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I. FUNDAMENTAL QUANTUM LIMIT ON TRANSVERSE RESOLUTION

In this Section, we give the details of the derivation of the QCRB for separation estima-

tion.

As in Eq. (4) of the main text, the quantum state of the electromagnetic field in the

image plane is given by the coherent-state decomposition

ρd = ∫
C2

d2A+ d2A− PNs(A) ∣ψA,d⟩ ⟨ψA,d∣. (1)

Here

PNs(A) = (
1

πNs

)
2

exp(−
∣A+∣

2
+ ∣A−∣

2

Ns

) , (2)

is the probability density of the source field amplitudes A = (A+,A−) and the conditional

state ∣ψA,d⟩ is an eigenvector of the image-plane field operator Ê(ρ, t) with eigenfunction

ψA,d(ρ, t) = [A+ψ(ρ − d/2) +A−ψ(ρ + d/2)] ξ(t), (3)

where d = (d,0). This eigenfunction is simply the semiclassical complex field amplitude that

results from the superposition of the images of the two sources conditioned on the amplitude

vector A.

In order to evaluate the fidelity F (ρd1 , ρd2) in Eq. (6) of the main text, we need to first

choose transverse spatial modes in which to express the quantum states ρd1 and ρd2 .
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A. Transverse spatial modes

For an arbitrary vector a = (ax, ay) in the image plane, consider the overlap function

δ(a) ∶= ∫
I

dρ ψ∗(ρ)ψ(ρ − a). (4)

The Cauchy-Schwarz inequality implies that ∣δ(a)∣ ≤ δ(0) = 1. We have

δ∗(a) = ∫
I

dρ ψ∗(ρ − a)ψ(ρ) (5)

= ∫
I

dρ ψ∗(ρ)ψ(ρ + a) (6)

= δ(−a). (7)

For an inversion-symmetric PSF, we can say more. Changing variables to σ = −ρ with

dσ = dρ, we have

δ∗(a) = ∫
I

dσ ψ∗(−σ)ψ(−σ + a) (8)

= ∫
I

dσ ψ∗(σ)ψ(σ − a) (9)

≡ δ(a), (10)

where we have used inversion-symmetry ψ(−ρ) = ψ(ρ) of the PSF in the last step. For such

PSFs, the overlap function is thus real-valued for all a ∈ I. We make the inversion-symmetry

assumption throughout this paper.

Since we are considering only the estimation of the x-component of the separation between

the sources, we slightly abuse the above notation to define the overlap for a scalar argument

as

δ(d) ∶= δ((d,0)). (11)

We then have

δ(d) = δ∗(d) = δ(−d) ≤ 1 (12)

for all values d of the x-separation.

Consider two different values d1 and d2 of the separation. For d1 = (d1,0), the functions

χ1(ρ) =
ψ(ρ − d1/2) + ψ(ρ + d1/2)

√
2N1

χ3(ρ) =
ψ(ρ − d1/2) − ψ(ρ + d1/2)

√
2N3

(13)
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with normalization constants given by

N1 = 1 + δ(d1), (14)

N3 = 1 − δ(d1), (15)

are orthonormal over the image plane I. The functions (13) will be two of our mode

functions. In like manner, for d2 = (d2,0), the functions

χ̃2(ρ) =
ψ(ρ − d2/2) + ψ(ρ + d2/2)

√
2N2

(16)

χ̃4(ρ) =
ψ(ρ − d2/2) − ψ(ρ + d2/2)

√
2N4

(17)

are orthonormal over the image plane with the normalization constants

N2 = 1 + δ(d2), (18)

N4 = 1 − δ(d2). (19)

Using (12), we can readily verify that χ̃2 is orthogonal to χ3 and χ̃4 is orthogonal to χ1.

However χ̃2 is not in general orthogonal to χ1 and neither is χ̃4 orthogonal to χ3. In order

to obtain an orthonormal set of transverse spatial modes, the Gram-Schmidt process can be

used to define

χ2(ρ) =
χ̃2(ρ) − µs χ1(ρ)

√
1 − µ2

s

, (20)

χ4(ρ) =
χ̃4(ρ) − µa χ3(ρ)

√
1 − µ2

a

, (21)

with

µs = ∫
I

dρχ∗1(ρ)χ̃2(ρ) =
δ [(d1 − d2)/2] + δ [(d1 + d2)/2]

√
N1N2

, (22)

µa = ∫
I

dρχ∗3(ρ)χ̃4(ρ) =
δ [(d1 − d2)/2] − δ [(d1 + d2)/2]

√
N3N4

. (23)

The set {χ1, χ2, χ3, χ4} is an orthonormal set of transverse spatial modes that span the

same space as {ψ(ρ±d1/2), ψ(ρ±d2/2)}. Note that inversion symmetry of the PSF implies

that χ1 and χ2 are symmetric with respect to inversion about ρ = 0 while χ3 and χ4 are

antisymmetric under inversion.
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B. Density operators ρd1 and ρd2

Equation (2) implies that the incoherent thermal source amplitudes A are circular-complex

Gaussian random variables satisfying the relations:

E[Aµ] = 0 (24)

E[AµAν] = 0 (25)

E[A∗
µAµ] = Ns (26)

E[A∗
+A−] = 0 (27)

for µ, ν ∈ {+,−} ranging over the two sources. Define the sum and difference amplitudes

S = A+ +A−, (28)

D = A+ −A− (29)

which satisfy the relations

E[S] = E[D] = 0

E[S2] = E[D2] = E[SD] = 0

E[S∗S] = E[D∗D] = 2Ns

E[S∗D] = 0

(30)

and are thus statistically independent circular-complex Gaussian random variables. Clearly,

specifying the pair (S,D) is equivalent to specifying A = (A+,A−). The random variables

∣A+∣
2

and ∣A−∣
2

are independent and are both distributed exponentially with mean Ns [1].

Analogously, the random variables ∣S∣
2

and ∣D∣
2

are also independent and are both dis-

tributed exponentially with mean 2Ns.

Consider the coherent-state decomposition (1) for ρd1 . Conditioned on the source ampli-

tudes, the eigenfunction (3) can be rewritten as

ψA,d1(ρ, t) =
⎛

⎝
S

√
N1

2
χ1(ρ) +D

√
N3

2
χ3(ρ)

⎞

⎠
ξ(t), (31)

in terms of the spatial modes defined in the previous subsection. Since S and D are i.i.d.

circular-Gaussian variables, we may write, given the P -representation (1) [2, 3]:-

ρd1 = ρth (N1Ns) ⊗ ∣0⟩ ⟨0∣ ⊗ ρth (N3Ns) ⊗ ∣0⟩ ⟨0∣, (32)
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where

ρth(N) =
∞

∑
n=0

N
n

(N + 1)n+1
∣n⟩ ⟨n∣ (33)

=
1

πN
∫
C

d2α exp(−
∣α∣

2

N
) ∣α⟩ ⟨α∣ (34)

is the single-mode thermal state of N average photons (written above in its number-state

and coherent-state decompositions). The four spatiotemporal modes in the above represen-

tation are respectively χ1(ρ) ξ(t), χ2(ρ) ξ(t), χ3(ρ) ξ(t), and χ4(ρ) ξ(t), and we have omitted

including an infinity of other spatiotemporal modes which are in the vacuum state for all

values of the separation and are not useful for estimating it.

Consider now the coherent-state decomposition (1) for ρd2 . Conditioned on the source

amplitudes, the eigenfunction (3) can be rewritten as

ψA,d2(ρ, t) =
⎛

⎝
S

√
N2

2
χ̃2(ρ) +D

√
N4

2
χ̃4(ρ)

⎞

⎠
ξ(t), (35)

=

⎧⎪⎪
⎨
⎪⎪⎩

S

√
N2

2
[µsχ1(ρ) +

√
1 − µ2

s χ2(ρ)] +D

√
N4

2
[µaχ3(ρ) +

√
1 − µ2

a χ4(ρ)]

⎫⎪⎪
⎬
⎪⎪⎭

ξ(t)

(36)

The unconditional density operator ρd2 can then be written in the same set of modes used

for writing (32), as follows:-

ρd2 = {Us [ρth (N2Ns) ⊗ ∣0⟩ ⟨0∣]U †
s} ⊗ {Ua [ρth (N4Ns) ⊗ ∣0⟩ ⟨0∣]U †

a} , (37)

where Us is the two-mode beam-splitter unitary (see, e.g., ref. [4]) whose action on coherent

states is

Us( ∣α⟩ ∣β⟩ ) ↦ ∣µsα −
√

1 − µ2
sβ⟩ ∣µsβ +

√
1 − µ2

sα⟩ (38)

and on the number state-vacuum product is

Us( ∣n⟩ ∣0⟩ ) ↦
n

∑
k=0

√

(
n

k
)µks (1 − µ

2
s)

n−k
2 ∣k⟩ ∣n − k⟩ . (39)

Similarly, Ua is the two-mode beamsplitter unitary whose action on coherent states is

Ua( ∣α⟩ ∣β⟩ ) ↦ ∣µaα +
√

1 − µ2
aβ⟩ ∣µaβ −

√
1 − µ2

aα⟩ (40)
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and on the number state-vacuum product is

Ua( ∣n⟩ ∣0⟩ ) ↦
n

∑
k=0

√

(
n

k
)µka (1 − µ

2
a)

n−k
2 ∣k⟩ ∣n − k⟩ . (41)

C. State fidelity

The quantum fidelity between ρd1 and ρd2 is given by

F (ρd1 , ρd2) = Tr
√√

ρd1ρd2
√
ρd1 . (42)

Since both density operators (32) and (37) factorize into a product of density operators on

the symmetric (spanned by the modes χ1(ρ) ξ(t) and χ2(ρ) ξ(t)) and the antisymmetric

modes (spanned by the modes χ3(ρ) ξ(t) and χ4(ρ) ξ(t)), we can mutliply the fidelities for

each pair.

Considering the symmetric modes first, let

r1 ∶=
N1Ns

1 +N1Ns

, (43)

r2 ∶=
N2Ns

1 +N2Ns

, (44)

so that the symmetric components of the density operators under each hypothesis are

ρ
(sym)
d1

= (1 − r1)
∞

∑
n=0

rn1 ∣n⟩ ⟨n∣ ⊗ ∣0⟩ ⟨0∣, (45)

ρ
(sym)
d2

= (1 − r2)
∞

∑
n=0

rn2 Us( ∣n⟩ ⟨n∣ ⊗ ∣0⟩ ⟨0∣)U †
s . (46)

Then

√

ρ
(sym)
d1

ρ
(sym)
d2

√

ρ
(sym)
d1

(47)

= (1 − r1)(1 − r2)
∞

∑
n,n′,n′′=0

r
n+n′′

2
1 rn

′

2 ∣n0⟩ ⟨n0∣Us ∣n′ 0⟩ ⟨n′ 0∣U †
s ∣n′′ 0⟩ ⟨n′′ 0∣, (48)

= (1 − r1)(1 − r2)
∞

∑
n,n′,n′′=0

r
n+n′′

2
1 rn

′

2 ∣n0⟩µn
′

s δnn′ µ
∗n′

s δnn′′⟨n
′′ 0∣ (49)

= (1 − r1)(1 − r2)
∞

∑
n=0

rn1 r
n
2 ∣µs∣

2n
∣n0⟩ ⟨n0∣, (50)
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where we have used Eq. (39) to evaluate the matrix elements in Eq. (48). Consequently,

F (ρ
(sym)
d1

, ρ
(sym)
d2

) = Tr

√√

ρ
(sym)
d1

ρ
(sym)
d2

√

ρ
(sym)
d1

(51)

=
(1 − r1)

1/2(1 − r2)
1/2

1 − ∣µs∣
√
r1 r2

(52)

= [
√

(1 +N1Ns) (1 +N2Ns) − ∣µs∣
√
N1N2Ns]

−1
. (53)

In similar fashion, we find

F (ρ
(asym)
d1

, ρ
(asym)
d2

) = [
√

(1 +N3Ns) (1 +N4Ns) − ∣µa∣
√
N3N4Ns]

−1
, (54)

resulting in the expression

F (ρd1 , ρd2) = [
√

(1 +Ns [1 + δ(d1)]) (1 +Ns[1 + δ(d2)]) −Ns∣δ [(d1 − d2)/2] + δ [(d1 + d2)/2] ∣]
−1

× [
√

(1 +Ns [1 − δ(d1)]) (1 +Ns [1 − δ(d2)]) −Ns∣δ [(d1 − d2)/2] − δ [(d1 + d2)/2] ∣]
−1

(55)

for the overall fidelity.

D. Quantum Cramér-Rao bound

Let d1 = d and d2 = d1 + ∆d. The quantum Fisher information (QFI) Kd on d is given by

[5, 6]

Kd = 8 × lim
∆d→0

1 − F (ρd, ρd+∆d)

(∆d)
2 = −4

∂2F (ρd1 , ρd2)

∂d2
2

∣
d2=d1

. (56)

Since the symmetric and antisymmetric modes are in tensor-product states, Kd is the sum

of the QFIs Ksym
d and Kasym

d from the respective subsystems [6]. Defining

γ(d) = δ′(d),

β(d) = γ′(d),
(57)

the QFI from the symmetric modes is found after some algebra to be:

K
sym
d = [β(d) − β(0)]Ns −

N2
s γ

2(d)

1 +Ns[1 + δ(d)]
. (58)

Similarly, the QFI from the antisymmetric modes is found to be

K
asym
d = −[β(d) + β(0)]Ns −

N2
s γ

2(d)

1 +Ns[1 − δ(d)]
, (59)
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giving a total QFI

Kd = K
sym
d +K

asym
d (60)

= −2β(0)Ns − 2γ2(d) [
(1 +Ns)N2

s

(1 +Ns)
2 −N2

s δ
2(d)

] , (61)

which is Eq. (7) of the main text. Here

β(0) = −∫
I

dρ ∣
∂ψ(ρ)

∂x
∣

2

≡ −(∆k2
x), (62)

For circularly symmetric PSFs, this quantity is independent of the direction of the x-axis

and is the mean-squared spatial bandwidth of the PSF.

II. FISHER INFORMATION LOWER BOUNDS FOR CONCRETE

MEASUREMENTS

In this Section, we give the derivation of the lower bound on the Fisher information for

direct imaging, Fin-SPADE, and Pix-SLIVER.

Consider a vector random variable Y = (Y1, . . . , YM)T ∈ RM whose probability density

PY ∣X(y∣x) depends on an unknown parameter x. The classical Fisher information (FI)

Jx[Y ] of Y on x [7] is typically difficult to compute unless the components of Y are

statistically independent. However, a general lower bound

Jx[Y ] ≥ µ̇TC−1 µ̇ (63)

was recently derived in [8]. Here µ = (⟨Y1⟩x , . . . , ⟨YM⟩x)
T is the mean observation vector,

C = ⟨(Y −µ)(Y −µ)T⟩x is the covariance matrix of Y , and µ̇ = ∂µ/∂x. All the above

quantities are functions of x. The bound (63) is very convenient as it depends only on the

first two moments of the observation vector, which are easier to compute. In contrast, the

FI Jx[Y ] depends on the full joint probability density of Y (conditioned on x).

We compute this lower bound for various measurements below. Since all the measure-

ments involve at most linear-optical processing prior to photodetection, the classicality (in

the sense of having a non-negative P -representation [2, 3]) of the incoming state ρd is pre-

served. It is well known that, for such states, the quantum theory of photodetection gives

the same quantitative statistics as the semiclassical theory of photodetection [2, 3]. Let

the input field E(ρ, t) be subjected to arbitrary linear-optics processing and the resulting
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output field Edet(ρ, t) impinge on an ideal continuum photodetector surface. Semiclassical

photodetection theory dictates that, conditioned on the source amplitudes A, the incident

field generates a space-time Poisson random process at the photodetector output with the

rate function (or intensity) ∣Edet(ρ, t)∣
2
. Unconditional statistics can then be obtained by

averaging over the source distribution using (2). We will follow this approach in the sequel.

A. Lower bound on direct imaging

Consider first the case of direct detection in the image plane with a pixelated detector

array centered at the origin and of width W in the x-direction. For simplicity, we assume

it to be infinite in the y-direction, but pixelated in the x-direction with Pd pixels of width

W /Pd. We assume ideal unity-quantum-efficiency and noiseless number-resolved photon

counting in each pixel. Let p ∈ {1, . . . , Pd} be the pixel index and let pixel p be defined by

the region

Ap = {(x, y) ∶ lp ≤ x ≤ rp,−∞ ≤ y ≤ ∞} (64)

of the image plane. The observation consists of the vector N = (N1, . . . ,NPd
)T of measured

counts in each pixel.

Conditioned on A, the intensity function IA(ρ, t) in the image plane is, using (3),

IA(ρ, t) = ∣ψA,d(ρ, t)∣
2

(65)

= {∣A+∣
2
∣ψ(ρ − d/2)∣

2
+ ∣A−∣

2
∣ψ(ρ − d/2)∣

2
+ 2Re [A∗

+A−ψ
∗(ρ − d/2)ψ(ρ + d/2)]} ∣ξ(t)∣

2
.

(66)

The conditional photocounts Np∣A on the detectors p ∈ {1, . . . , Pd} integrated over the obser-

vation interval [0, T ] are then independent Poisson random variables with the means

µp∣A = ∫

T

0
dt∫

Ap

dρ IA(ρ, t). (67)

We now suppose the PSF has the Gaussian form

ψG(ρ) =
1

(2πσ2)1/2
exp(−

∣ρ∣
2

4σ2
) , (68)
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although the treatment is readily generalized to arbitrary PSFs. We obtain

µp∣A = ∣A+∣
2
αp + 2Re (A∗

+A−)βp + ∣A−∣
2
γp, (69)

where

αp = Q(
lp + d/2

σ
) −Q(

rp + d/2

σ
) ,

βp = 2 exp(
−d2

8σ2
) [Q(

lp
σ
) −Q(

rp
σ
)] , (70)

γp = Q(
lp − d/2

σ
) −Q(

rp − d/2

σ
) ,

and

Q(x) =
1

√
2π
∫

∞

x
dt exp(

−t2

2
) (71)

is the Q-function.

The mean photocount µp = E[Np] = EA[µp∣A] is then

µp = Ns(αp + γp), (72)

where we have used eqs. (24)-(27). We then have

µ̇p =
∂µp
∂d

=
Ns

2
√

2πσ
{exp [

− (lp − d/2)
2

2σ2
] − exp [

− (rp − d/2)
2

2σ2
] + exp [

− (rp + d/2)
2

2σ2
] − exp [

− (lp + d/2)
2

2σ2
]} .

(73)

The (p, p′)-th element of the covariance matrix of N equals E[NpNp′] − µp µp′ . Now

E[NpNp′] = EA[µp∣A µp′∣A] (74)

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

EA[µp∣A]EA[µp′∣A] if p ≠ p′

EA[µ2
p∣A

] if p = p′.
(75)

Straightforward computations using the relations (24)-(27) and (69) give the matrix elements

Cpp′ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

N2
s (α

2
p + 2β2

p + γ
2
p) +Ns(αp + γp) if p = p′,

N2
s (αpαp′ + 2βp βp′ + γp γp′) if p ≠ p′.

(76)
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In obtaiing the elements of the covariance matrix, we have also used the fact that E[∣A+∣
4
] =

E[∣A−∣
4
] = 2N2

s , which follows from the exponential statistics of ∣A+∣
2

and ∣A−∣
2

(see Sec. I B).

Using eqs. (73) and (76), the lower bound (63) can be evaluated numerically for any given

system parameters – see Figs. 2, 4, and 6 of the main text. The limit of continuum image-

plane photodetection is achieved for Pd → ∞, but it was observed that the the FI lower

bound did not change discernibly for Pd ≳ 50, so Pd = 50 was used in plotting the direct

imaging curves in Figs. 2, 4, and 6 of the main text.

B. Lower bound on Fin-SPADE performance

Suppose the PSF has the Gaussian form

ψG(ρ) =
1

(2πσ2)1/2
exp(−

∣ρ∣
2

4σ2
) . (77)

As discussed in the main text, the Fin-SPADE measurement measures the photon number

in each Hermite-Gaussian mode TEMq0 (with profile ψq0(ρ)) of the image-plane field for

0 ≤ q ≤ Q over the interval [0, T ]. This results in a (Q + 1)-vector N = (N0, . . . ,NQ)
T of the

number of counts in each mode. The moments of N can be found using the semiclassical

photodetection theory as follows.

Conditioned on A, the amplitude Bq∣A in the q-th channel can be written (cf. Eq. (11) of

the main text):-

Bq∣A = ∫

T

0
dt∫

I
dρψA,d(ρ, t)ψ

∗
q0(ρ) ξ

∗(t). (78)

As shown in [9], the integrals may be associated to the probability amplitudes of a

coherent state in the Fock basis so that

Bq∣A =
κq/2 exp(−κ/2)

√
q!

Rq, (79)

where

Rq =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

S (if q even)

D (if q odd),
(80)

and

κ =
d2

16σ2
. (81)
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Conditioned on A, the photocounts Nq∣A in each q-channel are independent Poisson ran-

dom variables with the means

µq∣A = ∣Bq∣A∣
2
=
κq exp(−κ)

q!
∣Rq ∣

2
(82)

≡ fq ∣Rq ∣
2
, (83)

where fq is the Poisson probability of mean κ. For the unconditional mean, we have

µq ∶= ⟨Nq⟩ = EA [µq∣A] (84)

= EA[fq ∣Rq ∣
2
] (85)

= 2Nsfq, (86)

since ∣S∣
2

and ∣D∣
2

are i.i.d. random variables distributed exponentially with mean 2Ns. We

also need

∂µq
∂d

=
Nsd

4σ2

κq−1[q − κ] exp(−κ)

q!
(87)

=
Nsd

4σ2
(fq−1 − fq), (88)

where we define f−1 = 0.

For the second moments, three cases arise. First, for q = q′, we have

E[N2
q ] = EA [E[N2

q∣A]] (89)

= EA [f 2
q ∣Rq ∣

4
+ fq ∣Rq ∣

2
] (90)

= 8N2
s f

2
q + 2Nsfq, (91)

where we have used the fact that Nq∣A is Poisson-distributed. If q ≠ q′ but q − q′ is even,

Rq = Rq′ , so we get

E[NqNq′] = EA [E[Nq∣ANq′∣A]] (92)

= EA [µq∣A µq′∣A] (93)

= EA [fq fq′ ∣Rq ∣
4
] (94)

= 8N2
s fq fq′ . (95)
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If q ≠ q′ and q − q′ is odd, EA[∣Rq ∣
2
∣Rq′ ∣

2
] = EA[∣Rq ∣

2
]EA[∣Rq′ ∣

2
], so that

E[NqNq′] = EA [E[Nq∣ANq′∣A]] (96)

= EA [µq∣A µq′∣A] (97)

= EA [fq fq′ ∣Rq ∣
2
∣Rq′ ∣

2
] (98)

= 4N2
s fq fq′ . (99)

Thus, the covariance matrix C of N has the qq′ − th entry

Cqq′ =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

4N2
s f

2
q + 2Nsfq if q = q′,

4N2
s fq fq′ if q ≠ q′ and q − q′ is even,

0 if q ≠ q′ and q − q′ is odd.

(100)

From Eqs. (87) and (100), the lower bound (63) can be numerically evaluated, as displayed

in Fig. 4 of the main text.

C. Lower bound on Pix-SLIVER performance

Consider the Pix-SLIVER setup of Fig. 5 of the main text with identical detector arrays

in the symmetric (s) and antisymmetric (a) output ports. The overall dimensions of the

arrays are as in Sec. II A, except that we consider P pixels in each array. For a conservative

comparison, we take P < Pd. In addition, we also assume on-off (Geiger mode) detection in

each pixel, so that each component of the observation K = (K
(s)
1 , . . . ,K

(s)
P ,K

(a)
1 , . . . ,K

(a)
P )

is 0 (if the corresponding pixel did not fire) or 1 (if it did). In contrast, we allowed number-

resolved detection in direct imaging (see Sec. II A).

We now assume that the PSF is symmetric relative to reflection about the y−axis, i.e.,

ψ(−x, y) = ψ(x, y) for all x and y – circular symmetry of the PSF is clearly a sufficient

condition for this to hold. Conditioned on A, the semiclassical field amplitude in the two

interferometer outputs is given by (cf. Eq. (13) of the main text):-

E
(s(a))
A (x, y, t) = [ψA,d(x, y, t) ± ψA,d(−x, y, t)] /2. (101)

Since the field Êv(ρ, t) is in vacuum, the open input port of the first beam splitter does not
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contribute to the field amplitude. We can rewrite the above as

E
(s)
A (x, y, t) =

S

2
[ψ(x + d/2, y, t) + ψ(x − d/2, y, t)] , (102)

E
(a)
A (x, y, t) =

D

2
[ψ(x − d/2, y, t) − ψ(x + d/2, y, t)] . (103)

where we have used the reflection symmetry of the PSF. The resulting conditional intensity

patterns on the two detectors are

I
(s)
A (x, y, t) =

∣S∣
2

4
[∣ψ(x − d/2, y, t)∣

2
+ ∣ψ(x + d/2, y, t)∣

2
]

+
∣S∣

2

2
Re [ψ∗(x − d/2, y, t)ψ(x + d/2, y, t)] , (104)

I
(a)
A (x, y, t) =

∣D∣
2

4
[∣ψ(x − d/2, y, t)∣

2
+ ∣ψ(x + d/2, y, t)∣

2
]

−
∣D∣

2

2
Re [ψ∗(x − d/2, y, t)ψ(x + d/2, y, t)] . (105)

The integrated intensity I
(α)

p∣A
on pixel p ∈ {1, . . . , P} of the α ∈ {s, a} detector array over the

observation interval [0, T ] is then

I
(α)

p∣A
= ∫

T

0
dt∫

Ap

dρ I
(α)
A (x, y, t). (106)

Specializing to the Gaussian PSF (77), these integrals evaluate to

I
(s)

p∣A
=

∣S∣
2

4
[αp + γp + βp] ≡

∣S∣
2

4
f
(s)
p , (107)

I
(a)

p∣A
=

∣D∣
2

4
[αp + γp − βp] ≡

∣D∣
2

4
f
(a)
p , (108)

where αp, γp, and βp are defined in Eq. (70) and the above equations serve to define the

quantities {f
(α)
p }.

Conditioned on A, the probability of a detector click in the (α, p)-th pixel is simply the

probability that one or more photons impinge on the pixel:

E[Kα
p∣A] ≡ µ

(α)

p∣A
= 1 − exp(−I

(α)

p∣A
). (109)

Consequently,

µ
(α)
p ≡ E[Kα

p ] (110)

= EA [K
(α)

p∣A
] (111)

= 1 −EA [exp(−I
(α)

p∣A
)] (112)

=
f
(α)
p Ns

2 + f
(α)
p Ns

, (113)
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where we have used the fact that ∣S∣2 and ∣D∣2 are exponentially distributed with mean 2Ns

to evaluate the expectation over A. It follows that

µ̇
(α)
p =

2ḟ
(α)
p Ns

(2 + f
(α)
p Ns)

2 , (114)

for

ḟ
(s(a))
p =

1

2
√

2πσ
{exp [

− (lp − d/2)
2

2σ2
] − exp [

− (rp − d/2)
2

2σ2
] + exp [

− (rp + d/2)
2

2σ2
] − exp [

− (lp + d/2)
2

2σ2
]}

∓ (
d

2
√

2πσ2
) exp(

−d2

8σ2
) [Q(

lp
σ
) −Q(

rp
σ
)] . (115)

For the second moments E [K
(α)
p K

(α′)
p′ ], three cases arise. If p = p′ and α = α′,

E [K
(α)
p K

(α′)
p′ ] = E [K

(α)
p ] (116)

= EA[µ(α)p∣A
] (117)

= µ
(α)
p . (118)

If α ≠ α′ (so that the pixels are in different detector arrays), the independence of S and D

ensures that K
(α)
p and K

(α′)
p′ are independent also so that

E [K
(α)
p K

(α′)
p′ ] = µ

(α)
p µ

(α′)
p′ . (119)

Finally, if α = α′ but p ≠ p′,

E [K
(α)
p K

(α′)
p′ ] = EA [E [K

(α)

p∣A
K
(α)

p′∣A
]] (120)

= EA [µ
(α)

p∣A
µ
(α)

p′∣A
] (121)

= EA [(1 − exp(−I
(α)

p∣A
)) (1 − exp(−I

(α)

p′∣A
))] (122)

= 1 −
2

2 + f
(α)
p Ns

−
2

2 + f
(α)
p′ Ns

+
2

2 + (f
(α)
p + f

(α)
p′ )Ns

, (123)

where we again use the exponential distribution of ∣S∣2 and ∣D∣2 to evaluate the expectation

over A. From these second moments, means (113), and (114), the lower bound (63) can

be numerically evaluated, with the results displayed in Fig. 6 of the main text. Note that

Eq. (119) implies that the covariance matrix C is a direct sum of matrices for the symmetric
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and antisymmetric outputs, so that the lower bound (63) is also the sum of corresponding

terms – these are shown separately in Fig. 6 of the main text for the case of P = 40.
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