�

��� ��N̂−1� d��2â†â
1/2

. �A4�

These operators are well defined as long as the quantum state
has zero vacuum-state components �
0 � �̂ �0�=0�. Starting

from the Heisenberg uncertainty principle for T̂� and 	̂�,


T̂�2�
	̂�2� 


N̂−2�

4
, �A5�

and the inequality

�N̂−2� d�� d���� − ���2â†â�†ââ�
 
 0, �A6�

one can obtain the exact inequality


	̂�2� � ���2 �A7�

and the exact Heisenberg limit for the new position operator,


T̂�2�H =

N̂−2�
4���2 . �A8�

The difference between Eqs. �28� and �A8� is negligible for
small-photon-number fluctuations. The exact Heisenberg

limit on 
	̂�2� is similar.

APPENDIX B: NOISE STATISTICS

In this section the expression 
ŜT�z�ŜT�z��� in Eq. �38� is

calculated. The derivations of 
Ŝ	�z�Ŝ	�z��� in Eq. �39� and


ŜT�z�Ŝ	�z��+ Ŝ	�z�ŜT�z��� in Eq. �40� are similar. Substitut-
ing Eq. �35� into Eq. �38� gives


ŜT�z�ŜT�z��� =
1

NN�
� dt� dt�tt��
ŝ†Âŝ�†Â�� + 
ŝ†ÂÂ�†ŝ��

+ 
Â†ŝÂ�†ŝ�� + 
Â†ŝŝ�†Â��� , �B1�

where N=N�z�, N�=N�z��, ŝ= ŝ�z , t�, Â= Â�z , t�, ŝ�= ŝ�z� , t��,

and Â�= Â�z� , t��. If the noise reservoir is in the vacuum
state, ŝ �0reservoir�= 
0reservoir � ŝ†=0, so only the last term in Eq.
�B1� is nonzero,


ŜT�z�ŜT�z��� =
1

NN�
� dt� dt�tt�
Â†ŝŝ�†Â��

=
1

NN�
� dt� dt�tt��
Â†Â�����z − z��

���t − t�� + 
Â†ŝ�†ŝÂ���

=
��t2

N
��z − z��

+
1

NN�
� dt� dt�tt�
Â†ŝ�†ŝÂ�� . �B2�

The first term on the right-hand side of Eq. �B2� is the de-
sired result, while the second term can be rewritten as

1

NN�
� dt� dt�tt�
Â†ŝ�†ŝÂ��

=
1

NN�
� dt� dt�tt�
�Â†, ŝ�†��ŝ,Â��� . �B3�

If the system is linear, the commutator between ŝ and Â is

always zero �13�, but because ŝ does not commute with Â†

and Â is coupled to Â† by the nonlinear term in Eq. �31�, ŝ

may fail to commute with Â. That said, it can be argued that
the optical field operator must always commute with future
noise operators due to causality and the infinitesimally short
memory of ŝ,

�Â†, ŝ�†� = 0 if z � z�, �B4�

�ŝ,Â�� = 0 if z � z�, �B5�

so Eq. �B3� can be nonzero only at z=z�. The commutator

between ŝ and Â at z=z� due to the parametric coupling of Â

and Â† can be estimated by a perturbative technique. Con-
sider an integral form of Eq. �31� with the nonlinear term and
the Langevin noise term only,

Â�z + �z� = Â�z� + �
z

z+�z

dz��i�Â†�z��Â�z��Â�z�� + ŝ�z��� ,

�B6�

and Â†�z�� given by the Hermitian conjugate of Eq. �B6�,

Â†�z�� = Â†�z� + �
z

z�
dz��− i�Â†�z��Â†�z��Â�z�� + ŝ†�z��� .

�B7�

The commutator between ŝ and Â at z+�z becomes
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�ŝ�z + �z�,Â�z + �z��

= i��
z

z+�z

dz��ŝ�z + �z�,Â†�z���Â�z��Â�z�� . �B8�

ŝ�z+�z� commutes with Â�z�� because z+�z�z�, while it

fails to commute with Â†�z�� because Â†�z�� given by Eq.
�B7� depends explicitly on ŝ†. Thus, in the leading order of
�z,

�ŝ�z + �z�,Â�z + �z��

� i��
z

z+�z

dz��
z

z�
dz��ŝ�z + �z�, ŝ†�z���Â�z��Â�z�� ,

�B9�

which approaches 0 in the limit of �z→0. Hence ŝ com-

mutes with Â at z=z� and the position noise is given only by
the first term on the right-hand side of Eq. �B2�, resulting in
Eq. �38�.

APPENDIX C: THE JOINTLY GAUSSIAN STATE

A Fock state can be expressed as �13,25�

�N� =� d�1 ¯� d�N���1, . . . ,�N���1, . . . ,�N�,

=� dt1 ¯� dtN��t1, . . . ,tN��t1, . . . ,tN� , �C1�

where the spectral and temporal eigenstates are given by

��1, . . . ,�N� �
1

	N!
â†��1� ¯ â†��N��0� , �C2�

�t1, . . . ,tN� �
1

	N!
Â†�t1� ¯ Â†�tN��0� . �C3�

Theses states are eigenstates of the following operators rel-
evant to our purpose:

	̂��1, . . . ,�N� = � 1

N
�
n=1

N

�n���1, . . . ,�N� , �C4�

T̂�t1, . . . ,tN� = � 1

N
�
n=1

N

tn��t1, . . . ,tN� , �C5�

1

N
� d��2â†â��1, . . . ,�N� = � 1

N
�
n=1

N

�n
2���1, . . . ,�N� ,

�C6�

1

N
� dtt2Â†Â�t1, . . . ,tN� = � 1

N
�
n=1

N

tn
2��t1, . . . ,tN� . �C7�

���1 , . . . ,�N� is the spectral multiphoton probability ampli-
tude, and it is related to the temporal probability amplitude

��t1 , . . . , tN� by the N-dimensional Fourier transform in the
slowly varying envelope regime. Both amplitudes should
also satisfy normalization and boson symmetry. To study
temporal quantum enhancement, it is convenient to define
the probability amplitude as a jointly Gaussian function �25�,

���1, . . . ,�N� = C exp�−
1

4B2� 1

N
�
n=1

N

�n�2

−
1

4b2 �
n=1

N ��n −
1

N
�
m=1

N

�m�2� , �C8�

��t1, . . . ,tN� = C� exp�− N2B2� 1

N
�
n=1

N

tn�2

− b2�
n=1

N �tn −
1

N
�
m=1

N

tm�2� , �C9�

where B and b are arbitrary and real constants, and C and C�

are normalization constants. Explicit expressions for 
	̂2�,

T̂2�, ��2, and �t2 can be obtained using Eqs. �C4�–�C7� and
Appendix B of Ref. �25�,


	̂2� = B2, �C10�


T̂2� =
1

4N2B2 , �C11�

��2 = B2 + �1 −
1

N
�b2, �C12�

�t2 =
1

4N2B2 + �1 −
1

N
� 1

4b2 . �C13�

In the limit of b→0, 
T̂2� reaches the Heisenberg limit,


T̂2� =
1

4N2��2 , �C14�

and the quantum state can be written as a state of photons
with maximal coincident-frequency correlations,

�N� �� d� exp�−
�2

4B2���, . . . ,�� . �C15�

On the other hand, when B2=b2 /N, 
T̂2� is at the standard
quantum limit,


T̂2� =
1

4N��2 , �C16�

the quantum state has only one excited Gaussian mode �25�,
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�N� �� d�1 ¯� d�N�
n=1

N

exp�−
�n

4b2���1, . . . ,�N�

� �� d� exp�−
�

4b2�â†����N

�0� , �C17�

and therefore also satisfies the coherent-field statistics

�12,13�. These limits and the corresponding quantum states
are consistent with those suggested in Ref. �1�. With Eqs.
�C12� and �C13�, the pulse width �t can be determined ex-
plicitly in terms of �� and the squeezing ratio R
=��2 / �NB2�,

�t2 =
1

4��2�R

N
+

�1 − 1/N�2

1 − 1/�NR�� . �C18�
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