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We obtain the ultimate quantum limit for estimating the transverse separation of two thermal point
sources using a given imaging system with limited spatial bandwidth. We show via the quantum Cramér-
Rao bound that, contrary to the Rayleigh limit in conventional direct imaging, quantum mechanics does not
mandate any loss of precision in estimating even deep sub-Rayleigh separations. We propose two coherent
measurement techniques, easily implementable using current linear-optics technology, that approach the
quantum limit over an arbitrarily large range of separations. Our bound is valid for arbitrary source
strengths, all regions of the electromagnetic spectrum, and for any imaging system with an inversion-
symmetric point-spread function. The measurement schemes can be applied to microscopy, optical sensing,
and astrometry at all wavelengths.
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The Rayleigh criterion for resolving two incoherent
optical point sources [1] is the most widely used benchmark
for the resolving power of an imaging system. According to
it, the sources can be resolved by direct imaging only if they
are separated by at least the diffraction-limited spot size of
the point-spread function of the imaging system. While the
criterion is heuristic and does not take into account the
intensity of the sources or themeasurement shot noise, recent
work [2–5] has made it rigorous by taking as resolution
measure the classical Cramér-Rao lower bound (CRB) of
estimation theory [6] on the mean-squared error (MSE) of
any unbiased estimate of the separation of the sources using
spatially resolved image-plane photon counting. These
works showed that if the detected average photon number
per modeNs ≪ 1, the MSE of any unbiased estimator based
on direct imaging diverges as the source separation decreases
to 0 over an interval comparable to the Rayleigh limit. This
phenomenon, dubbed Rayleigh’s curse in Ref. [7], stems
from the indistinguishability between the photons coming
from the two sources and imposes a fundamental limitation
of direct imaging in resolving sources much closer than the
spot size, even when the measured photon number is taken
into account. Recent developments in far-field microscopy
[8] sidestep Rayleigh’s curse by preventing multiple sources
from emitting simultaneously, but control over the emission
properties of sources is unavailable in target sensing or
astronomical imaging.
While the development of novel quantum states of light

and measurement techniques has given rise to the vast field
of quantum imaging [9], fundamental quantum limits in
resolving two incoherent sources have been largely
neglected since the early days of quantum estimation
theory [10,11]. Recently, the coherent [12] and incoherent
[7] two-source resolution problems were revisited using the
quantum Cramér-Rao bound (QCRB) [11,13] that accounts

for all (unbiased) measurement techniques allowed by
quantum mechanics. Under a weak-source assumption
similar to that in Refs. [2–5], it was found in Ref. [7] that
the QCRB, unlike the CRB for direct imaging, showed no
dependence on the separation of the sources. Linear-optics-
based measurements that approach the bound were also
proposed [7,14]. Subsequent demonstrations of superreso-
lution [15–18] have substantiated the feasibility of these
proposals. Nevertheless, the classical treatments [2–5] and
the quantum treatment [7] neglect multiphoton coinciden-
ces and bunching, phenomena that figure prominently in
quantum optics [19]. While such an approximation leads
to correct conclusions for weak sources, e.g., at optical
frequencies [20], it is problematic for intense sources,
e.g., in the microwave to far-infrared regimes, for high-
temperature astronomical sources, and for optical demon-
strations using pseudothermal light generated from laser
sources [21]. As such, a quantum-optically rigorous der-
ivation of the resolution limit is as yet unavailable.
In this Letter, we solve these problems and obtain the

QCRB for estimating the separation of two thermal point
sources of arbitrary strength using rigorous quantum
optics and estimation theory and show that resolution is
not fundamentally compromised at sub-Rayleigh separa-
tions. We then propose two schemes that approach
the QCRB. The finite spatial-mode demultiplexing
(fin-SPADE) scheme performs photon counting in a finite
number of suitably chosen transverse spatial modes of
the field. The interferometric pixelated superlocalization
by image inversion interferometry (pix-SLIVER) scheme
uses pixelated detector arrays in the two interferometer
outputs. The two schemes approach the QCRB over
greater ranges of the separation as the number of
accessed modes (fin-SPADE) or the number of pixels
(pix-SLIVER) is increased.
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Source and system model.—Consider two thermal point
sources being imaged under paraxial conditions by a
spatially invariant unit-magnification imaging system
(Fig. 1)—such an assumption entails no essential loss of
generality [22]. We assume that the system’s amplitude
point-spread function (PSF) ψðρÞ½R I dρjψðρÞj2 ¼ 1� is
inversion symmetric, i.e., ψð−ρÞ¼ψðρÞ, where ρ¼ðx;yÞ
is the transverse coordinate in the image plane I. Most
imaging systems, e.g., those with circular or rectangular
entrance pupils, satisfy this assumption [22].
Two incoherent thermal point sources, each of effective

strength (average photon number) Ns [23], are described
by a pair of dimensionless amplitudes A ¼ ðAþ; A−Þ ∈ C2

with the joint probability density [19,24]:

PNs
ðAÞ ¼ ðπNsÞ−2 exp ½−ðjAþj2 þ jA−j2Þ=Ns�: ð1Þ

In order to focus on the essential physics of the problem,
we assume that the centroid (midpoint) of the sources is
imaged at the optical axis and that the line joining the
sources is aligned with the x axis, so that images of the
sources are centered at d� ¼ ð�d=2; 0Þ, respectively, in
the image plane. Estimating the centroid of two incoherent
sources by direct imaging is subject to much less stringent
bounds than the separation [2,7,11] and may be done
using a portion of the available signal [7]. We also assume
that only a single quasimonochromatic temporal mode
ξðtÞ½R T

0 dtjξðtÞj2 ¼ 1� is excited over the observation inter-
val ½0; T�. Extensions to multiple temporal modes can be
made using standard techniques [11].
Conditioned on the value of A, the electromagnetic field

in the image plane, described by the positive-frequency
field operator Êðρ; tÞ [25], is in a pure coherent state jψA;di
that is an eigenstate of Êðρ; tÞ with the eigenfunction
ψA;dðρ; tÞ given by

Êðρ; tÞjψA;di ¼ ψA;dðρ; tÞjψA;di; ð2Þ

ψA;dðρ; tÞ ¼ ½Aþψðρ − dþÞ þ A−ψðρ − d−Þ�ξðtÞ; ð3Þ

where we have used linearity and the spatial invariance of
the imaging system to write (3). The unconditional quan-
tum state ρd then has the P representation [19]

ρd ¼
Z

C2

d2Aþd2A−PNs
ðAÞjψA;dihψA;dj: ð4Þ

Fundamental quantum bound.—The quantum Fisher
information (QFI) Kd of the state family fρdg determines
the QCRB

E½ď − d�2 ≥ K−1
d ð5Þ

on the MSE of an unbiased estimator ď of the separation
derived from any quantum measurement [11,13,26]. Our
derivation of Kd proceeds by calculating the quantum
fidelity Fðρd1 ; ρd2Þ ¼ Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρd1

p
ρd2

ffiffiffiffiffiffi
ρd1

pp
between the

(noncommuting) states (4) for two neighboring separations
d1 and d2 and employing the relation

Kd ¼ 8 × lim
d1;d2→d

1 − Fðρd1 ; ρd2Þ
ðd1 − d2Þ2

ð6Þ

between the fidelity and the QFI [26,27]. The details of the
derivation are given in Ref. [28], with the result

Kd ¼ −2βð0ÞNs − 2γ2ðdÞ
� ð1þ NsÞN2

s

ð1þ NsÞ2 − δ2ðdÞN2
s

�

; ð7Þ

where

δðdÞ ¼
Z

I
dρψ�ðρÞψ(ρ − ðd; 0Þ) ð8Þ

is the overlap function of the PSF for translations in the
x direction, γðdÞ ¼ ∂δðdÞ=∂d, and βðdÞ ¼ ∂γðdÞ=∂d [30].
In particular,

−βð0Þ ¼
Z

I
dρ

�
�
�
�
∂ψðρÞ
∂x

�
�
�
�
2 ≡ ðΔk2xÞ; ð9Þ

the mean-squared spatial bandwidth of the PSF in the
x direction, and is independent of orientation for circular-
symmetric PSFs. The first term in (7)—identical to the
result in Ref. [7]—is independent of d and dominates in the
Ns ≪ 1 regime. For arbitrary Ns, this value is attained in
the large-d limit [γðdÞ → 0 as d → ∞] but also for d ¼ 0,
so that Rayleigh’s curse is evaded. The QFI suffers a dip at
intermediate values whose relative depth increases with
increasing Ns. This is the net effect of correcting the
overestimation of the single-photon probability and neglect
of multiphoton events in the weak-source model of Ref. [7].
The QFI (7) and a lower bound on the FI of spatially
resolved direct detection (see the following) are shown in
Fig. 2 for a system with the circular Gaussian PSF

FIG. 1. A spatially invariant imaging system. Point sources at
ð�d=2; 0Þ of the object plane O have images centered at
ð�d=2; 0Þ of the image plane I but spread out by the PSF of
the system.

PRL 117, 190801 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

4 NOVEMBER 2016

190801-2



ψGðρÞ ¼ ð2πσ2Þ−1=2 exp ½−jρj2=ð4σ2Þ�; ð10Þ

for which −βð0Þ ¼ 1=ð4σ2Þ.
The QFI can in principle be attained using multistep

measurements [31,32], but we now give two linear-optics
schemes that closely approach it.
Fin-SPADE.—For a system with the Gaussian PSF (10),

consider the separation of the image-plane field Êðρ; tÞ
into its components in the transverse electromagnetic
(TEMq0) Hermite-Gaussian (HG) basis [33] fψq0ðρÞgq
with ψGðρÞ≡ ψ00ðρÞ, followed by number-resolved but
not necessarily time-resolved photon counting over ½0; T� in
each of the modes with order 0 ≤ q ≤ Q. The coupling
to the TEMq0 modes can be accomplished (Fig. 3) in the
same way as SPADE [7]. Mathematically, fin-SPADE
implements a simultaneous measurement of the operators
fN̂q ¼ â†qâqgQq¼0 with

âq ¼
Z

T

0

dt
Z

I
dρÊðρ; tÞψ�

q0ðρÞξ�ðtÞ; ð11Þ

resulting in a (Qþ 1) vector N ¼ ðN0;…; NQÞT of the
number of counts in each mode.
The statistical correlations among the HG modes in the

state (4) make calculation of the FI J d½N� of fin-SPADE
difficult. We turn instead to a general lower bound
on the FI J x½Y� on an arbitrary parameter x of any vector
observation Y ¼ ðY1;…; YMÞT ∈ RM depending on x.
For μ ¼ ðhY1ix;…; hYMixÞT the mean vector and C ¼
hðY − μÞðY − μÞTix the covariance matrix of Y evaluated
at x, we have [34]

J x½Y� ≥ _μTC−1 _μ; ð12Þ
where _μ ¼ ∂μ=∂x. Formally similar expressions have
appeared in the quantum estimation literature [35].
The mean and covariance of N in the state ρd for the fin-

SPADE measurement can be calculated using semiclassical
photodetection theory [36] as detailed in Ref. [28]. The
resulting bound (12) is plotted in Fig. 4 for a representative
value of Ns ¼ 1.5 photons. Also shown is the lower bound
(12) on the FI of spatially resolved direct imaging (see also
Figs. 2 and 6 and Ref. [28] for details). Direct imaging is
near-quantum optimal for d≳ 2σ—in this regime, inter-
ference between the sources is minimal and the QCRB
follows that for localizing a single source [7,11]. We see
that measuring the first six HG modes already achieves the
quantum bound (7) over the range d ¼ 0–4σ and that

FIG. 2. The QFI of Eq. (7) (solid lines) and the lower bound of
Eq. (12) (dash-dotted lines) on spatially and number-resolved
direct imaging (DI) for the Gaussian PSF (10). The plots are
normalized to the respective maximum values Ns=2σ2 of the QFI
and are independent of the PSF half-width σ.

FIG. 3. Fin-SPADE. The image-plane field is coupled into a
multimode fiber and separated into its components in the
Hermite-Gaussian TEMq0 modes of order 0 ≤ q ≤ Q by evan-
escent coupling to single-mode fibers supporting those modes.
Detectors record the photon number in each mode.

FIG. 4. Fin-SPADE performance. The QFI (solid line), the
lower bound (12) on the FI of fin-SPADE (dashed lines) for
variousQ, and of DI (dash-dotted line). The Gaussian PSF (10) is
assumed, and Ns ¼ 1.5 photons. The plots are normalized to the
maximum valueNs=2σ2 of the QFI and are independent of σ. The
DI bound assumes a detector of width 17σ with Pd ¼ 50 pixels at
100% fill factor and is stable to increase in Pd. Number-resolving
unity-quantum-efficiency detectors are assumed for all the
measurement schemes.
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increasing Q widens the region of saturation of the
quantum bound.
Pix-SLIVER.—Consider a PSF that is reflection sym-

metric about the y axis, i.e., ψð−x; yÞ ¼ ψðx; yÞ, but
otherwise arbitrary. Figure 5 shows a schematic of pix-
SLIVER. Using an extra reflection in one arm of a balanced
Mach-Zehnder interferometer, we separate the image-plane
field into its symmetric (s) and antisymmetric (a) compo-
nents with respect to inversion of the image-plane field
operator in the x axis. The output field operators are

Ês or aðx; y; tÞ ¼ ½Êðx; y; tÞ � Êð−x; y; tÞ�=2
þ ½Êvðx; y; tÞ ∓ Êvð−x; y; tÞ�=2; ð13Þ

where Êvðρ; tÞ is the (vacuum-state) field operator entering
the empty port of the first beam splitter in Fig. 5. The two
outputs are detected using two detector arrays pixelated
along the x direction. Each array consists of P pixels of
equal x width. To show that superresolution is possible
without number-resolving detectors, we assume on-off
detection in each pixel. For a pixel p ∈ f1;…; Pg in the
α ∈ fs; ag array, such a measurement corresponds to

measuring the operator K̂ðαÞ
p ¼ fðN̂ðαÞ

p Þ, where

N̂ðαÞ
p ¼

Z
T

0

dt
Z

AðαÞ
p

dρÊðαÞ†ðρ; tÞÊðαÞðρ; tÞ ð14Þ

is the total photon number operator measured over the pixel

area AðαÞ
p of array α, and fðxÞ ¼ 0 if x ¼ 0 and 1 otherwise.

The mean and covariance of the observation K ¼
ðKðsÞ

1 ;…; KðsÞ
P ; KðaÞ

1 ;…; KðaÞ
P Þ are calculated in Ref. [28].

For the Gaussian PSF (10), the lower bound on the
FI J d½K� of pix-SLIVER is plotted in Fig. 6 for various
values of P, showing how the QFI can be approached more

and more closely over the entire range of separation values
by increasing P.
Discussion.—The sensitivity of our schemes at sub-

Rayleigh separations can be intuitively understood as
follows. Information on d is encoded in the energy
distribution in any basis of spatial modes on I, each of
which is in a thermal state. The FI of any one mode scales
roughly as ∼½N̄0ðdÞ=N̄ðdÞ�2 [14], for N̄ðdÞ the mean energy
in the mode and N̄0ðdÞ ¼ ∂N̄ðdÞ=∂d, and is large if
N̄ðdÞ ∼ 0. For fin-SPADE, while most of the energy is
concentrated in the TEM00 mode, most of the FI is
contributed by the TEM10 mode (Fig. 4). Direct imaging
is a poor way to estimate the energy in the latter, since the
much larger energy in the TEM00 mode acts like back-
ground noise. Similarly, in pix-SLIVER, the antisymmetric
component (comprising the odd modes in any basis of
modes with definite parity about the centroid) carries the
most information at sub-Rayleigh separations (Fig. 6).
While the QCRB can be approached by the maximum-

likelihood estimator in the limit of a large number of
measurements [6], suboptimal estimators can also evade
Rayleigh’s curse [15–18]. That small values of P achieve a
substantial fraction of the QFI in pix-SLIVER is in line
with work on detecting beam displacements using pixelated
detectors [37]. The optical components used in pix-
SLIVER have counterparts in other regions of the electro-
magnetic spectrum, leading to potential applications from
the microwave to the γ-ray regions [38]. Generalizations to
2D separation estimation [39] and variants of pix-SLIVER
using image inversion devices [40] can be envisaged.

FIG. 5. Pix-SLIVER. The image-plane field is separated into its
symmetric and antisymmetric components (13) using a balanced
Mach-Zehnder interferometer with an extra reflection in one arm
before detecting the two outputs using identical detector arrays of
width W pixelated in the x direction.

FIG. 6. Pix-SLIVER performance. The QFI (solid line), the
lower bound (12) on the FI of pix-SLIVER using on-off detection
with various P values (dashed lines), the lower bound (12) for DI
(dash-dotted line) with number-resolved detection, and the
contributions of the symmetric (sym) and antisymmetric (asym)
field components to (12) for P ¼ 40 (dotted lines). The Gaussian
PSF (10) is assumed, and Ns ¼ 1.5 photons. The plots are
normalized to the maximum value Ns=2σ2 of the QFI and are
independent of σ. The lower bounds assume detector array(s) of
width 17σ and 100% fill factor. The DI bound assumes an array
with Pd ¼ 50 pixels and is stable to increase in Pd.
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Recently developed techniques [41] may help to generalize
our quantum limit to multiple parameters and to unequal
source strengths.

This work is supported by the Singapore National
Research Foundation under NRF Grant No. NRF-
NRFF2011-07 and the Singapore Ministry of Education
Academic Research Fund Tier 1 Project No. R-263-000-
C06-112. R. N. developed the source model, obtained the
QFI, and invented pix-SLIVER. M. T. and R. N. bounded
the FI of fin-SPADE, and R. N. applied (12) to all the
detection schemes.

Note added.—Recently, we became aware of an alternative
derivation by Lupo and Pirandola [42] of a more general
quantum bound applicable to arbitrary quantum states,
including our bound Eq. (7) for thermal sources as a special
case. Our proposal of concrete measurement schemes and
their near-optimality for a broad range of source separa-
tions, however, are unique results here.
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