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ABSTRACT

Using the quantum Cramér—Rao bound from quantum estimation theory, we derive a fundamental quantum limit
on the sensitivity of a temperature measurement of a thermal astronomical source. This limit is expressed in terms
of the source temperature Ty, input spectral bandwidth Ar, and measurement duration 7, subject to a long
measurement time assumption 7Av > 1. It is valid for any measurement procedure that yields an unbiased
estimate of the source temperature. The limit agrees with the sensitivity of direct detection or photon counting, and
also with that of the ideal radiometer in the regime k7;/hvy >> 1 for which the Rayleigh—Jeans approximation is
valid, where v is the center frequency at which the radiometer operates. While valid across the electromagnetic
spectrum, the limit is especially relevant for radio astronomy in this regime, since it implies that no ingenious
design or technological improvement can beat an ideal radiometer for temperature measurement. In this
connection, our result refutes the recent claim of a radio astronomy technique with much-improved sensitivity over

the radiometer.
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1. INTRODUCTION

Astronomical observations are made over frequencies
ranging from radio and microwave frequencies through to
infrared, optical, X-ray, and gamma-ray frequencies. However,
measurement techniques and instruments vary widely over the
electromagnetic spectrum. At radio to millimeter-wave fre-
quencies, the chief measurement device in astronomy is the
radiometer (Dicke 1946). For thermal sources with photon flux
spectral density ng (in photons s™! Hz™!), related to the source
temperature Ty, and bandwidth Av (in Hz), the sensitivity of an
ideal radiometric measurement of ny follows the radiometer
equation

Var ™ 1

— , 1
n02 AvT M

where the left-hand side is the relative sensitivity (Variance/
squared mean) of the radiometer estimate A{™Y of ny and T is
the measurement time (Burke & Graham-Smith 2010).
Recently, Lieu et al. (2015) proposed a two-detector setup
similar to the intensity interferometer of Hanbury Brown &
Twiss (1957) and an estimator /i§"*P of the source temperature

that was claimed to achieve the relative sensitivity

Var AlKD) T
ar l’lg 1 samp + 1 . (2)
ng T noAvT

This equation is essentially the square of Equation (33) of Lieu
et al. (2015), with the following relabeling for consistency with
the rest of this paper. We have renamed T of Equation (33) of
Lieu et al. (2015) to Teamp—the time needed to obtain one
sample in their scheme. Their number of samples N is then
N =T /Tsamp, where here—and throughout this paper—T
stands for the fofal observation time needed to produce all
samples. We have also replaced their coherence time 7 with the
inverse of the bandwidth Av, which correspondence holds to

within a constant numerical factor for most thermal spectra of
interest. The sensitivity of Equation (2) is claimed under the
condition Tgamp < 1/Av, requiring fast, but not unfeasibly fast,
detection electronics. In principle however, Tgamp can be made
arbitrarily small relative to 1/Av < T, so that the second term
is the limiting one fundamentally. Since nyo AvT is the average
number of photons incident during the observation period,
Equation (2) shows a Poisson scaling of the relative sensitivity
characteristic of coherent-state sources. In particular, the
sensitivity decreases (i.e., the measurement improves) with
increasing source temperature, whereas the radiometer Equa-
tion (1) exhibits no dependence of the sensitivity on ng. In the
photon-rich RF regime, the scaling of Equation (2), if correct,
can offer orders-of-magnitude improvements in sensitivity.

In Zmuidzinas (2015), Zmuidzinas has examined in detail
the derivation of Equation (2), and concluded that the two-
detector scheme of Lieu et al. (2015) actually leads to a relative
sensitivity

Var <P o ng+ 1
ng noAvT’

3)

(see Equations (136) and (E21) of Zmuidzinas 2015), which is
in close agreement with the radiometer equation. Moreover,
Zmuidzinas has shown that simple photon counting (direct
detection)—to which the radiometer provides a close approx-
imation at radio frequencies for photon-rich thermal sources
(Nityananda 1994; Zmuidzinas 2003a)—gives an identical
sensitivity. In other words, the scheme of Lieu et al. (2015) is
no better than usual radiometry and does not provide the
purported increased sensitivity. We refer the reader to
Zmuidzinas (2015) for extensive discussion on the logical
fallacy leading to the incorrect result Equation (2) for the two-
detector scheme, and the physical reasons why that scheme
cannot work as claimed.
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Our focus in this paper is different. Insofar as the radiation
incident on a telescope of any kind, irrespective of the
wavelength region, is electromagnetic in nature, it is governed
by the quantum theory of radiation. Any measurement scheme
aimed at extracting information about a parameter such as ng
from the incident field is subject to fundamental limitations
following from the laws of quantum mechanics. The study of
the limitations on extracting information from quantum
systems using quantum measurements is the subject matter of
quantum estimation theory (Helstrom 1976; Holevo 2011),
which falls under the general rubric of quantum metrology
(Giovannetti et al. 2011) with close connections to the field of
quantum information (Nielsen & Chuang 2000).

Using the ideas of quantum estimation theory, in particular
the quantum Cramér—Rao bound, we show that any method of
estimating the noise temperature of a thermal source suffers
from a minimum relative sensitivity equal to the right-hand side
(ths) of Equation (3) in the limit of large observation times T
relative to the coherence time 7. = 1/Av of the incident
radiation. This result provides another refutation, independent
of the work of Zmuidzinas (2015), of the claim of Equation (2).
More importantly, however, it shows that the relative
uncertainty of Equation (3) cannot be beaten by any
conceivable measurement scheme, provided only that the
scheme yields an unbiased estimate in the sense that the
average of many estimates of the parameter converges to the
true value—we note that both photon counting and the scheme
of Lieu et al. (2015) lead to unbiased estimates and therefore
fall under the purview of the bound.

We briefly mention some recent work on quantum limits
for temperature measurement in different contexts from ours.
Marzolino & Braun (2013, 2015) have studied limits on the
accuracy of temperature measurement of quantum gases
using the quantum Cramér—Rao bound and found that energy
measurements are optimal. Jarzyna & Zwierz (2014) have
studied the local estimation accuracy—i.e., the accuracy of
estimating small deviations of temperature from a preset
fiducial value—of pyrometers, i.e., devices that measure the
total energy output of a thermal source. Under this
assumption, they find that the accuracy of local estimation
of temperature matches that from the quantum Cramér—Rao
bound. In this paper, the temperature range of the source is
not restricted and explicit account is also taken of the spatial
and temporal bandwidth constraints relevant to astronomical
observations.

This paper is organized as follows. In Section 2, we first
review the quantum theory of thermal radiation. We use a full
multi-temporal mode analysis to derive the density operator
of filtered thermal radiation in the limit of coherence time
7. < T, the observation time. This condition is typically
satisfied for both radio and optical astronomical observations.
The details of the calculation appear in the Appendix. In
Section 3, we briefly review the quantum Cramér—Rao bound
before applying the results of Section 2 to explicitly evaluate
it for filtered thermal radiation. We obtain the result that the
rths of Equation (3) is a fundamental quantum limit to the
relative sensitivity of any unbiased estimator of the source
temperature. We close with a discussion of the implications
of this result in Section 4.
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2. QUANTUM-MECHANICAL DESCRIPTION OF
INPUT FIELD

2.1. Filtered Thermal Radiation

Regardless of the frequency range, the electromagnetic field
input to an antenna or telescope is described by a time-
dependent positive-frequency field operator E(¢) (in units of

/photons s7!) given by
E(r) = f = 4, e 2 . (4)
0

Here, the {a,},~( are un-normalized single-frequency annihila-

tion operators satisfying = §(v — V') which implies

ay, a,
that [E(z), E' (z')] = &(t — ¢'). As in Lieu et al. (2015 and
Zmuidzinas (2015), we are assuming the input field to be of a
single polarization and in a single spatial mode to focus on the
central issue—the additional generality does not substantially
alter the result. If the input field is from a thermal source, it is a
Gaussian field (Shapiro 2009, Section III) with the quantum
expectation values (Mandel & Wolf 1995; Zmuidzinas 2003a):

(ay) =0, (5
(all al//> =0 (6)
<aj/ a,,> = nth(l/)é(l/ - z/), (7)

where ny, () is the mean occupation number in a thermal state
given by the Planck formula
1

hv
eix — 1

, (®)

nn(v) =

for T, the source temperature (in K) and k, Boltzmann’s
constant. In terms of field operators, these relations imply

(E®) =0, ©
K", 1) := (E(t)E(t")) = 0, (10)

KOG, 1 = (B OE@)) = [ mne ™0 v
(n

Here, the functions K@ (¢, #/) and K™ (¢, ¢') are the phase-
sensitive and (normally ordered) phase-insensitive correlation
functions of the field respectively (see Equations (61)—(62) of
Shapiro 2009). Note that these functions (as well as the mean)
depend only upon the time difference 7 := ¢/ — ¢, indicating the
statistical stationarity of the field. Using the Gaussian moment-
factoring theorem (Mandel & Wolf 1995), all higher moments
of the field operators can be expressed in terms of these
functions, which therefore constitute a complete description of
the field.

The thermal field described above is broadband. In practice,
a measurement operates on only a finite band of the input field
that is determined either by insertion of filters or the response
of the measuring device. We will accordingly assume that the
input is passed through a filter centered at frequency vy and
with a flat profile over the band [vy — Av/2, vy + Av/2].Ina
typical radio astronomy measurement, e.g., we may have
vo = 1 GHz, and Av a few MHz. Further, in radio astronomy,
the source temperature T is typically such that hvy/kT; < 1, so
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that the Rayleigh—Jeans approximation to Equation (8) may be
used (Burke & Graham-Smith 2010). As a further simplifica-
tion, we may assume that the mean occupation number of
Equation (8) is approximately flat in the band
[vo — Av/2, vy + Av/2] at the value ng ~ kT;/hvy. As a
result of the above assumptions, for the field at the output of the
filter, we replace ny () in Equations (7) and (11) by

kT,
nyg=— ifvelvy— Av/2, vy + Av/2
nw)=1"" huy [vo /2o /](12>

0 otherwise.
In this quasi-monochromatic regime, n(v) is essentially the

(dimensionless) power spectral density of the field, in that
multiplication by hv, gives the average power per unit

frequency (in W Hz™!) of the field.
The field at the output of the bandpass filter continues to
satisfy Equations (9) and (10), but Equation (11) is modified to

K™, t"y = K™ (1) = ng - Av sinc [Avr] e=2™07, (13)

where sinc (x) = sin(mx)/(w x) is the sinc function. The
coherence time 7. of the output radiation (Mandel 1959),

which is the approximate “width” of ’K (m (7-)‘, is then

e [ ot ar= [

and is also the separation between the peak of ‘K (@ (T)‘ at

K(”)(T) 2

K(”)(O)

1
dr = —, (14
T N (14)

7 =0 and the first zero. For the radio frequency example
above, we have 1, ~ 1 pus. In the optical regime, 7. is typically
much smaller even downstream of an optical filter, on the of
order of nanoseconds.

The measurement on the field takes place in a finite time
interval 7 of duration T, which we take to be [-7/2, T/2]. In
the remainder of the paper, we assume that the parameters
vo, Av (or %), and T are fixed and known, while ng (or
equivalently, T) is the single unknown parameter that we wish
to estimate. We further assume that 7. < 7', which is usually
the case for the detection of faint sources, for which 7 could
range from seconds to hours to days.

2.2. Modal Description

Quantum information and metrology using electromagnetic
fields (Helstrom 1976; Holevo 2011), and Gaussian quantum
information in particular (Olivares 2012; Weedbrook et al.
2012), is usually set up and studied on a finite set of modes that
are excited in the problem under consideration. In order to
obtain a modal description of the field from that in terms of its
mean and correlation functions in the previous subsection, we
expand the field in the measurement interval 7 in terms of a
complete orthonormal set of positive-frequency “Fourier-
series” traveling-wave modes given by

1 2mmt
— exp| —i ifte[-T/2,T/2
60 = | JT p[ ] [ I as)
0 otherwise,
form = 0, 1, 2, .... The modal annihilation operators
ap = foc E®¢,(dt, m=0,1,2,.. (16)
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then satisfy the (normalized) commutation relations

(@ a,f] = S (17)
As in standard quantum mechanics, the field state is described
by a density operator p (a positive semidefinite operator with
Tr p = 1) on a Hilbert space H = ®2, H,,, where H,, is the
(infinite-dimensional) Hilbert space of the mth mode. Our next
task is to obtain p.

Since E(r) is a Gaussian field, the density operator p is in a
so-called Gaussian state (Shapiro 2009; Holevo 2011). In
order to define Gaussian states, we need some notation. For
each m, we define the quadrature operators

¥ T
a, +a am — a
Gn = ——="5 Py = —== (18)
V2 V2i
satisfying the canonical commutation relations

9, 9,1 =p,-p,]=0 and [g,, p] = i6,,. Consider the
vector R = (R, Ry, ...) = (q, pi» 43> P»» ---) of quadrature
operators. The mean vector R in the state p is

R = (R), = (Tr (pR). Tr (pR2). ...) (19)
and the covariance matrix o has the (i, j)th matrix element

1 — — — —
E((R,- - Ri)(Rj - R_,-) + (Rj - R_,-)(R,- ~R)),

=Re {Tr p(R: - R)(R; - R})}.

0jj =

(20)

With this notation, a Gaussian state is a state whose Wigner
characteristic function

X, (6 =Tr [p exp(—¢" Q)| @

is of the Gaussian form (Olivares 2012)

X, (&) = exp

_itT QR — %gTQaQTg], 22)

where & = (fl(l), 13 m 1(2), 2(2), ...) is the vector of Fourier
variables corresponding to the phase-space coordinates of each
mode. The matrix

Q=0 w (23)

m

is block-diagonal in the 2 x 2 blocks

(0 1
w_(—l 0), 24)

with one block per mode.

From Equation (22), we see that a Gaussian state is
completely described by its mean and covariance matrix. To
calculate these for filtered thermal radiation, we must compute
the first- and second-order moments of the form ( a,,), (@, a,),

and <a;‘1 an> for each m and n. In the Appendix, we present the

detailed calculations for the above quantities in the long
observation time limit 7. < T'. The results are

(am) =0 (25)
(am an) =0 (26)
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m
vy — ?
T ~ L],
<am an> ~ n, rect A Omns (27)
where
1 if |x| <12

rect(x) = { (28)

0 otherwise

is the rectangle function. In other words, in this 7. < T limit,
we have <anT1 an> ~ ( for m = n and the average number of
photons

<a,j1 am> ~ny for me M = {[1/0 — %]T,

o _ Av
0 B

T+1, .., [1/0+ %JT} (29)

i.e,, in M:= TAv “approximately single-frequency” modes
that are within the bandwidth of the filter. Together with
Equations (25)—(26), Equation (29) implies that the covariance
matrix o of p is

g =

1,), 30
meM b ( 2) ( )

2 m¢M

2 1
2o+ 1 JIZJ

where 1, is the 2 x 2 identity matrix. This implies that
M = AvT of the modes (those in the set M defined in
Equation (29)) are in independent thermal states each with ng
photons on average given by (Olivares 2012):

Pth(no) =

] |k} (k|

i no
no + 1 =0\ 0 +1

_ ! Lexp[ﬂ] la)(al 2. (31)

T no no

In the first representation, py, (10) is a mixture of number states
with a Bose—Einstein distribution, while in the second, it is a
zero-mean circularly symmetric Gaussian distribution of
coherent states { |a) }, i.e., of the eigenstates of the annihilation
operator—a |a) = « |a)—of the relevant mode. The remain-
ing modes are all in the vacuum state |0) (0. Thus, the overall
state is

gmz[ ® psh'”kno)][ ® |0><m><"”<0|]. (32)
mem mg¢M

Since the modes m ¢ M carry no information about ny, it is
sufficient to make measurements on just the modes in the set
M, effectively reducing the problem to one involving a finite
number of modes.

3. THE QUANTUM LIMIT ON ESTIMATING SOURCE
TEMPERATURE

3.1. The Quantum Cramér—Rao Bound

The classical Cramér-Rao bound (Rao 1945; Cramér 1946;
Van Trees 2001) provides a lower bound on the variance Var 6

of any unbiased estimator 6 of an unknown parameter 6
indexing a family of probability distributions {F)} on a given
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sample space. An unbiased estimator of 6 is one that satisfies
E[0] = 0, where the statistical expectation value is taken with
respect to B). The Cramér—Rao bound is widely used to provide
limits on and benchmarks for the performance of communica-
tion and measurement systems (Van Trees 2001). It has also
found application in the design of astronomical instruments
(Zmuidzinas 2003b) and in measurements of the cosmic
microwave background (Yadav et al. 2007).

In a guantum estimation problem, instead of probability
distributions {R)}, we are provided with a family {p,} of
density operators of a given quantum-mechanical system
depending on the unknown parameter. The additional feature
of the quantum estimation problem over its classical counter-
part is the freedom of choosing the quantum measurement that
generates a probability distribution from p,. All possible
quantum measurements can be mathematically described by an
object called a positive-operator-valued measure (POVM)
(Helstrom 1976; Holevo 2011), which subsumes the well-
known observables of standard quantum mechanics. The
quantum Cramér—Rao bound (henceforth “q-CR bound”)
(Helstrom 1967, 1968, 1973, 1976; Holevo 2011) provides a
lower bound on the variance of any unbiased estimator 0 of a
parameter @ indexing a family of density operators {p,}
optimized over all possible POVMs subject to the unbiasedness
condition.

We simply state the result of the q-CR bound here, referring
to Helstrom (1967, 1968, 1973, 1976) and Holevo (2011) for
details. We are given a family {p,} of density operators
depending on the parameter of interest 6. The operator equation

py 1
50 E(Lepe + pyLo), (33)

has a unique Hermitian solution Ly = L, when pp has no zero
eigenvalues (Bhatia 2007). The operator Ly is called the

symmetric logarithmic derivative (SLD) in analogy with the
classical case. The quantity

Ip(0) = Tr (p, L§) = <L92> (34)

Po

is known as the quantum Fisher information and the q-CR
bound reads

Var § > L , (35)
1G]

and is valid for any unbiased estimator satisfying E[0] = 0,
where the expectation is over the probability distribution
induced by the POVM on the state p,.

3.2. Estimating Source Temperature

The q-CR bound was originally developed in the context of
quantum optical communication in the years following the
invention of the laser, so it was natural for the early work to
focus on the experimentally important Gaussian states of light,
particularly on the estimation of the mean vector (Equa-
tion (19)) of Gaussian states. The problem of estimating the
average photon number in a thermal state was also considered
by Helstrom (1968). Very recently, the estimation of a general
parameter indexing single-mode and multi-mode Gaussian
states has been considered by Pinel et al. (2013) and Monras
(2013), respectively.
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With the density operator for filtered thermal radiation now
at hand from our modal decomposition in Section 2.2, we may
invoke the required q-CR bound from Helstrom (1968),
Monras (2013), and Pinel et al. (2013). For completeness,
however, we re-derive the q-CR bound for estimating the
average photon number ng, to begin with, in a single-mode
thermal state p,,(ng). From the first representation in
Equation (31), we see that

N

U (36)

no + 1

Pth(”o) =

no + 1

where N=a'a=73"" k|k)(k| is the number operator.
Since ng > 0, py,(19) has no zero eigenvalues and a unique
SLD exists. To find it, we compute the derivative

Ipp(no) 1 N[ no N [ _no N 37)
Ong ("0 + 1)2 no| ng + 1 ng+ 1
P (10) 1 (38)
= 0 — .
B no(n() + 1) no + 1
Comparing with Equation (33), we obtain the SLD operator
1
Ly=—N . (39)
n()(no + 1) no + 1

Note that L,, commutes with p,, (n), reflecting the fact that the
{py(no)} commute with each other. The quantum Fisher
information is

)/ = (L} 40
ooy =(Liy) (40)
1 N2 2N
= <—2——+1> 41)
(I’lo + 1) o "o P (n0)
. 1 2<N>%)1h(n0) + <N>Pth("0) B 2<N>Pth("0) 1
(no + 1Y ng no
(42)
1
=—, (43)
I’lo(n() + 1)

where we have applied Gaussian moment factoring (Mandel &
Wolf 1995) to obtain Equation (42)—see also Equation (25) of
(Helstrom 1968) and Equation (19) of (Pinel et al. 2013) for
the final result.

According to Equation (32), the input field is the tensor
product of M = AvT modes each in the thermal state py, (n¢).
From the additivity of the quantum Fisher information for
tensor-product states (which follows directly from Equa-
tions (33)—(34)), we get the total Fisher information

15 (ng) = —=T (44)
no(ng + 1)
leading to the sought q-CR bound
no(no + 1
Var fig > Mol + 1) (45)

AvT
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valid for any unbiased estimator 7y for ny. The relative
sensitivity of any unbiased estimator 7y therefore satisfies

Var i n 1
0y 0o+

. 46
né /nOAVT (46)

This lower limit on the relative sensitivity of any unbiased
estimator of g is our main result. From Equation (12), we see
that the relative sensitivity of an unbiased estimator 7, of the
source temperature similarly obeys the limit

hvg

Varf; kT;
- > —. 47
2 47)

4. DISCUSSION

(count)
0

First, we note that the estimators 7 corresponding to
~ (LKD)

photon counting and the estimator 7 corresponding to the
two-detector scheme of Lieu et al. (2015) are unbiased
(Zmuidzinas 2015), therefore the q-CR bound derived above
applies to them. Equation (46) agrees with the relative
sensitivity of Equation (3) found by Zmuidzinas (2015) for
both estimators. It also agrees with the sensitivity of
Equation (1) for the ideal radiometer in the photon-rich
no > 1 regime. This is not surprising because in this limit, the
radiometer—which performs a heterodyne measurement fol-
lowed by post-processing to convert information on the two
quadratures into a photon-number or energy measurement—
essentially counts photons (Nityananda 1994; Zmuidzinas
2003a). However, the limit of Equation (46) is greater than
that of Equation (2) in the Tyamp < T < T regime for which
the benefit of the two-detector scheme is claimed. As such, it
provides a refutation of Equation (2) independent of that in
(Zmuidzinas 2015).

The g-CR limit Equations (46)—(47) says much more,
however. Recall that the q-CR bound is applicable to all
POVM measurements made on the input state subject to the
unbiasedness condition. Since any concrete measurement
scheme, ideal or non-ideal, corresponds mathematically to a
POVM, we have shown that no possible unbiased measurement
can improve on the sensitivity of Equations (46)—(47). This
sensitivity is therefore “future-proof” and cannot be improved
upon by an ingeniously designed measurement or by future
technological developments. Interestingly, when ny > 1, the
ideal (noiseless) radiometer already approaches this sensitivity
limit, making it near quantum-optimal.

This material is based on work supported by the Singapore
National Research Foundation under NRF grant No. NRF-
NRFF2011-07.

APPENDIX
CALCULATION OF MEAN AND COVARIANCE MATRIX
We calculate here the first and second-order moments <am>,

(am a,), and <a,fl a,1> for the filtered thermal radiation
described in Section 2.1. Using Equation (9), we get
<am> = <a,Il> = 0 so that

R =0. (48)
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Similarly, Equation (10) gives
(am an) = 0. (49)

Using Equation (13), we get

. 1 T2 pTR KOs g
) n)— " Lt
<am 4 > T j:T/Z -T2 (t. 1)
)
x exp[iw] dt dt' (50)

1 o7 T-1¢|
—— [ ac " ark)
2T J-1 —(T-I¢h

xem[i%+4<—f}nw+7

: ; ] (51)

no fT
= dc ex
2. T J-1 ¢ exp

T—I¢l . T .
Xf dT sinc | — exp[—127r T],
—(T-<D Tc

where we have changed variablesto( = ¢/ + tand 7 = ¢’ — t.
We now exploit the fact that the coherence time 7. < T, the
observation time. Consider a time duration c7, a few coherence
times long, where c is a small number, say ¢ ~ 5. We split the
integral in Equation (52) into three parts:

§ _ ng ff(chTC)
a, a,)= dC ex
( m > o ¢ exp

fii—;w -y

m—+n

vy —

(52)

fT*ICI
—(T-=I¢h

27
—lﬁ(m - n)¢

X dt sinc [L] exp[—i27r vy — mn T
Tc
no fT*CTc .277' fT*|C|
dC exp|—i—(@m — n
27.T J—(T-cr) G exp ZT( )6 —(T-¢])
x dr sinc | — exp| —i2m|vg — m+nT
Te 2T
nog T o T[]
+ f dC exp|—i—(@m — n }f
27.T JT—cr ¢ exp ZT( )6 —(T—I¢h
x dr sinc | = exp| —i2m|vy — mtn T]. (53)
Te 2T

Consider the first and third terms above. For any (, the inner
integrals in these terms range over an interval of size less than
or equal to 2c7. Since, sinc (x) < 1, the inner integral is
bounded in absolute value by 2c¢7.. The outer integral is over a
(-range of ¢, so each of these terms is bounded in absolute
value by noczrc/T. Since we are assuming 7. < T, we can
neglect these terms in this limit. On the other hand, the inner
integral in the second term ranges over a 7 interval around
7 = 0 that is equal to or greater than c7.. Since most of the area
under the sinc function is contained in the first few sidelobes,
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we can approximate, for |(| < T — c7,

T-I¢| . T . m+n
f dr sinc | — | exp| —i2m|vg — T
—(T=I¢h Te
2foo dr sinc | = exp| —i2m|vy — m—l—nT
—0 Tc 2T
m+n
vy —
= 7, rect —_r , 54)
Av
where
i <
rect(x) = {1 i x| = 12 (55)
0 otherwise

is the rectangle function. Evaluating the outer integral, again
using 7. < T, gives

U m

0— —

T
—" Smn- 56
A 60

<a,,Tl an> ~ p, rect
1%
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