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I propose a general quantum hypothesis testing theory that enables one to test hypotheses about any

aspect of a physical system, including its dynamics, based on a series of observations. For example, the

hypotheses can be about the presence of a weak classical signal continuously coupled to a quantum sensor,

or about competing quantum or classical models of the dynamics of a system. This generalization makes

the theory useful for quantum detection and experimental tests of quantum mechanics in general. In the

case of continuous measurements, the theory is significantly simplified to produce compact formulas for

the likelihood ratio, the central quantity in statistical hypothesis testing. The likelihood ratio can then be

computed efficiently in many cases of interest. Two potential applications of the theory, namely, quantum

detection of a classical stochastic waveform and test of harmonic-oscillator energy quantization, are

discussed.
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Testing hypotheses about a physical system by observa-
tion is a fundamental endeavor in scientific research.
Observations are often indirect, noisy, and limited; to
choose the best model of a system among potential candi-
dates, statistical inference is the most logical way [1,2] and
has been extensively employed in diverse fields of science
and engineering.

Many important quantummechanics experiments, such as
tests of quantummechanics [3,4], quantumdetection ofweak
forces or magnetic fields [5], and quantum target detection
[6,7], are examples of hypothesis testing. To test quantum
nonlocality, for instance, one should compare the quantum
model with the best classical model; Bell’s inequality and its
variations, which impose general bounds on observations of
local-hidden-variable systems, have been widely used in this
regard [3,4]. The analyses of experimental data inmany such
tests have nonetheless been criticized by Peres [8]: The
statistical averages in all these inequalities can never be
measured exactly in a finite number of trials. One should
use statistical inference to account for the uncertainties and
provide an operational meaning to the data.

Another important recent development in quantum
physics is the experimental demonstration of quantum
behavior in increasingly macroscopic systems, such as
mechanical oscillators [9,10] and microwave resonators
[11]. To test the quantization of the oscillator energy
[10,11], for example, the use of quantum filtering theory
has been proposed to process the data [12], but testing
quantum behavior by assuming quantum mechanics can
be criticized as begging the question. An ingenious pro-
posal by Clerk et al. considers the third moment of energy
as a test of energy quantization [13]. Like the correlations
in Bell’s inequality, however, the third moment is a statis-
tical average and cannot be measured exactly in finite time.
Again, statistical inference should be used to test the

quantum behavior of a system rigorously, especially
when the measurements are weak and noisy. The good
news here is that the error probabilities for hypothesis
testing should decrease exponentially with the number of
measurements when the number is large [2], so one can
always compensate for a weak signal-to-noise ratio by
increasing the number of trials.
Quantum hypothesis testing was first studied by Holevo

[14] and Yuen et al. [15]. Since then, researchers have
focused on the use of statistical hypothesis testing tech-
niques for initial quantum state discrimination [6,16]. Here
I propose a more general quantum theory of hypothesis
testing for model discrimination, allowing the hypotheses
to be not just about the initial state but also about the
dynamics of the system under a series of observations.
This generalization makes the theory applicable to virtu-
ally any hypothesis testing problem that involves quantum
mechanics, including tests of quantum dynamics [4] and
quantum waveform detection [5].
In the case of continuous measurements with Gaussian

or Poissonian noise, the theory is significantly simplified to
produce compact formulas for the likelihood ratio, the
central quantity in statistical hypothesis testing. The for-
mulas enable one to compute the ratio efficiently in many
cases of interest and should be useful for numerical ap-
proximations in general. Notable prior work on continuous
quantum hypothesis testing is reported in Refs. [17,18],
which study state discrimination or parameter estimation
only and have not derived the general likelihood-ratio
formulas proposed here.
To illustrate the theory, I discuss two potential applica-

tions, namely, quantum detection of a classical stochastic
waveform and test of harmonic-oscillator energy quantiza-
tion. Waveform detection is a basic operation in future
quantum sensing applications, such as gravitational-wave
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detection, optomechanical force detection, and atomic
magnetometry [5]. Tests of energy quantization, on the
other hand, have become increasingly popular in experi-
mental physics due to the rapid recent progress in device
fabrication technologies [9–11]. Besides these two appli-
cations, the theory is expected to find wide use in quantum
information processing and quantum physics in general,
whenever new claims about a quantum system need to be
tested rigorously.

Statistical hypothesis testing entails the comparison of
observation probabilities conditioned on different hypoth-
eses [1,2]. To test two hypotheses labeled H 0 and H 1

using an observation record Y, the observer splits the
observation space into two parts Z0 and Z1; when Y falls
in Z0, the observer choosesH 0, and when Y falls in Z1, the
observer chooses H 1. The error probabilities are then
P01 �

R
Z0
dYPðYjH 1Þ and P10 �

R
Z1
dYPðYjH 0Þ. All

binary hypothesis testing protocols involve the computa-
tion of the likelihood ratio, defined as

� � PðYjH 1Þ
PðYjH 0Þ

: (1)

The ratio is then compared against a threshold � that
depends on the protocol; one decides on H 1 if � � �
and H 0 if �<�. For example, the Neyman-Pearson
criterion minimizes P01 under a constraint on P10, while
the Bayes criterion minimizes aP01 þ bP10, a and b being
arbitrary positive numbers. For multiple independent trials,
the final likelihood ratio is simply the product of the ratios.

In most cases, the error probabilities are difficult to
calculate analytically and only bounds, such as the
Chernoff upper bound [2], may be available, but the
likelihood ratio can be used to update the posterior hy-
pothesis probabilities from prior probabilities P0 and P1

via PðH 1jYÞ ¼ P1�=ðP1�þ P0Þ and PðH 0jYÞ ¼
P0=ðP1�þ P0Þ and therefore quantifies the strength of
evidence for H 1 against H 0 given Y [1]. Generalization
to multiple hypotheses beyond two is also possible by
computing multiple likelihood ratios or the posterior prob-
abilities PðH jjYÞ [2].

Consider now two hypotheses about a system under
a sequence of measurements, with results Y �
ð�y1; . . . ; �yMÞ. For generality, I use quantum theory to
derive PðYjH jÞ for both hypotheses, but note that a clas-

sical model can always be expressed mathematically as a
special case of a quantum model. The observation proba-
bility distribution is [19]

PðYjH jÞ ¼ tr½J jð�yM; tMÞKjðtMÞ . . .
J jð�y1; t1ÞKjðt1Þ�jðt0Þ�; (2)

where �jðt0Þ is the initial density operator at time t0,

KjðtmÞ is the completely positive map that models the

system dynamics from time tm�1 to tm, J jð�ym; tmÞ is

the completely positive map that models the measurement
at time tm, and the subscripts j for �jðt0Þ, Kj, and J j

denote the assumption of H j for these quantities.

To proceed, let tm ¼ t0 þm�t and assume the following
Kraus form of J j for Gaussian measurements [19,20]:

J jð�y; tÞ� ¼
Z 1

�1
dð�zÞ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Sj�t

p exp

�
�ð�y� �zÞ2

2Sj�t

�

�Mjð�z; tÞ�My
j ð�z; tÞ;Mjð�z; tÞ

� 1

ð2�Qj�tÞ1=4
exp

�
� �z2

4Qj�t

�

�
�
1þ �z

2Qj

cj � �t

8Qj

cyj cj þ oð�tÞ
�
; (3)

where Qj is the noise variance of the inherent quantum-

limited measurement, Sj is the excess noise variance, cj is

a quantum operator depending on the measurement, and
oð�tÞ denotes terms asymptotically smaller than �t. The
map becomes

J jð�y; tÞ� ¼ ~Pð�yÞ
�
�þ �y

2R
ðcj�þ �cyj Þ

þ �t

8Qj

ð2cj�cyj � cyj cj�� �cyj cjÞ þ oð�tÞ
�
;

~Pð�yÞ � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�R�t

p exp

�
� �y2

2R�t

�
;

R� Qj þ Sj: (4)

I assume that the total noise variance R is independent of
the hypothesis to focus on tests of hidden models rather
than the observation noise levels. ~Pð�yÞ then factors out of
both the numerator and denominator of the likelihood ratio
and cancels itself.
Taking the continuous time limit using Itō calculus with

�y2 ¼ R�tþ oð�tÞ, the likelihood ratio becomes � ¼
trf1=trf0, with fj obeying the following stochastic differ-

ential equation:

dfj ¼ dtLjfj þ dy

2R
ðcjfj þ fjc

y
j Þ

þ dt

8Qj

ð2cjfjcyj � cyj cjfj � fjc
y
j cjÞ (5)

andLj being the Lindblad generator originating fromKj.

Equation (5) has the exact same mathematical form as the
linear Belavkin equation for an unnormalized filtering
density operator [21], but beware that fj represents the

state of the system only if H j is true; I call fj an assump-

tive state.
To put� in a form more amenable to numerics, consider

the stochastic differential equation for trfj:

dtrfj ¼ trdfj ¼ dy

2R
trðcjfj þ fjc

y
j Þ ¼

dy

R
�jtrfj; (6)

where

�j � 1

trfj
tr

�cj þ cyj
2

fj

�
(7)
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is an assumptive estimate; it is the posterior mean of the

observable ðcj þ cyj Þ=2 only if H j is true. The form of

Eq. (6) suggests that it can be solved by taking the
logarithm of trfj, i.e., d lntrfj ¼ ðdtrfjÞ=trfj �
ðdtrfjÞ2=2ðtrfjÞ2 ¼ dy�j=R� dt�2

j=2R, resulting in

lntrfjðTÞ ¼
Z T

t0

dy

R
�j �

Z T

t0

dt

2R
�2

j ; (8)

with the dy integral being an Itō integral. � becomes

�ðTÞ ¼ exp

�Z T

t0

dy

R
ð�1��0Þ�

Z T

t0

dt

2R
ð�2

1��2
0Þ
�
: (9)

This compact formula for the likelihood ratio is the quan-
tum generalization of a similar result by Duncan and
Kailath in classical detection theory [22]. Generalization
to the case of vectoral observations with noise covariance
matrix R is trivial; the result is simply Eq. (9) with dy�j=R

replaced by dy>R�1�j and �2
j=R by �>

j R
�1�j.

For continuous measurements with Poissonian noise, a
formula for � can be derived similarly [23]:

�ðTÞ ¼ exp

�Z T

t0

dy ln
�1

�0

�
Z T

t0

dtð�1 ��0Þ
�
; (10)

�j � 1

trfj
trð�jc

y
j cjfjÞ; (11)

dfj ¼ dtLjfj þ ðdy� �dtÞ
�
�j

�
cjfjc

y
j � fj

�

þ dt

2
ð2cjfjcyj � cyj cjfj � fjc

y
j cjÞ; (12)

where 0<�j � 1 is the quantum efficiency, � can be any

positive number, and Eqs. (11) and (12) form a quantum
filter for Poissonian observations [20,21]. Equation (10)
generalizes a similar classical result by Snyder [24].

Equations (9) and (10) show that continuous hypothesis
testing can be done simply by comparing how the obser-
vation process is correlated with the observable estimated
by each hypothesis, as schematically depicted in Fig. 1.

Since Eqs. (5) and (7) or Eqs. (11) and (12) have the
same form as Belavkin filters, one can leverage established
quantum filtering techniques to update the estimates and
the likelihood ratio continuously with incoming observa-

tions. If fj has a Wigner function that remains Gaussian in

time, the problem has an equivalent classical linear
Gaussian model [19–21] conditioned on each hypothesis,
and �j can be computed efficiently using the Kalman-

Bucy filter, which gives the mean vector and covariance
matrix of the Wigner function. The classical model also
enables one to use existing formulas of Chernoff bounds
for classical waveform detection [25] to bound the error
probabilities. It remains a technical challenge to compute
the quantum filter for problems without a Gaussian phase-
space representation beyond few-level systems, but the
quantum trajectory method should help cut the required
computational resources by employing an ensemble of
wave functions instead of a density matrix [19,26]. Error
bounds for such nonclassical problems also remain an
important open problem.
As an illustration of the theory, consider the detection of

a weak classical stochastic signal, such as a gravitational
wave or a magnetic field, using a quantum sensor [5], with
H 1 hypothesizing the presence of the signal and H 0 its
absence. Let x be a vector of the state variables for the
classical signal. One way to account for the dynamics of x
is to use the hybrid density operator formalism, which
includes x as auxiliary degrees of freedom in the system
[18,20,27]. The initial assumptive state f1ðt0Þ becomes
�ðt0ÞPðx; t0Þ, with �ðt0Þ being the initial density operator
for the quantum sensor and Pðx; t0Þ the initial probability
density of x. Equation (5) for f1 becomes

df1 ¼ dtL1ðxÞf1 þ dy

2R
ðcf1 þ f1c

yÞ

þ dt

8Q
ð2cf1cy � cycf1 � f1c

ycÞ; (13)

with �1 ¼
R
dxtr½ðcþ cyÞf1=2�=

R
dxtrf1. L1ðxÞ should

include the Lindblad generator for the quantum sensor, the
coupling of x to the quantum sensor via an interaction
Hamiltonian, and also the forward Kolmogorov generator
that models the classical dynamics of x [20]. c is an
operator that depends on the actual measurement of the
quantum sensor; for cavity optomechanical force detec-
tion, for example, c is the cavity optical annihilation op-
erator or can be approximated as the mechanical position
operator if the intracavity optical dynamics can be adia-
batically eliminated [28].
For the null hypothesis H 0, the classical degrees of

freedom need not be included. f0ðt0Þ is then �ðt0Þ, Eq. (5)
becomes

df0 ¼ dtL0f0 þ dy

2R
ðcf0 þ f0c

yÞ

þ dt

8Q
ð2cf0cy � cycf0 � f0c

ycÞ; (14)

and L0 includes only the Lindblad generator for the quan-
tum sensor. In most current cases of interest in quantum
sensing, the Wigner functions for f0 and f1 remain ap-
proximately Gaussian [5,20]. Kalman-Bucy filters can then

FIG. 1 (color online). Structure of the likelihood-ratio formu-
laes given by Eqs. (9) and (10).
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be used to solve Eqs. (13) and (14) for the assumptive
estimates, to be correlated with the observation process
according to Eq. (9) to produce�, and existing formulas of
Chernoff bounds for classical waveform detection [25] can
be used to bound the error probabilities. Ref. [23] contains
a simple example of such calculations.

Quantum smoothing can further improve the estimation
of x [20] in the event of a likely detection. Although
smoothing is not needed here for the exact computation
of �, it may be useful for improving the approximation of
� for non-Gaussian problems when the exact estimates are
too expensive to compute [29].

As a second example, consider the test of energy quan-
tization in a harmonic oscillator. To ensure the rigor of the
test, imagine a classical physicist who wishes to challenge
the quantum harmonic-oscillator model by proposing a
competing model based on classical mechanics. To devise
a good classical model, he first examines quadrature mea-
surements of a harmonic oscillator in a thermal bath. With
the harmonic time dependence on the oscillator frequency
removed in an interaction picture, the assumptive state f1
for the quantum hypothesis H 1 obeys

df1 ¼ �dt

2
½ðN þ 1Þð2af1ay � ayaf1 � f1a

yaÞ

þ Nð2ayf1a� aayf1 � f1aa
yÞ� þ dy

2R
ðcf1 þ f1cÞ

þ dt

8Q
ð2cf1c� c2f1 � f1c

2Þ; (15)

c ¼ q cos�þ p sin�; (16)

where a � ðqþ ipÞ= ffiffiffi
2

p
is the annihilation operator, q and

p are quadrature operators, c is a quadrature operator with
� held fixed for each trial to eliminate any complicating
measurement backaction effect, � is the decay rate of the
oscillator, and N is a temperature-dependent parameter.
This backaction-evading measurement scheme can be im-
plemented approximately by double-sideband optical
pumping in cavity optomechanics [5,30].

An equivalent classical model for the quadrature mea-
surements is

dx1 ¼ ��

2
x1dtþ ffiffiffiffi

�
p

dW1;

dx2 ¼ ��

2
x2dtþ ffiffiffiffi

�
p

dW2;

dy ¼ hðx1; x2Þdtþ dV;

(17)

h ¼ x1 cos�þ x2 sin�: (18)

where x1 and x2 are classical Ornstein-Uhlenbeck processes
and dW1, dW2, and dV are uncorrelated classical Wiener
noises with dW2

1 ¼ dW2
2 ¼ ðN þ 1=2Þdt and dV2 ¼ Rdt.

One can make f0 diagonal and embed it with a classical
distributiong0ðx1; x2Þ tomodel classical statistics; the equa-
tion for the classical assumptive state g0 is

dg0 ¼ �dt

2

�
@

@x1
ðx1g0Þ þ @

@x2
ðx2g0Þ

þ
�
N þ 1

2

��
@2g0
@x21

þ @2g0
@x22

��
þ dy

R
hg0: (19)

which is a classical Duncan-Mortensen-Zakai (DMZ)
equation [31]. The assumptive estimate �0 ¼R
dx1dx2hg0=

R
dx1dx2g0 should be identical to the quan-

tum one, as can be seen by transforming f1 to a Wigner
function and neglecting the measurement backaction that
does not affect the observations. � given the quadrature
observations then stays at 1, confirming that the twomodels
are indistinguishable.
In a different experiment on the same oscillator, the

energy of the oscillator is measured instead. Let

c ¼ q2 þ p2

2
¼ ayaþ aay

2
; (20)

which can be implemented approximately by dispersive
optomechanical coupling in cavity optomechanics
[5,10,12]. f1 still obeys Eq. (15), but with c now given
by Eq. (20) and different R and Q. The measurements are
again backaction-evading, as the backaction noise on the
oscillator phase does not affect the energy observations.
Given the prior success of the classical model, the

classical physicist decides to retain Eqs. (17) and modifies
only the observation as a function of x1 and x2:

h ¼ x21 þ x22
2

: (21)

The DMZ equation given by Eq. (19), assuming continuous
energy, should now produce an assumptive energy estimate
different from the quantum one; it is this difference that
should make the likelihood ratio increase in favor of the
quantum hypothesis with more observations, if quantum
mechanics is correct. Previous data analysis techniques that
consider only the quantum estimate [12] fail to take into
account the probability that the observations can also be
explained by a continuous-energy model and are therefore
insufficient to demonstrate energy quantization conclusively.
The non-Gaussian nature of the problem means that bounds
on the error probabilitiesmay be difficult to compute analyti-
cally and onemay have to resort to numerics, but one can also
use � as a Bayesian statistic to quantify the strength of the
evidence for one hypothesis against another [1].
Discussions with J. Combes, C. Caves, and A. Chia are
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