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Quantum limit for two-dimensional resolution of two incoherent optical point sources
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We obtain the multiple-parameter quantum Cramér-Rao bound for estimating the transverse Cartesian
components of the centroid and separation of two incoherent optical point sources using an imaging system
with finite spatial bandwidth. Under quite general and realistic assumptions on the point-spread function of the
imaging system, and for weak source strengths, we show that the Cramér-Rao bounds for the x and y components
of the separation are independent of the values of those components, which may be well below the conventional
Rayleigh resolution limit. We also propose two linear-optics-based measurement methods that approach the
quantum bound for the estimation of the Cartesian components of the separation once the centroid has been
located. One of the methods is an interferometric scheme that approaches the quantum bound for sub-Rayleigh
separations. The other method using fiber coupling can, in principle, attain the bound regardless of the distance
between the two sources.
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I. INTRODUCTION

Rayleigh’s criterion for resolution of two incoherent point
sources [1] has been the most widely accepted criterion
for optical resolution since its formulation in 1879. Being
rooted in the optical measurement technology of its era,
Rayleigh’s criterion neglects the discrete and stochastic nature
of the photodetection process. By adopting a stochastic
framework, the studies [2–4] gave a modern formulation of
the criterion for two sources radiating independently and
incoherently. Using the Cramér-Rao (CR) bound of classical
estimation theory [5], they showed that the localization accu-
racy of any unbiased estimator based on image-plane photon
counting deteriorates rapidly on approaching sub-Rayleigh
separations.

In the past few decades, advances in far-field super-
resolution techniques in microscopy [6–8] (see Ref. [9] for
a review) have enabled us to sidestep Rayleigh’s limit. Still, as
they require that nearby sources are not emitting at the same
time, those technologies do not challenge Rayleigh’s criterion
fundamentally for independently emitting sources.

Very recently, the localization problem was reconsidered
from the perspective of quantum estimation theory using the
quantum Cramér-Rao (QCR) bound [10–12]. Following a
preliminary study of the fundamental localization limit for
coherent sources in Ref. [13], Tsang et al. [14] obtained the
quantum limit on localizing two weak incoherent optical point
sources in one-dimensional imaging. Their quantum bound for
estimating the separation between the sources is independent
of that separation and shows no deterioration when the two
sources are closer than the conventional Rayleigh limit of the
imaging system. Similar conclusions were reproduced using
a semiclassical photodetection theory under a Poisson model
[15]. In Ref. [14], a linear optical measurement—spatial-mode
demultiplexing (SPADE)—was also proposed and shown
to attain the QCR bound for any separation. Another
measurement scheme—superlocalization by image inversion
interferometry (SLIVER)—was proposed in Ref. [16] that
approaches the QCR bound for sub-Rayleigh separations.
Recent experimental work [17–20] inspired by the above

proposals has substantiated the surprising findings of the above
papers.

In further theoretical work, the QCR bound on the one-
dimensional separation was calculated for thermal sources of
arbitrary strength using a Gaussian-state model, and variants
of SPADE and SLIVER were shown to approach the quantum
limit over arbitrarily large ranges of the separation [21]. In
Ref. [22], the question of optimizing the quantum state of
the source pair under an energy constraint was addressed
and the optimum source states for sub-Rayleigh imaging
were found. In Ref. [23], a systematic approach to finding
optimal measurement modes in the image plane for a given
point-spread function was developed—see also [24]. In [25],
the estimation of more general image parameters was studied,
and in Refs. [26,27], the resolution problem was addressed in
terms of quantum detection theory.

In this paper, we address the problem of two-dimensional
resolution, i.e., complete transverse-plane localization of two
incoherent optical point sources. Adopting the weak-source
model of Ref. [14], we first obtain the full four-parameter
quantum Fisher information (QFI) matrix characterizing the
ultimate precision of estimating all four transverse Cartesian
coordinates of the two sources. As in the one-dimensional case,
the quantum bound suggests that the Rayleigh resolution limit
is not fundamental and can be circumvented by an appropriate
quantum measurement. We then focus on estimating the x

and y components of the separation in the transverse plane
once the centroid (midpoint) of the sources has been located.
Recent theoretical studies in quantum parameter estimation
have established the existence of a quantum measurement,
mathematically represented by a positive operator-valued
measure (POVM) [10,11] that achieves the QCR bound for
estimation of a single parameter [28,29], while the quantum
bound may not be attainable for two or more parameters. Here
we propose two measurement schemes which asymptotically
attain the QCR bound for both components of the separation
over many repetitions. The first is based on the SLIVER
scheme of Refs. [16,21] and approaches the QCR bound
for small values of source separation. The second is a
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two-dimensional version of the SPADE scheme of Ref. [14]
that, in principle, attains the bound regardless of the distance
between the two sources.

This paper is organized as follows. In Sec. II, we describe
the source and system model used in this paper. In Sec. III,
we review the theory of the multiparameter QCR bound and
evaluate it to obtain the fundamental limit for the estimation of
the Cartesian components of the centroid and separation of the
sources. In Secs. IV A and IV B, the SLIVER and SPADE
schemes for estimating the components of the separation
are detailed, and their Fisher information (FI) matrices are
obtained. In Sec. V, we study the performance of the two
schemes using Monte Carlo simulations, and close with
concluding remarks in Sec. VI.

II. SOURCE AND SYSTEM MODEL

We first lay out the source and imaging system model used
in this paper, the former being identical to that in Ref. [14]. We
assume that two incoherent optical point sources with equal
intensities are located on the object plane. Far-field radiation
from these sources is collected at the entrance pupil of an
optical imaging system such as a microscope or telescope.
We assume that the paraxial approximation is valid for the
field propagation from object plane to entrance pupil and
consider a single polarization only. We further assume that
the radiation from the sources is quasimonochromatic and
excites only a single temporal mode in order to focus on the
spatial aspects of the resolution problem. We assume also
that the image-plane coordinates (x,y) have been rescaled
by the magnification factor and that the imaging system is
spatially invariant—these assumptions entail no essential loss
of generality [30]. Under these conditions, the imaging system
is described by its two-dimensional (possibly complex-valued)
point-spread function (PSF) ψ(x,y), satisfying the normal-
ization condition

∫ ∞
−∞ dx

∫ ∞
−∞ dy|ψs(x,y)|2 = 1 on the image

plane.
We are given two incoherent optical point sources with

equal intensities located at coordinates (X1,Y1) and (X2,Y2)
on the object plane. We assume the two sources are such that
the probabilities that a single photon emitted by either source
arrives at the image plane are equal and given by

ε/2 � 1. (1)

We further assume that the probability of more than one photon
arriving at the image plane is negligible. Under the above
assumptions, the quantum density operator of the optical field
on the image plane can be written as [14]

ρ = (1 − ε)|vac〉〈vac| + ε

2
(|ψ1〉〈ψ1| + |ψ2〉〈ψ2|), (2)

where |vac〉 denotes the vacuum state and the states {|ψs〉}2
s=1

are given by

|ψs〉 =
∫ ∞

−∞
dx

∫ ∞

−∞
dy ψs(x,y)|x,y〉, s = 1,2, (3)

with the wave functions

ψs(x,y) = ψ(x − Xs,y − Ys), s = 1,2, (4)

(X2, Y2)

(X1, Y1) X
d

Yd

x

y

(X̄, Ȳ )

FIG. 1. An illustration of the focused image in the image plane
of two point sources centered at (X1,Y1) and (X2,Y2). The shading
indicates the approximate extent of the PSF.

where |x,y〉 denotes the state with one photon in the mode
corresponding to position (x,y) alone such that 〈x,y|x ′,y ′〉 =
δ(x − x ′)δ(y − y ′).

Equation (2) means that a photon arrives with equal
probability ε/2 from either of the two sources. If a photon
arrives from the first source, it is in the state |ψ1〉 with wave
function ψ1(x,y); if it comes from the other source, it is in
state |ψ2〉 with wave function ψ2(x,y). The two states are not
orthogonal in general and have the overlap

δ ≡ 〈ψ1|ψ2〉 =
∫ ∞

−∞
dx

∫ ∞

−∞
dy ψ∗

1 (x,y) ψ2(x,y) 	= 0. (5)

We also make a realistic simplifying assumption on the PSF
ψ(x,y) of the imaging system, namely that it is symmetric
about the origin (or inversion symmetric), viz.,

ψ(x,y) = ψ(−x,−y), (6)

for all x and y. This assumption is satisfied for most imaging
systems of interest, including spatially invariant systems
whose entrance aperture is rectangular or (hard or apodized)
circular in shape [30], and is more general than the assumption
of a circularly symmetric PSF used in Ref. [16]. Under this
assumption, the overlap δ of Eq. (5) is real valued (see
Appendix A).

The parameters we are interested in estimating are the four
components of the vector,

θ ≡ (X̄,Ȳ ,dX,dY )
, (7)

consisting of the centroid vector

(X̄,Ȳ ) ≡ [(X1,Y1) + (X2,Y2)]/2, (8)

and the separation vector

(dX,dY ) ≡ (X2,Y2) − (X1,Y1), (9)

as depicted in Fig. 1.

III. THE QUANTUM LIMIT ON
TWO-SOURCE LOCALIZATION

A. Review of the multiparameter quantum
Cramér-Rao (QCR) bound

Let ρθ be the density operator of a quantum system
depending on an unknown vector parameter θ . Consider the
estimation of θ from the quantum measurement outcome Y on
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M copies of ρθ . The probability distribution of Y is given by

P(Y) = tr[F (Y)ρ⊗M
θ ], (10)

where {F (Y)} is the positive operator-valued measure (POVM)
that characterizes the statistics of the quantum measurement
[10,31]. For any estimate θ̌ (Y) of θ from the measurement
outcome, the estimation error covariance matrix has the matrix
elements

�μν ≡ E{[θ̌μ(Y) − θμ][θ̌ν(Y) − θν]}, (11)

where E[z(Y)] of an arbitrary function z(Y) of the measure-
ment outcome is the statistical expectation,

E[z(Y)] ≡
∫

dY P(Y)z(Y). (12)

For any unbiased estimator, defined as one for which

E[θ̌ (Y) − θ ] = 0, (13)

the error covariance matrix � is bounded by the classical and
quantum Cramér-Rao bounds [5,10–12],

� � J −1 � K−1. (14)

Here, the inequalities mean that matrices � − J −1, � − K−1,
and J −1 − K−1 are positive semidefinite. Matrix J is the
classical Fisher information (FI) matrix with entries

Jμν = E

{[
∂

∂θμ

ln P(Y)

][
∂

∂θν

ln P(Y)

]}
, (15)

and matrix K is the quantum Fisher information (QFI) matrix
which can be expressed in terms of the so-called symmetric
logarithmic derivative (SLD) operators {Lμ} as

Kμν = Mtr
LμLν + LνLμ

2
ρθ . (16)

If ρθ is diagonalized in an orthogonal basis {|en〉}, viz., ρθ =∑
n Dn|en〉〈en|, Lμ can be expressed as [12,32]

Lμ =
∑
m,n

Dm + Dn 	= 0

2

Dm + Dn

〈em| ∂ρθ

∂θμ

|en〉|em〉〈en|. (17)

B. Quantum Fisher information (QFI) matrix for
two-source localization

We now consider the problem of estimation of the centroid
and separation vectors for two incoherent point sources under
the model of Sec. II. Assuming the quantum density operator
of Eq. (2) and the inversion symmetry of the PSF [viz., Eq. (6)],
the SLD operators of Eq. (17) and the QFI matrixK of Eq. (16)
can be explicitly evaluated. The salient details of the derivation
of K are relegated to Appendix A, namely, the basis {|en〉}
in which ρ is diagonal, its eigenvalues {Dn}, and the SLD
operators. The QFI matrix in terms of θ defined in Eq. (7) is
found to be

K = N

⎛
⎜⎜⎜⎜⎝

4
(

k2

X − γ 2
X

)
4(α − γXγY ) 0 0

4(α − γXγY ) 4
(

k2

Y − γ 2
Y

)
0 0

0 0 
k2
X α

0 0 α 
k2
Y

⎞
⎟⎟⎟⎟⎠,

(18)

where N = Mε is the average photon number collected over
M trials, and


k2
X ≡

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∣∣∣∣∂ψ(x,y)

∂x

∣∣∣∣
2

,


k2
Y ≡

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∣∣∣∣∂ψ(x,y)

∂y

∣∣∣∣
2

,

γX ≡
∫ ∞

−∞
dx

∫ ∞

−∞
dy ψ∗(x − dX,y − dY )

∂ψ(x,y)

∂x
,

γY ≡
∫ ∞

−∞
dx

∫ ∞

−∞
dy ψ∗(x − dX,y − dY )

∂ψ(x,y)

∂y
,

α = Re

[∫ ∞

−∞
dx

∫ ∞

−∞
dy

∂ψ∗(x,y)

∂x

∂ψ(x,y)

∂y

]
, (19)

for Re(z) denoting the real part of z. The quantities 
kX

and 
kY are related to the spatial spectral width of the
PSF in the x and y direction, respectively, and, along with
α, are independent of the source parameters θ . γX and γY

depend on the separation coordinates (dX,dY ), but not on the
centroid coordinates (X̄,Ȳ ). Thus,K as a whole is independent
of (X̄,Ȳ ), as may be expected from our assumption of a
spatially invariant imaging system. Note that K has a block-
diagonal form with respect to the centroid and separation
coordinate pairs, and that the matrix elements related to the
estimation errors of separations dX and dY —K33 andK44—are
independent of (dX,dY ) as well.

The QFI matrix can be simplified further for the case of a
PSF ψ(x,y) with reflection symmetry about the x and y axes,
viz.,

ψ(x,y) = ψ(x,−y) = ψ(−x,−y), (20)

which is also a sufficient condition for symmetry about the
origin [Eq. (6)]. Under this condition, the quantity α of Eq. (19)
vanishes as its integrand satisfies

∂ψ∗(x,y)

∂x

∂ψ(x,y)

∂y
= −∂ψ∗(x,−y)

∂x

∂ψ(x,−y)

∂y
(21)

for all x,y; hence, the integral goes to zero. The Fisher
information matrix K becomes

K = N

⎛
⎜⎜⎜⎜⎝

4
(

k2

X − γ 2
X

) −4γXγY 0 0

−4γXγY 4
(

k2 − γ 2

Y

)
0 0

0 0 
k2
X 0

0 0 0 
k2
Y

⎞
⎟⎟⎟⎟⎠.

(22)

Note that a circularly symmetric ψ(x,y) is a sufficient
condition for the reflection symmetries. In that case, we have,
additionally,


kX = 
kY ≡ 
k. (23)

C. Comparison to direct imaging

The QCR bound K−1 can be compared with the classical
CR bound for conventional direct imaging. For direct imaging
using an ideal continuum photodetector in the image plane,
the probability density of the position of arrival of the photon
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is expressed in terms of the mean intensity as [14]


(x,y) = 1
2 [|ψ1(x,y)|2 + |ψ2(x,y)|2], (24)

such that the classical FI matrix

J (dir)
μν = N

∫ ∞

−∞
dx

∫ ∞

−∞
dy

1


(x,y)

∂
(x,y)

∂θμ

∂
(x,y)

∂θν

. (25)

For any PSF ψ(x,y), let

I (x,y) ≡ |ψ(x,y)|2 (26)

be the intensity point-spread function. We assume that the
centroid (X̄,Ȳ ) is located at the origin and we are only
estimating the separation vector η = (dX,dY )
. The mean
intensity in Eq. (24) becomes


(x,y) = 1

2

[
I

(
x + dX

2
,y + dY

2

)
+ I

(
x − dX

2
,y − dY

2

)]
.

(27)

For small values of dX and dY , we can expand 
(x,y) to the
second order to obtain


(x,y) = I (x,y) + d2
X

8

∂2I (x,y)

∂x2
+ dXdY

4

∂2I (x,y)

∂x∂y

+ d2
Y

8

∂2I (x,y)

∂y2
+ o(d2), (28)

where o(d2) denotes terms asymptotically smaller than d2
X,

dXdY , and d2
Y . Substituting this equation into Eq. (25) gives

the Fisher information matrixJ (dir). For a circularly symmetric
PSF ψ(x,y), the FI matrix in terms of η is

J (dir)
11 = N

16

(
d2

Xκ1 + d2
Y κ2

) + o(d2),

J (dir)
22 = N

16

(
d2

Xκ2 + d2
Y κ1

) + o(d2), (29)

J (dir)
12 = N

16
dXdY (κ1 + κ2) + o(d2),

where

κ1 =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

1

I (x,y)

[
∂2I (x,y)

∂x2

]2

=
∫ ∞

−∞
dx

∫ ∞

−∞
dy

1

I (x,y)

[
∂2I (x,y)

∂y2

]2

,

κ2 =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

1

I (x,y)

[
∂2I (x,y)

∂x∂y

]2

. (30)

For the direct-imaging method, the CR bound terms related
to the estimation of separation dX and dY are

{[J (dir)]−1}11 ≈ 16

N

d2
Xκ2 + d2

Y κ1(
d2

X − d2
Y

)2
κ1κ2

,

{[J (dir)]−1}22 ≈ 16

N

d2
Xκ1 + d2

Y κ2(
d2

X − d2
Y

)2
κ1κ2

, (31)

which approach infinity as dX,dY → 0. For illustration, we
assume a circular Gaussian PSF ψ(x,y) of the form

ψG(x,y) =
(

1

2πσ 2

)1/2

exp

(
−x2 + y2

4σ 2

)
, (32)
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FIG. 2. Quantum (1/K33) and classical ({[J (dir)]−1}11) CR bounds
vs normalized separation dX/σ for a circular Gaussian PSF of
Eq. (32). The classical bounds are plotted for different values of
dY /σ = 0,0.1, and 0.2. The bounds are normalized with respect to
the quantum limit 4σ 2/N .

such that its intensity point-spread function

IG(x,y) = 1

2πσ 2
exp

(
−x2 + y2

2σ 2

)
. (33)

The PSF-dependent terms are now


k = 1

2σ
, κ1 = 6κ2 = 3

2σ 2
, (34)

and Eq. (31) becomes

{[J (dir)]−1}11 ≈ 4σ 2

N

8(dX/σ )2 + 48(dY /σ )2

3[(dX/σ )2 − (dY /σ )2]2
, (35)

{[J (dir)]−1}22 ≈ 4σ 2

N

48(dX/σ )2 + 8(dY /σ )2

3[(dX/σ )2 − (dY /σ )2]2
. (36)

The QCR bound 1/K33 of Eq. (22) and the CR bound
{[J (dir)]−1}11 of Eq. (35) for the estimation of dX are plotted
as a function of separation parameters dX and dY in Fig. 2. The
plot shows a huge divergence of the CR bound for the direct-
imaging method from the quantum limit as dX decreases. This
implies that a considerable improvement can be obtained if a
quantum-optimal measurement is implemented. As Eq. (36) is
similar to Eq. (35) by interchanging the variables dX and dY ,
the plot of the CR bound related to dY is identical to Fig. 2 and
the same conclusion can be drawn for small values of dY .

In Sec. IV, we discuss concrete measurement schemes
to simultaneously estimate the separation parameters η =
(dX,dY )
. For these schemes, we assume that the centroid
vector (X̄,Ȳ ) has already been located and compare their
performance to the quantum bound obtained in Sec. III B.

IV. LINEAR-OPTICS SCHEMES FOR ESTIMATING
THE SEPARATION VECTOR

In this section, we give two linear-optics schemes for
estimating the separation vector (dX,dY ). In so doing, we
assume that the centroid of the sources has already been
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ď
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FIG. 3. A schematic of two-stage SLIVER. The image-plane field operator Ê(x,y) is split—with the appropriate contributions from the
field operator V̂1(x,y) input to the vacuum input port of the first beam splitter—into its symmetric [ÊS(x,y)] and antisymmetric [Ê1(x,y)]
components with respect to reflection about the y axis. The Ê1(x,y) component impinges upon a bucket photodetector. The ÊS(x,y) component
is separated again into symmetric [Ê3(x,y)] and antisymmetric [Ê2(x,y)] components with respect to reflection about the x axis, which are
detected using bucket detectors. The set of binary outcomes, g(1), g(2), and g(3), observed in the detectors over a series of M measurements is
processed to give estimates ďX and ďY of the components of the separation. The required field transformations are realized by the extra reflection
at an appropriately aligned plane mirror in one arm of the balanced Mach-Zehnder interferometers, which are indicated by the evolution of the
letters A and B through the system.

located, perhaps by spatially resolved direct detection on
a portion of the light reaching the image plane—see, e.g.,
the hybrid scheme of Ref. [14]. As is well known, unlike
estimating the separation coordinates, locating the centroid
coordinates with direct imaging is near quantum optimal
[10,14]. Assuming that the centroid of the sources is imaged
at the origin of image-plane coordinates, the images of the
sources are centered at ∓ 1

2 (dX,dY ) in the image plane. The
single-photon wave functions corresponding to the two sources
then become

ψ1(x,y) = ψ

(
x + dX

2
,y + dY

2

)
, (37)

ψ2(x,y) = ψ

(
x − dX

2
,y − dY

2

)
. (38)

Our performance analysis of the schemes of this section—in
particular, the derivation of their classical FI matrices—
proceeds just as well if the two sources have unequal
one-photon arrival probabilities ε1 and ε2, which need not
necessarily satisfy ε1,ε2 � 1. In this generalization of the
source model of Sec. II, the image-plane density operator of
Eq. (2) is replaced by

ρ = (1 − ε1 − ε2)|vac〉〈vac| + ε1|ψ1〉〈ψ1| + ε2|ψ2〉〈ψ2|.
(39)

We denote the expected number of photons reaching the image
plane by εtot = ε1 + ε2.

A. The two-stage SLIVER scheme

We now propose a two-stage interferometric scheme for
estimation of dX and dY adapting the SLIVER schemes
of Refs. [16,21]. In those works, a thermal source model
was adopted for which the existence of a positive Glauber-
Sudarshan P representation allowed an analysis in the frame-
work of semiclassical photodetection theory [33,34]. The weak
single-photon state of Eq. (39) does not possess a non-negative
P representation, necessitating a fully quantum analysis that
we carry out by propagating the field operators through the
system in the Heisenberg picture.

We assume a PSF ψ(x,y) with reflection symmetries
about the x and y axes, viz., Eq. (20). The SLIVER
scheme is illustrated in Fig. 3 and consists of two stages.
Viewed semiclassically, the first stage involves the separation
of the input field E(x,y) into its antisymmetric compo-
nent [E(x,y) − E(−x,y)]/2 and its symmetric component
[E(x,y) + E(−x,y)]/2 with respect to reflection about the y

axis. These components can be obtained by splitting the input
field E(x,y) using a 50-50 beam splitter, inverting the x

coordinates of the field (i.e., reflecting the field about the y

axis) in one output, and recombining the two beams at a second
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50-50 beam splitter. The optics of this stage thus consists of a
balanced Mach-Zehnder interferometer with an extra reflection
at an appropriately aligned plane mirror in one arm.

In the quantum treatment, we replace the complex field
amplitudes Eα(x,y) of each beam in any part of the system
(indexed generically by α) with the corresponding field oper-
ators Êα(x,y), which are required to satisfy the commutation
rules [33,34],

[Êα(x,y),Êβ (x ′,y ′)] = 0,

[Êα(x,y),Ê†
β (x ′,y ′)] = δαβ δ(x − x ′) δ(y − y ′). (40)

Using the standard Heisenberg-picture treatment of the
input-output relations of a beam splitter [33–35], the output
field operators of the first stage of the SLIVER system are
given by

Ê1(x,y) = 1
2 [Ê(x,y) − Ê(−x,y)] + 1

2 [V̂1(x,y) + V̂1(−x,y)],

(41)

ÊS(x,y) = 1
2 [Ê(x,y) + Ê(−x,y)] + 1

2 [V̂1(x,y) − V̂1(−x,y)],

(42)

where V̂1(x,y) is the input field operator at the open port of
the first beam splitter that must be included to preserve the
commutator relations given by Eq. (40)—the field in this port
is in the vacuum state. At the antisymmetric output port with
the field operator of Eq. (41), an on-off non-spatially-resolving
(bucket) detector is placed to distinguish between no photon
and one photon. The measurement outcome, denoted g(1), is
binary—zero if the detector does not click and one if it does.

In the second stage, the output beam ÊS(x,y) of the sym-
metric port is used as input to a second interferometer, which
similarly splits the field into antisymmetric [Ê2(x,y)] and
symmetric [Ê3(x,y)] components with respect to reflection
about the x axis. The output field operators of the second stage
are given by

Ê2(x,y) = 1
2 [ÊS(x,y) − ÊS(x,−y)]

+ 1
2 [V̂2(x,y) + V̂2(x,−y)], (43)

Ê3(x,y) = 1
2 [ÊS(x,y) + ÊS(x,−y)]

+ 1
2 [V̂2(x,y) − V̂2(x,−y)], (44)

where V̂2(x,y) is the input vacuum field operator at the open
port of the first beam splitter of this stage. The output fields
Ê2(x,y) and Ê3(x,y) of this stage impinge upon two on-off
bucket detectors to give measurement outcomes g(2) and g(3),
respectively. As in the previous stage, g(2) and g(3) take binary
values—zero if the corresponding detector does not click and
one if it does—which are recorded.

The expected photon number at the rth detector is given by
tr(ρN̂r ), where the photon number operator in the rth output
beam is given by

N̂r =
∫ ∞

−∞
dx

∫ ∞

−∞
dy Ê†

r (x,y)Êr (x,y), r = 1,2,3. (45)

Since the state ρ of Eq. (39) has at most one photon, at most
one photon will impinge upon the three photodetectors taken
together. Therefore, there are only four mutually exclusive
measurement outcomes—outcome “0” corresponds to the case
where no photon is detected in any of the three detectors
and outcome “r” corresponds to the case where only the rth
detector clicks. The probabilities of these outcomes are

P (0) = Pr[g(1) = 0,g(2) = 0,g(3) = 0],

P (1) = Pr[g(1) = 1,g(2) = 0,g(3) = 0],

P (2) = Pr[g(1) = 0,g(2) = 1,g(3) = 0],

P (3) = Pr[g(1) = 0,g(2) = 0,g(3) = 1]. (46)

Since either zero or one photon arrives at each detector, the
probability that the rth detector clicks is equal to the expected
photon number at the rth detector, i.e.,

P (r) = tr(ρN̂r ), r = 1,2,3, (47)

P (0) = 1 − εtot. (48)

The calculation of the above probabilities is detailed in
Appendix B, with the following result:

P (1) = εtot

2
(1 − δx),

P (2) = εtot

4
(1 + δx − δy − δ), (49)

P (3) = εtot

4
(1 + δx + δy + δ),

where

δx ≡
∫ ∞

−∞
dx

∫ ∞

−∞
dy ψ∗(x,y)ψ(x − dX,y), (50)

δy ≡
∫ ∞

−∞
dx

∫ ∞

−∞
dy ψ∗(x,y)ψ(x,y − dY ), (51)

and δ is defined in Eq. (5).
The classical FI matrix J (SLI) for the separation vector

η = (dX,dY )
 using SLIVER has the following elements [cf.
Eq. (15)]:

J (SLI)
μν =

3∑
r=1

P (r)
∂ ln P (r)

∂ημ

∂ ln P (r)

∂ην

, μ,ν = 1,2. (52)

Using Eqs. (52) and (49), we have

J (SLI)
11 = εtot

2

[
1

1 − δx

(
∂δx

∂dX

)2

+ 1

2(1 + δx − δy − δ)

(
∂δx

∂dX

− ∂δ

∂dX

)2

+ 1

2(1 + δx + δy + δ)

(
∂δx

∂dX

+ ∂δ

∂dX

)2
]
,

J (SLI)
22 = εtot

4

[
1

1 + δx − δy − δ

(
∂δy

∂dY

+ ∂δ

∂dY

)2

+ 1

1 + δx + δy + δ

(
∂δy

∂dY

+ ∂δ

∂dY

)2
]
,
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J (SLI)
12 = εtot

4

[
1

1 + δx + δy + δ

(
∂δx

∂dX

+ ∂δ

∂dX

)(
∂δy

∂dY

+ ∂δ

∂dY

)
− 1

1 + δx − δy − δ

(
∂δx

∂dX

− ∂δ

∂dX

)(
∂δy

∂dY

+ ∂δ

∂dY

)]

= J (SLI)
21 . (53)

We illustrate the above results for a circular Gaussian PSF,

ψG(x,y) =
(

1

2πσ 2

)1/2

exp

(
−x2 + y2

4σ 2

)
. (54)

The PSF-dependent quantities appearing in the FI matrix are
then given by

δ = δxδy,

δx = exp

(
− d2

X

8σ 2

)
, δy = exp

(
− d2

Y

8σ 2

)
,

∂δx

∂dX

= − dX

4σ 2
exp

(
− d2

X

8σ 2

)
,

∂δy

∂dY

= − dY

4σ 2
exp

(
− d2

Y

8σ 2

)
,

∂δ

∂dX

= δy

∂δx

∂dX

,
∂δ

∂dY

= δx

∂δy

∂dY

. (55)

In this example, the FI matrix J (SLI) has elements

J (SLI)
11 = εtot

1 − δ2
x

(
∂δx

∂dX

)2

,

J (SLI)
22 = εtot

1 − δ2
y

1 + δx

2

(
∂δy

∂dY

)2

,

J (SLI)
12 = J (SLI)

21 = 0. (56)

As dX,dY → 0, the matrix elements approach

J (SLI)
11 → εtot
k2 = K33,

J (SLI)
22 → εtot
k2 = K44, (57)

where 
k2 = (4σ 2)−1. The FI elements J (SLI)
11 and J (SLI)

22 of
Eq. (56) are plotted as a function of separation parameters dX

and dY in Fig. 4. The total source strength εtot = 2 × 10−3

photons. The plots are normalized to εtot
k2, the values of
K33 and K44. We see that the maximum values of J (SLI)

11 and
J (SLI)

22 , attained at dX = dY = 0, are equal to the value of the
QCR bound obtained in Sec. III for the case of ε1 = ε2.

Equations (56) indicate, as seen in Figs. 4(a) and 4(b), that
the FI J (SLI)

11 on dX remains unchanged despite variation in dY ,
while the FI J (SLI)

22 on dY depends on values of both dX and
dY . This asymmetry is a consequence of our estimating dX in
the first stage of the scheme and dY in the second.

A simpler noncascaded version of the scheme may be
envisaged in which the input field Ê(x,y) is split using a
50:50 beam splitter, and the two outputs are used to separately
estimate dX and dY . Though it treats the separation components
symmetrically, such a setup can only approach half of the
QCR bound for each component due to the energy splitting.
On the other hand, in the cascaded scheme given here, if
dX ≈ 0, δx ≈ 1, so that P (1) ≈ 0, and the single photon, when

present in the input field, is available with high probability for
estimating dY in the second stage, allowing the composite setup
to approach the QCR bound for sub-Rayleigh separations.

B. Spatial-mode demultiplexing (SPADE)

We now generalize the SPADE scheme of Ref. [14] to the
estimation of the vector separation. We assume the circular
Gaussian PSF

ψG(x,y) =
(

1

2πσ 2

)1/2

exp

(
−x2 + y2

4σ 2

)
. (58)

012345

0
1

2
3

4
5

0

0.2

0.4

0.6

0.8

1

012345

0
1

2
3

4
5

0

0.2

0.4

0.6

0.8

1

Normalized Fisher information (SLI)
11 /( Δk2)J tot

Normalized Fisher information (SLI)
22 /( Δk2)J tot

Source separation in
y-direction dY /σ

Source separation in
x-direction dX/σ

(a)

(b)

Source separation in
y-direction dY /σ Source separation in

x-direction dX/σ

FIG. 4. The (classical) Fisher information matrix J (SLI) for the
SLIVER scheme as a function of the source separation (dX,dY ).
(a) Fisher information for x separation J (SLI)

11 . (b) Fisher information
for y separation J (SLI)

22 . The plots are normalized with respect to the
value εtot
k2 of K33 and K44. The quantum bound is attained at
dX = dY = 0 as illustrated in (a) and (b). The circular Gaussian PSF
of Eq. (54) is assumed, with the total source strength εtot = 2 × 10−3

photons, and the plots are independent of the half width σ .
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In the derivation of the QFI matrix K in Sec. III, we worked
in the orthonormal basis given by Eq. (A9). Now consider the
discrete Hermite-Gaussian (HG) basis {|φqr〉; q,r = 0,1, . . .}
of wave functions for the one-photon subspace, where

|φqr〉 =
∫ ∞

−∞
dx

∫ ∞

−∞
dy φqr (x,y)|x,y〉, (59)

φqr (x,y) =
(

1

2πσXσY

)1/2 1√
2q+rq!r!

Hq

(
x√
2σX

)

× Hr

(
y√
2σY

)
exp

(
− x2

4σ 2
X

− y2

4σ 2
Y

)
, (60)

where Hq and Hr are the Hermite polynomials [36] for q,r =
0,1, . . . , σX = σ 	= σY ≡ sσ . The significance of s 	= 1 will
appear shortly. Since the Hermite-Gaussian functions are an
orthonormal basis for the space of wave functions in the image
plane, the projections

W0 = |vac〉〈vac|,
W1(q,r) = |φqr〉〈φqr |, q,r = 0,1, . . . , (61)

together form a POVM on the vacuum+one-photon subspace
of the image-plane field.

The transformation

E(x,y) �→ E′(x,y) = s−1/2E(x,y/s) (62)

on the space of image-plane wave functions is unitary, and
takes the PSF of Eq. (58) to the elliptical Gaussian

ψ ′(x,y) =
(

1

2πσXσY

)1/2

exp

(
− x2

4σ 2
X

− y2

4σ 2
Y

)
(63)

= φ00(x,y). (64)

It also induces a unitary transformation Ûs on the one-photon
subspace, transforming the state of Eq. (39) to

ρ ′ = Ûsρ Û †
s , (65)

= (1 − εtot)|vac〉〈vac| + ε1|ψ ′
1〉〈ψ ′

1| + ε2|ψ ′
2〉〈ψ ′

2|, (66)

where, from Eqs. (37)–(38),

ψ ′
1(x,y) = ψ ′

(
x + dX

2
,y + s dY

2

)
, (67)

ψ ′
2(x,y) = ψ ′

(
x − dX

2
,y − s dY

2

)
. (68)

The POVM (61), if performed on the state ρ ′, has the outcome
probabilities

P0 ≡ tr(W0ρ
′) = 1 − εtot, (69)

P1(q,r) ≡ tr[W1(q,r)ρ ′] (70)

= ε1 |〈φqr |ψ ′
1〉|2 + ε2 |〈φqr |ψ ′

2〉|2. (71)

The overlaps in Eq. (71),

|〈φqr |ψ ′
1〉|2 =

∣∣∣∣
∫ ∞

−∞
dx

∫ ∞

−∞
dy φ∗

qr (x,y)

× φ00

(
x + dX

2
,y + sdY

2

)∣∣∣∣
2

, (72)

|〈φqr |ψ ′
2〉|2 =

∣∣∣∣
∫ ∞

−∞
dx

∫ ∞

−∞
dy φ∗

qr (x,y)

× φ00

(
x − dX

2
,y − sdY

2

)∣∣∣∣
2

, (73)

can be evaluated as in Ref. [14] using properties of Hermite
polynomials, viz.,

|〈φqr |ψ ′
1〉|2 = |〈φqr |ψ ′

2〉|2 = exp(−Q − R)
QqRr

q!r!
, (74)

where

Q = d2
X

16σ 2
, R = d2

Y

16σ 2
, (75)

so that the probability

P1(q,r) = εtot exp(−Q − R)
QqRr

q!r!
. (76)

Using Eq. (15), the FI matrix for the HG-basis measurement
on η = (dX,dY )
 can be calculated. Its matrix elements are

J (HG)
11 =

∞∑
q,r=0

P1(q,r)

[
∂

∂dX

ln P1(q,r)

]2

(77)

= εtot

Q

(
∂Q

∂dX

)2

= εtot

4σ 2
= K33, (78)

J (HG)
22 =

∞∑
q,r=0

P1(q,r)

[
∂

∂dY

ln P1(q,r)

]2

(79)

= εtot

R

(
∂R

∂dY

)2

= εtot

4σ 2
= K44, (80)

J (HG)
12 = J (HG)

21 = 0, (81)

which exactly equals the QFI matrix given by Eq. (22) if
ε1 = ε2. This proves that the POVM (61) is optimal for a
Gaussian PSF.

It remains to show how to implement the POVM (61)
corresponding to SPADE using linear optics. The image-plane
field in Eq. (2) is first scaled in one direction with a series of
mirrors such that the PSF ψ ′(x,y) of this augmented system is
of the form of Eq. (63). A quadratic-index fiber can support the
Hermite-Gaussian mode profiles [37]. A cylindrical fiber will
have degenerate propagation constants βqr for modes with the
same total order (q + r). Therefore, the optical field is coupled
into an elliptical multimode fiber supporting the modes in
Eq. (60). If the scaling factor s is chosen carefully, each
mode will have a distinct propagation constant βqr along the
propagation direction z. The field in the elliptical fiber is then
coupled to different single-mode waveguides with matching
propagation constants via evanescent coupling, as illustrated
in Fig. 5. The phase-matching condition ensures that only one
mode from the elliptical fiber is coupled to each waveguide,
which are then detected using individual on-off detectors in
the far field. In theory, s needs to be an irrational number,
but to break the degeneracy for a large enough number of
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+

(q, r)

. . .+ +

. . . β00β01 β10β11

β00 β01β10 β11

( )0, 1

( )0, 0

( )1, 1

( )1, 0

ψ (x + dX/2, y + sdY /2)

ψ (x − dX/2, y − sdY /2)

..
.

(q, r)
max

remaining
modes

x
y

z

FIG. 5. A schematic drawing of a fiber-optic implementation of
SPADE. The image-plane field, scaled in the y direction, is coupled
into an elliptical multimode fiber with nondegenerate propagation
constants for each of the HG-basis modes φqr (x,y). Using evanescent
coupling, each mode is coupled to an individual single-mode
waveguide of specific propagation constant terminated by an on-off
detector. The photon counter at the end of the multimode fiber
captures any remaining photon in the higher-order or leaky modes.

modes, s can be taken to be a rational number with a large
denominator.

V. MONTE CARLO ANALYSIS OF SLIVER AND SPADE

To demonstrate that the two schemes of Sec. IV perform
as predicted by their CR bounds, we implement Monte Carlo
simulations of the mean-square error (MSE) for SLIVER and
SPADE using maximum-likelihood (ML) estimators [5]. In a
sequence of M measurements, the shots in which no photon
arrives [which happens with probability (1 − εtot) in each shot]
are uninformative and can only be discarded. Therefore, it is
convenient to condition our analysis on a fixed number L of
detected photons. In doing so, instead of considering M copies
of the state ρ of Eq. (2), we are effectively considering L copies
of the conditional single-photon state,

ρ ′ = 1
2 (|ψ1〉〈ψ1| + |ψ2〉〈ψ2|), (82)

where we have assumed for concreteness that the sources
are equally strong. It is readily verified that the (per-shot)
conditional QFI and FI matrices for SLIVER and SPADE
are obtained by simply dividing the unconditional ones
calculated previously by ε. In particular, the QFI matrix
for the estimation of dX and dY using L copies of ρ ′
becomes diag(L/4σ 2,L/4σ 2) so that the QCR bound for each
separation parameter is 4σ 2/L.

In the following, we will adopt this approach for analyzing
the performance of SLIVER and SPADE. For all the
simulations, the circular Gaussian PSF of Eq. (54) is assumed,
and each MSE is computed by averaging over 105 Monte
Carlo runs.

A. Monte Carlo analysis of SLIVER

In M trials, consider direct detection of Ê1(x,y), E2(x,y),
and E3(x,y) using three on-off bucket detectors as in Fig. 3.
Suppose L trials result in photon detections and are postse-
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X

FIG. 6. Simulated mean-square errors of SLIVER with
maximum-likelihood estimator of Eq. (84). The MSE of estimator
ď

(SLI)
X as a function of the separation in the x direction for L =

20,40,100 measurements and dY = 0.

lected, and indexed by l ∈ {1, . . . ,,L}. The postselected mea-
surement record consists of the bit strings (g(1)

1 ,g
(1)
2 , . . . ,g

(1)
L ),

(g(2)
1 ,g

(2)
2 , . . . ,g

(2)
L ), and (g(3)

1 ,g
(3)
2 , . . . ,g

(3)
L ), where g

(1)
l , g

(2)
l ,

and g
(3)
l are zero (one) if the corresponding detector did not

click (did click) in the lth postselected trial.
The total numbers of clicks observed in the three detectors

are, respectively,

G(1) =
L∑

l=1

g
(1)
l , G(2) =

L∑
l=1

g
(2)
l , G(3) =

L∑
l=1

g
(3)
l , (83)

with L = G(1) + G(2) + G(3). For the circular Gaussian PSF,
the ML estimators for dX and dY can be shown to be

ď
(SLI)
X =

{
2σ

√
−2 ln

(
1 − 2G(1)

L

)
if 2G(1)

L
< 1

2σ otherwise,

ď
(SLI)
Y =

{
2σ

√
−2 ln

(
1 − 2G(2)

L−G(1)

)
if 2G(2)

L−G(1) < 1

2σ otherwise.
(84)

The second case for both ď
(SLI)
X and ď

(SLI)
Y is necessary because

the logarithm function ln(z) in the equations for the estimators
is undefined for z � 0. The estimators are set to an arbitrary
value in that event, which happens with vanishing probability
as L increases.

Figures 6 and 7 show the simulated MSEs of the ML
estimators in Eq. (84). The plotted MSEs are scaled relative to
the value of the QCR bound for that L. Figure 6 plots the MSE
of ď

(SLI)
X as a function of x separation for dY = 0. The MSE of

the estimator ď
(SLI)
Y as a function of y separation for dX = 0

is virtually identical to that of Fig. 6 and is not shown. We
see that the ML estimator beats the CR bound for small dX/σ

due to the bias of the estimator placing it beyond the purview
of the CR bound. This “superefficiency” effect is well known
in classical estimation. We refer the reader to Appendix E of
Ref. [14] and, in particular, Ref. [38] for extensive discussion
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FIG. 7. Simulated mean-square errors of SLIVER with
maximum-likelihood estimators of Eq. (84) for different values of
dX and dY in L = 100 trials. The corresponding Cramér-Rao bounds
are included in the plots for comparison. (a) MSE of estimator ď

(SLI)
X as

a function of the separation in the x direction for dY /σ = 0,0.74,1.5.
(b) MSE of estimator ď

(SLI)
Y as a function of the separation in the y

direction for dX/σ = 0,0.74,1.5.

on this point. Here we just note that the range of dX values
where the estimation is superefficient shrinks with increasing
L and limits its practical usefulness.

Figure 7 explores the effect of nonzero values of the
separations dY (dX) on the MSE of ď

(SLI)
X (ď (SLI)

Y )—the number
of measurements is fixed at L = 100 and the corresponding
CR bounds for the relevant separations are shown. Figure 7(a)
shows the simulated MSE of estimator ď

(SLI)
X as a function of

dX, for dY = 0,0.74σ, and 1.5σ . We see that both the estimator
and the CR bound show little dependence on the separation
dY . Figure 7(b) plots the simulated MSE of estimator ď

(SLI)
Y
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measurements. The MSE behavior of ď

(SPA)
Y as a function of the y

separation is similar.

against dY for the case of dX = 0,0.74σ, and 1.5σ . As dX

increases, the CR bound increases along with the MSE of the
estimator.

B. Monte Carlo analysis of SPADE with
maximum-likelihood estimation

Given L photon detections in the SPADE system of
Sec. IV B, the postselected measurement record consists of
a sequence {(ql,rl)}Ll=1 of index pairs of the two-dimensional
HG modes in which the L photons were detected. The ML
estimators for dX and dY can be shown to be

ď
(SPA)
X = 4σ

√
HX

L
, ď

(SPA)
Y = 4σ

√
HY

L
, (85)

where HX = ∑L
l=1 ql and HY = ∑L

l=1 rl . Figure 8 displays the
results for the MSE of ď

(SPA)
X . The MSE behavior of ď

(SPA)
Y is

identical and is not shown. The performance of ď
(SPA)
X (ď (SPA)

Y )
is independent of the value of dY (dX). These behaviors are
expected from Eq. (76)—the joint probability of q and r is
a product of their marginal distributions that, respectively,
depend only on dX and dY in identical fashion. The ML
estimators beat the CR bounds in the estimation of dX and
dY for small separations. The errors remain less than twice the
CR bounds for any separations.

VI. DISCUSSION AND OUTLOOK

In this paper, we have calculated the QCR bound for
locating two weak incoherent optical point sources on a
two-dimensional plane using an imaging system with any
given inversion-symmetric point-spread function. The key
result is that in stark contrast to spatially resolved direct
imaging [4,14], the bounds on the MSE of estimating the x and
y separations are independent of the vector separation between
the two sources. Strictly speaking, a large enough separation
can take us outside the scalar-field paraxial approximation
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assumed here, but that approximation is excellent for most
practical applications in microscopy and telescopy.

We have also proposed and analyzed two measurement
schemes—the extended SLIVER and SPADE schemes—for
simultaneously estimating the components of the separation,
whose classical CR bounds approach the quantum bounds for
sub-Rayleigh separations (SLIVER) or all separations if the
PSF is Gaussian (SPADE). Monte Carlo simulations show that
the two schemes have MSEs no larger than twice that predicted
by the quantum limits for values of source separation from zero
to beyond the PSF width.

The extended SLIVER scheme given here does not employ
an image-inversion device (see, e.g., Refs. [39,40], in which
the general properties of the device were studied, and Ref. [17]
for an implementation in the context of two-source resolution),
which was required in the scheme of Ref. [16] tailored
to directly estimate the magnitude d =

√
d2

X + d2
Y of the

separation. Thus, each interferometer stage in the current
scheme may be technically simpler to implement than that
of Ref. [16], and especially if only one component of the
separation is of interest. However, the original scheme is likely
to be superior for estimation of d =

√
d2

X + d2
Y , as suggested

by the dependence of the MSE of ď
(SLI)
Y on dX in the simulations

in Sec. V.
Our analysis here can be extended in various directions.

By adopting the Gaussian-state source model of Ref. [21],
our quantum Fisher information calculations can, in principle,
be extended to sources of arbitrary strength. The study of
two-source transverse localization can also be generalized
to sources emitting light in more general quantum states,
as in Ref. [22]. In principle, it can also be extended to
multiple sources, although finding near-optimal measurement
schemes is likely to be challenging. The performance of
the SPADE and SLIVER schemes can also be analyzed
in the thermal-state model in the spirit of Ref. [16]. Even
with the same source model as here, the performance of
SPADE employing only a finite number of HG modes and
extensions of the SLIVER scheme using pixelated detectors
(cf. the fin-SPADE and pix-SLIVER schemes of [21]) can
be explored, as well as generalizations enabling full transverse
localization of the sources. This problem will be explored in the
future.

In both measurement schemes, we have assumed that the
centroid position is known. If that knowledge is unavailable,
a portion of the light can be used for image-plane photon
counting to determine the centroid position before performing
either of the schemes, as detailed in Ref. [14]. To account for
the residual error in estimating the centroid, it is important to
study the performance of SLIVER and SPADE if the centroid
is not aligned to the optical axis. Among the other practical
questions to be explored are the effects of nonunity coupling
efficiency in SPADE, and unequal detection efficiencies of the
detectors.

ACKNOWLEDGMENTS

S.Z.A., R.N., and M.T. acknowledge support by the Sin-
gapore National Research Foundation (Singapore) under NRF
Grant No. NRF-NRFF2011-07 and the Singapore Ministry

of Education Academic Research Fund; Tier 1 Project No.
R-263-000-C06-112.

APPENDIX A: QUANTUM FISHER
INFORMATION MATRIX

To evaluate the QFI matrix, we first need to diagonalize ρ

including enough eigenvectors to span the combined support
of ρ and the {∂ρ/∂θμ}. The partial derivatives of ρ with respect
to the object-plane source coordinates Xμ and Yμ are

∂ρ

∂Xμ

= ∂D1

∂Xμ

|e1〉〈e1| + ∂D2

∂Xμ

|e2〉〈e2|

+
(

D1
∂|e1〉
∂Xμ

〈e1| + D2
∂|e2〉
∂Xμ

〈e2| + H.c.

)
, (A1)

∂ρ

∂Yμ

= ∂D1

∂Yμ

|e1〉〈e1| + ∂D2

∂Yμ

|e2〉〈e2|

+
(

D1
∂|e1〉
∂Yμ

〈e1| + D2
∂|e2〉
∂Yμ

〈e2| + H.c.

)
, (A2)

where H.c. denotes the Hermitian conjugate. For any (possibly
complex-valued) ψ(x,y) symmetric about the origin, viz.,

ψ(x,y) = ψ(−x,−y), (A3)

here we show that the overlap δ given by Eq. (5) is real valued.
The complex conjugate of δ is given by

δ∗ =
∫ ∞

−∞
dx

∫ ∞

−∞
dy ψ(x − X1,y − Y1)ψ∗(x − X2,y − Y2).

(A4)

By applying the transformations

x �→ X̄

2
− x, y �→ Ȳ

2
− y, (A5)

and flipping the limits of both integrations, we have

δ∗ =
∫ ∞

−∞
dx

∫ ∞

−∞
dy ψ

(
−x + dX

2
, − y + dY

2

)

× ψ∗
(

−x − dX

2
,−y − dY

2

)
, (A6)

where X̄,Ȳ ,dX, and dY are defined in Eqs. (8) and (9). Using
the symmetricity of ψ(x,y),

δ∗ =
∫ ∞

−∞
dx

∫ ∞

−∞
dy ψ

(
x − dX

2
,y − dY

2

)

× ψ∗
(

x + dX

2
,y + dY

2

)

=
∫ ∞

−∞
dx

∫ ∞

−∞
dy ψ(x − X2,y − Y2)ψ∗(x − X1,y − Y1)

= δ, (A7)

where we apply the transformations

x �→ x − X̄

2
, y �→ y − Ȳ

2
, (A8)

in the second equality. Hence, δ is real valued.
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After some algebra, it can be shown that a possible set of eigenvectors of ρ is

|e0〉 = |vac〉, |e1〉 = 1√
2(1 − δ)

(|ψ1〉 − |ψ2〉), |e2〉 = 1√
2(1 + δ)

(|ψ1〉 + |ψ2〉),

|e3〉 = 1

c3

[

kX(|ψ1X〉 + |ψ2X〉) + r+
kY (|ψ1Y 〉 + |ψ2Y 〉) − 2(γX + r+γY )√

2(1 − δ)
|e1〉

]
,

|e4〉 = 1

c4

[

kX(|ψ1X〉 + |ψ2X〉) − r+
kY (|ψ1Y 〉 + |ψ2Y 〉) − 2(γX − r+γY )√

2(1 − δ)
|e1〉

]
,

|e5〉 = 1

c5

[

kX(|ψ1X〉 − |ψ2X〉) + r−
kY (|ψ1Y 〉 − |ψ2Y 〉) + 2(γX + r−γY )√

2(1 + δ)
|e2〉

]
,

|e6〉 = 1

c6

[

kX(|ψ1X〉 − |ψ2X〉) − r−
kY (|ψ1Y 〉 − |ψ2Y 〉) + 2(γX − r−γY )√

2(1 + δ)
|e2〉

]
, (A9)

where δ is given by Eq. (5), 
kX,
kY ,γX,γY are defined in
Eq. (19),

|ψ1X〉 ≡ 1


kX

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∂ψ(x − X1,y − Y1)

∂X1
|x,y〉,

|ψ2X〉 ≡ 1


kX

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∂ψ(x − X2,y − Y2)

∂X2
|x,y〉,

|ψ1Y 〉 ≡ 1


kY

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∂ψ(x − X1,y − Y1)

∂Y1
|x,y〉,

|ψ2Y 〉 ≡ 1


kY

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∂ψ(x − X2,y − Y2)

∂Y2
|x,y〉,

c3 ≡ 2

√

k2

X + b2
X − γ 2

X

1 − δ
+ |r+|

∣∣∣∣a + as − γXγY

1 − δ

∣∣∣∣,

c4 ≡ 2

√

k2

X + b2
X − γ 2

X

1 − δ
− |r+|

∣∣∣∣a + as − γXγY

1 − δ

∣∣∣∣,

c5 ≡ 2

√

k2

X − b2
X − γ 2

X

1 + δ
+ |r−|

∣∣∣∣a − as − γXγY

1 + δ

∣∣∣∣,

c6 ≡ 2

√

k2

X − b2
X − γ 2

X

1 + δ
− |r−|

∣∣∣∣a − as − γXγY

1 + δ

∣∣∣∣,
r± ≡

[

k2

X ± b2
X − γ 2

X/(1 ∓ δ)


k2
Y + b2

Y − γ 2
Y /(1 ∓ δ)

]1/2

× exp

[
−i arg

(
a ± as − γXγY

1 ∓ δ

)]
,

a ≡
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∂ψ∗(x,y)

∂x

∂ψ(x,y)

∂y
,

as ≡
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∂ψ∗(x,y)

∂x

∂ψ(x − dX,y − dY )

∂y
,

b2
X ≡

∫ ∞

−∞
dx

∫ ∞

−∞
dy

[
∂ψ∗(x − X1,y − Y1)

∂X1

×∂ψ(x − X2,y − Y2)

∂X2

]
,

b2
Y ≡

∫ ∞

−∞
dx

∫ ∞

−∞
dy

[
∂ψ∗(x − X1,y − Y1)

∂Y1

×∂ψ(x − X2,y − Y2)

∂Y2

]
, (A10)

and the eigenvalues of ρ (Dn corresponding to |en〉) are

D0 = 1 − ε, D1 = ε

2
(1 − δ), D2 = ε

2
(1 + δ),

D3 = D4 = D5 = D6 = 0. (A11)

The SLDs with respect to the derivative in Eqs. (A1) and
(A2) can be found using Eq. (17),

L(X)
μ =

∑
m,n

Dm + Dn 	= 0

2

Dm + Dn

〈em| ∂ρ

∂Xμ

|en〉|em〉〈en|,

L(Y )
μ =

∑
m,n

Dm + Dn 	= 0

2

Dm + Dn

〈em| ∂ρ

∂Yμ

|en〉|em〉〈en|. (A12)

Transforming to the centroid and separation parameters θ of
Eq. (7) gives the SLDs

L1 = L(X)
1 + L(X)

2 , L2 = L(Y )
1 + L(Y )

2 ,

L3 = L(X)
2 − L(X)

1

2
, L4 = L(Y )

2 − L(Y )
1

2
. (A13)

We can now evaluate the quantum Fisher information using
Eq. (16) to finally obtain Eq. (18).

APPENDIX B: THE STATISTICS OF SLIVER

In this appendix, we compute the probabilities [Eq. (47)]

P (r) = tr(ρN̂r ) (r = 1,2,3), (B1)

=
∑
s=1,2

εs〈�s |N̂r |�s〉, (B2)

of the three possible cases of detecting one photon in the
SLIVER measurement. Here, the states

|�s〉 = |ψs〉|0〉1|0〉2, s = 1,2, (B3)
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as the single-photon source states augmented with vacuum
states in the extra beam-splitter input modes V̂1(x,y) and
V̂2(x,y). From Eq. (45) and Eqs. (41)–(44), knowledge of the
second moments

〈�s |Ê†(x,y)Ê(x ′,y ′)|�s〉, (B4)

〈�s |Ê†(x,y)V̂1(x ′,y ′)|�s〉, (B5)

〈�s |Ê†(x,y)V̂2(x ′,y ′)|�s〉, (B6)

〈�s |V̂ †
1 (x,y)V̂1(x ′,y ′)|�s〉, (B7)

〈�s |V̂ †
1 (x,y)V̂2(x ′,y ′)|�s〉, (B8)

〈�s |V̂ †
2 (x,y)V̂2(x ′,y ′)|�s〉, (B9)

for arbitrary (x,y) and (x ′,y ′) and for s = 1,2, suffices
to calculate Eq. (B1). Since V̂1(x,y) and V̂2(x,y) are in
vacuum, the only nonzero second moment is Eq. (B4). To
calculate 〈�s |Ê†(x,y)Ê(x ′,y ′)|�s〉, expand the image-plane
field in terms of a complete orthonormal set {ϕq(x,y)}∞q=0 with

associated annihilation operators {âq}∞q=0 such that ϕ0(x,y) =
ψ1(x,y):

Ê(x,y) = â0ψ1(x,y) +
∞∑

q=1

âqϕq(x,y). (B10)

Then, by definition of the single-photon state (3), the mode â0

is in a single-photon state while {âq}∞q=1 are all in vacuum. It
follows that

〈�1|Ê†(x,y)Ê(x ′,y ′)|�1〉 = 〈1|â†
0â0|1〉 ψ∗

1 (x,y)ψ1(x ′,y ′)

(B11)

= ψ∗
1 (x,y)ψ1(x ′,y ′). (B12)

Using a similar mode expansion for s = 2, we have, generally,

〈�s |Ê†(x,y)Ê(x ′,y ′)|�s〉 = ψ∗
s (x,y) ψs(x

′,y ′), s = 1,2.

(B13)

Using this along with Eqs. (41)–(44) to evaluate Eq. (B1)
results in Eqs. (49) of Sec. IV A.
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