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ABSTRACT

We show that an optical pulse inherently computes three-dimensional classical fluid dynamics. Taking optical diffraction,
dispersion and nonlinearity into account, one can define the metaphoric fluid density, velocity and vorticity in the optical
pulse. We propose the use of the group-velocity-delayed time to represent the third dimension of the fluid, and the “split-
step” method to combine optical devices as a configurable system that simulates fluid flow. Optical systems, with the
inherent speed, parallelism and configurability, may one day be utilized to assist the study of fluid dynamics.

1. INTRODUCTION

It is well known that the nonlinear Schrodinger equation (NLSE), which describes optical propagation, Bose-Einstein
condensates and superfluids among many other physical phenomena, can be transformed to hydrodynamical equations.1

The hydrodynamical formulation is studied mainly in the field of superfluidity,2 while in the field of optics, the fluid
description has been used, for example, in the study of laser dynamics,3–5 two-dimensional optical flow in a cavity6, 7 and
optical vortex dynamics.8–10 In this perspective, optics seems to have at least some correspondence to fluid dynamics.
A field essential to aeronautics and weather prediction, computational fluid dynamics nonetheless experiences tremendous
difficulties due to the overarching computing power and data storage required. While fluid experiments such as wind
tunnels can be used to study flow problems, they are not very configurable and it is difficult to specify complex initial
conditions. Meanwhile it has been proposed that NLSE can be used to study inviscid fluid dynamics,11 the dynamics of
NLSE exhibits classical turbulence behavior12 and light propagation can be used to study properties of superfluids.13 This
makes one wonder if a much larger class of problems in fluid dynamics can be studied with the help of optical systems,
which inherently display speed, parallelism and configurability.

Building on previous attempts that relate light to two-dimensional fluids or superfluids, our ultimate target is to use
optics to accurately simulate three-dimensional ordinary fluids in high-Reynolds-number flow. The optical intensity and
the local wave vector can represent the fluid density and velocity respectively, the optical pulse shape can be used to
represent the third dimension of the fluid if group-velocity dispersion is negative, and mirrors with small structures can be
introduced to implement an effective “no-slip” boundary condition. This correspondence to classical fluids may one day
be used as an “optical wind tunnel” for the metaphoric computing of fluid dynamics.

While in theory nonlinear optical propagation can accurately model fluid flow, an ideal nonlinear medium in which the
correspondence is exact may not be easily fabricated. We hereby introduce the “split-step” method, in which propagation
effects can be applied separately with different optical devices to an optical pulse, so that the final outcome will approximate
the true solution as if we had the ideal medium.

2. OPTICAL ANALOGUES OF FLUID DENSITY AND VELOCITY

To begin, let us reproduce the Madelung transformation of NLSE to fluid equations,1 with the inclusion of the pulse shape
as the third dimension. The nonlinear Schrodinger equation in optics is given by

∂A

∂z
=

j

2k0
∇2

⊥A − jβ2

2
∂2A

∂t2
+ jk0∆n(r⊥, t, |A|2)A, (1)

where A = |A(z, x, y, t)| exp[jψ(z, x, y, t)] is the complex envelope, k0 = 2π/λ0 is the carrier wave number, ∇2
⊥ is the

transverse Laplacian, β2 is the group-velocity dispersion coefficient, t is the group-velocity-delayed time, and ∆n is the
refractive index change that can be due to the spatial refractive index profile of the medium, or induced by nonlinear self- or
cross-phase modulation. For the Kerr nonlinearity, ∆n|Kerr = n2|A|2. Dispersion can be considered as the third dimension
of diffraction if the group-velocity dispersion is anomalous, or β2 < 0. The corresponding spatial coordinate can then be
defined as τ ≡ t/

√−β2k0.
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The Madelung transformation is given by

i ≡ |A|2, (2)

κ ≡ ∇′ψ =
(
r̂⊥∇⊥ + τ̂

∂

∂τ

)
ψ, (3)

where i is the intensity and κ is the local wave vector. Two equations are thus produced,
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( 1
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√

i
∇′2√i

)
. (5)

Eq. (4) is identical to the continuity equation in hydrodynamics, with propagation displacement z acting as time, optical
intensity I as fluid density and κ as velocity. The (negative) instantaneous frequency represents the third component of
velocity. Eq. (5) resembles the Euler equation of inviscid motion for irrotational flow (∇ × v = 0), with −∆n acting as
pressure. The nonlinearity should be defocusing (n2 < 0) so that the pressure term provides the correct fluid behavior. The
last term of Eq. (5) is called the “quantum pressure,” which is not present in classical fluid dynamics.

If the characteristic intensity of the optical system is I , the characteristic length is W and the characteristic local wave
number is K, Eqs. (4) and (5) can be renormalized according to the following parameters,

ζ ≡ K

Wk0
z, (6)

∇ ≡ W∇′, (7)

ρ ≡ i

I
, (8)

v ≡ κ

K
, (9)

a ≡ 1
k0

√−n2I
, (10)

M ≡ Ka, (11)

H ≡ a

W
, (12)

where a is called the “healing” length, which characterizes the length over which the intensity bends at a boundary. M is
the Mach number in the fluid picture, and H is the normalized healing length. The normalized equations of motion are

∂ρ

∂ζ
+ ∇ · (ρv) = 0, (13)

∂v
∂ζ

+ ∇
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2
v2

)
= − 1

M2
∇

(
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2
√

ρ
∇2√ρ

)
. (14)

The “quantum pressure” term gives rise to Bogoliubov dispersion in a superfluid,6 but should be made negligible compared
to the Kerr pressure term if ordinary fluid behavior is desired, so

H << 1, (15)

W >> a. (16)

The Euler equation of irrotational inviscid fluid motion is then obtained,

∂v
∂ζ

+ ∇
(1

2
v2

)
= − 1

M2
∇ρ. (17)
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A compressible fluid may demand a different pressure dependence on density. For instance, the pressure term of an
isothermal ideal gas is ∝ (1/ρ)∇ρ = ∇ ln ρ. Hence for a good correspondence with fluid dynamics, we shall assume a
small compressibility, or in terms of the Mach number M,

M = Ka << 1, (18)

so that Kerr nonlinearity is a good first-order approximation. A small compressibility also helps to ensure a small “quantum
pressure” term, so that the requirement in Eq. (16) can be somewhat relaxed.

3. VORTICITY

While the Madelung transformation relates nonlinear optical propagation to irrotational flow, most interesting fluid prob-
lems concern the concept of vorticity, which is responsible for turbulence. It is defined as

ω ≡ ∇× v. (19)

Optical vorticity does exist, but in the quantized form of optical vortices. For a three-dimensional optical pulse that includes
the dispersion effect vortices exist in the form of vortex lines, just like in superfluids. For a direct correspondence between
optics and classical hydrodynamics it is therefore essential to relate the quantized vortex lines to the distributed vorticity.

The magnitude of vorticity can be estimated by the closed path integral of v,

ω · n̂ = lim
σ→0

1
σ

∮
v · dl (20)

= lim
σ→0

1
σ

∮
∇ψ · dl, (21)

where n̂ is the unit vector in the direction of ω, σ is the area near the position of the vorticity to be calculated, and the path
integral is around the area of interest. The path integral is the accumulation of phase when one goes around a closed loop,
which can be multiples of 2π and is called the circulation. A non-zero circulation can only exist near an optical vortex,
and as such if the path integral is not around a vortex the vorticity is zero, otherwise it is infinite. This can be written in a
mathematical form as

ω(r) =
∑

j

ωj(r) (22)

=
∑

j

Γj

∫
drjδ(r − rj), (23)

where Γj is the circulation around a vortex denoted by j, δ(r − rj) is a three-dimensional Dirac delta function, r =
(xx̂ + yŷ + τ τ̂ )/W is the normalized position vector, rj = [xj(ξ, ζ)x̂ + yj(ξ, ζ)ŷ + τj(ξ, ζ)τ̂ ]/W denotes the position
of a vortex line (parametrized by ξ) and the integral is performed along a vortex line.

The intensity at the center of the vortex is required to be zero, and the size of the intensity null is on the order of the
healing length a as given by Eq. (10). Compressible effects due to the intensity null are minimized on the macroscopic
scale if the approximation given by Eq. (16) is satisfied.

We can now patch up the equation of motion, Eq. (17), to include the effect of vortices, where the Madelung transfor-
mation is undefined because ρ is zero,2, 15

∂v
∂ζ

+ ∇(
1
2
v2) + ω × v = − 1

M2
∇ρ. (24)

The inclusion of the term ω × v can be explained by the phenomenon of phase slip.2

Vortex lines with the lowest circulation possible are the most energetically stable and we can therefore safely assume
that Γj = 2π when vortex lines are naturally generated, for example, by a boundary. Furthermore, the vorticity can be
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regarded as continuous if the total absolute circulation of a given problem,
∑

j |Γj | ∼ KW , is shared by a large number
of vortices. We can therefore approximate continuous vorticity with quantized vortices if

KW >> 2π. (25)

In other words, when the requirement of Eq. (25) is satisfied, the quantization of vortices plays a much smaller role and
the dynamics should approach the classical behavior. The use of discrete vortices to model continuous vorticity is a well-
established numerical method in fluid dynamics.16 Simulations11 also show that the use of NLSE is a valid alternative
to the Euler and Navier-Stokes equations for the study of free shear flow, and the NLSE dynamics of a large number of
vortices can exhibit classical turbulence behavior.12

The formalism above shows that inviscid fluid dynamics can be studied by nonlinear optical propagation. 2D initial
conditions can be specified using, for instance, spatial light modulators or holography. For 3D initial conditions, complete
spatiotemporal amplitude and phase specification is needed, although current technology is not yet able to do so efficiently.
Nonetheless one can certainly envision the use of short-pulse wave mixing, cross-phase modulation, or even spatial light
modulators embedded in a slow light medium to accomplish the task. 3D amplitude and phase of the output optical beam
can be measured by short-pulse holography.

4. BOUNDARY CONDITIONS

The refractive index acts as a (negative) potential function in the NLSE. A low refractive index region compared to the
bulk thus corresponds to a high potential area. In the limit of infinite potential, the density ρ is restricted to be zero, and
equivalently the velocity component normal to the boundary is set to zero, while there is no restriction on the tangential
component. This is called the “free-slip” boundary condition in fluid dynamics.

To enforce a 3D boundary condition, the refractive index profile must be in 3D (x, y and t) as well, which means that
the boundary must co-propagate with the pulse. One can therefore only use another light pulse, with a different polarization
or frequency, to induce a 3D refractive index profile via cross-phase modulation. The “boundary” pulse should not change
significantly with respect to z, so one should periodically compensate for its diffraction and dispersion, with, for instance,
optical phase conjugation.

While one can enforce the “free-slip” boundary condition in optics, the most commonly used boundary condition in
fluid dynamics is the “no-slip” boundary condition, which mandates a zero total velocity at the interface and has no obvious
equivalence in optics. This issue is tackled in the next section.

5. VORTEX NUCLEATION

In an ordinary fluid, the creation of vortices is mainly due to an obstacle in the flow, the boundary of which in most cases
is “no-slip”. The vorticity naturally generated at such a boundary is diffused into the main flow by viscosity.

In optics one can only have a “free-slip” boundary as enforced by the refractive index. In a completely incompressible
fluid, a “free-slip” boundary only results in a potential flow and does not generate vorticity.

Since a “no-slip” boundary, and viscosity for that matter, do not naturally exist in optics, we are forced to find alternative
methods to mimic the ordinary fluid behavior of vorticity nucleation and diffusion. One method to generate vortices at a
“free-slip” boundary is by compressibility, when velocity anywhere in the flow exceeds the speed of sound.14 This seems
to violate our assumption of incompressibility, but all we require is a high velocity near the boundary in order to generate
vortices, while the velocity some distance away from the boundary can remain well below the speed of sound so that
compressible effects are not large overall. Indeed, for a potential flow around a cylinder, the critical Mach number Mc at
which vortices start to form around the cylinder is only about 0.4.14

To minimize compressible effects, one would like to lower the critical Mach number. This can be done by introducing
sharp corrugations on the wall of a boundary,14 so that the potential flow speed near each corrugation is multiplied by its
aspect ratio, given by the height of each corrugation h divided by its width w. In other words, the critical Mach number is
proportional to w/h. We can then achieve vortex emission in the small compressibility regime if

Mc ∼ w

h
<< M << 1. (26)
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For a sharp corrugation, the potential flow speed quickly reduces to the macroscopic value at a distance h away from the
boundary, so as long as h << W the overall dynamics can still be regarded as incompressible.

What is the equivalent Reynolds number in the optical flow then? Reference12 compares the average distance among
the vortices to the Taylor microscale, and concludes that the Reynolds number should be given by R ∼ KW , according to
our normalization. However, the average distance as calculated in Ref.12 is only due to the quantized nature of the vortices,
while the Taylor microscale is the scale at which viscous effect becomes noticeable. This comparison is thus between
two length scales with different physical origins. A more physically sound estimate can be made by observing that the
only dissipation mechanism available in a pure superflow is acoustic emission, which only becomes significant when the
distance between two vortices is as close as a. One should then compare the Taylor microscale to a instead, or

a ∼ W√R , (27)

R ∼ 1
H2

. (28)

6. THE SPLIT-STEP METHOD

While an optical system shows promise for computing fluid dynamics, it also poses serious technical challenges. Ide-
ally one would like to have a configurable nonlinear material with low loss, anomalous group-velocity dispersion, high
defocusing nonlinearity, tailored spatial and temporal coherent diffusion properties and three-dimensional co-propagating
boundaries. One may only be able to find separate materials or optical devices, each of which performs only some of
the functions. Moreover, parasitic effects such as loss and high-order dispersion can be detrimental to the accuracy. To
combine different devices and periodically compensate for parasitic effects, one may use the so-called “split-step” method.
Consider the general NLSE,

∂A

∂ζ
=

N∑
n=1

ĤnA, (29)

where propagation effects and boundary conditions are expressed in terms of operators Ĥn. The formal solution is

A(ζ + ∆ζ) = exp
(∫ ζ+∆ζ

ζ

N∑
n=1

Ĥndζ ′
)
A(ζ), (30)

But if ∆ζ is much smaller than 1/H where H is the magnitude of the operators, by virtue of the Baker-Hausdorff formula
we have

A(ζ + ∆ζ) =
N∏

n=1

exp
(
Ĥn∆ζ

)
A(ζ) + O(H2∆ζ2). (31)

Each of the propagation effects can thus be applied separately to an optical pulse, with a quadratic error term. A sym-
metrized version of the split-step method can further reduce the error order,

A(ζ + ∆ζ) =
1∏

m=N

exp
(
Ĥm

∆ζ

2

) N∏
n=1

exp
(
Ĥn

∆ζ ′

2

)
A(ζ) + O(H3∆ζ3). (32)

One can then form a unit cell of a “meta-material” by combining a slice of defocusing material, a slice of anomalously
dispersive material, a nonlinear region to apply the three-dimensional boundary conditions periodically by short pulses,
and a gain medium to compensate for loss. The optical pulse can loop through the unit cell multiple times, so that the
outcome will approximate the true solution as if we had an ideal medium.

The split-step method has the additional advantages that each subsystem can be tunable and easily substituted with
another material or device, and the pulse evolution can be monitored more easily. The magnitude of each effect can be
tuned by simply changing the propagation length in each device, In exchange of configurability we have sacrificed some
accuracy due to discretization errors and instability. The computation speed may also be reduced by a large but constant
fraction, as the pulse may spend most of its time on simply propagating from one device to the next and not performing
the core computation by nonlinear propagation. The “split-step” method, however, does not detract from the inherent
parallelism in the computation, as the transverse dimensions are not discretized.
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7. SCALING LAWS

The first and foremost requirement for our optical system is to ensure an accurate correspondence with classical fluid
dynamics. One can obtain the same dynamics with arbitrary scales as long as the Reynolds number R and the Mach
number M are the same. In terms of fluid characteristic size L, velocity U , kinematic viscosity ν and sound speed cs, R
and M are defined as

R ≡ UL

ν
, (33)

M ≡ U

cs
. (34)

In terms of optical parameters,

R =
UL

ν
=

(W

a

)2

, (35)

M =
U

cs
= Ka. (36)

From the earlier discussions we see that optics can accurately simulate fluids if the Reynolds number is high (R >> 1)
and the Mach number is relatively low (M << 1).

Quantitatively, to ensure accuracy, all the assumptions in the above discussions should be satisfied and can be summa-
rized as

W >>
2π

K
>> 2πa >> λ0, (37)

A high optical intensity ρ is required to maintain small compressibility. In terms of the characteristic power P and intensity
I ,

P ∼ IW 2 >>
K2W 2

k2
0n2

∼ M2R
k2
0n2

. (38)

Hence the total power is required to be much higher than the critical power, defined as 1/(k2
0n2).

To estimate the ultimate performance of an optical system for fluid dynamics computation, we assume that an ideal
optical medium can be fabricated and all technical problems can be solved without the need of the “split-step” method.
The computation speed is then only limited by how fast an optical pulse can diffract and disperse. The time taken, to, by an
optical pulse to propagate and compute the dynamics of a slightly compressible fluid flowing for a duration of tf , with the
same R and M, is the propagation distance divided by the group velocity vg , provided that the pulse width is not longer
than the latency. to is then given by

to ∼ U

vg

k0

K

W

L
tf ∼ M√R

c2
s

k0∆nνvg
tf ≡ 1

S
tf . (39)

S =
√R
M

k0∆nνvg

c2
s

(40)

The factor S determines the computation speed of an optical system relative to a fluid. For typical values, λ0 ∼ 1 µm,
∆n ∼ 10−4, vg ∼ 108 ms−1, cs ∼ 103 ms−1, ν ∼ 10−5 m2s−1, S is on the order of

√R/M >> 1, which means that
optics inherently computes fluid dynamics faster than even the fluid itself.

For an incompressible flow, one can study a fluid problem by experimenting with a smaller model, which evolves faster,
while keeping the Reynolds number constant, such as in a wind tunnel. It is, however, impractical to make the model too
small because the flow velocity of a pressure-driven flow is limited by the size. Similarly, the size of an optical system can
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be reduced to achieve faster computation of incompressible fluid dynamics, as long as the Reynolds number is the same
while the Mach number is small enough. Provided that all other requirements are satisfied, to in this regime is given by

to ∼ W 2

L2

√R
M

k0ν

vg
tf ≡ W 2

L2

1
SI

tf . (41)

SI =
M√R

vg

k0ν
. (42)

The factor SI determines the computation speed of the optical system relative to an incompressible fluid if the two systems
have the same size. Using the parameters above, SI ∼ 106M/

√R. Say R ∼ 106, M ∼ 0.1, SI ∼ 100, so the optical
system is 100 times faster than the fluid system when the two systems have the same size, while further speed advantage
can be gained by reducing the optical system size.

8. CONCLUSION

We have established a comprehensive formulation of “optohydrodynamics,” in which an optical pulse can exihibit classical
fluid properties and physical boundary conditions can be optically implemented. While this formalism is by no means
complete because of the restriction of small compressibility and the lack of a fluid energy equation, our theory still obeys
the fluid mass and momentum conservation equations, which should faithfully describe a large class of interesting problems
including turbulence. Optical effects not considered here, such as incoherence, polarization, non-Kerr-type nonlinear
effects and wave mixing, may also be used to further generalize our formulation. For example, incoherence may be related
to the temperature of a fluid,7 optical vortex solitons, which should exhibit fluidic properties, have been observed in
photorefractive19 and photovoltaic media20 and with partially coherent light.21 Optical vortex streets in walking second-
harmonic generation have been observed and compared to von Karman vortex streets.22

There are enormous technical challenges ahead if actual systems are to be built for the purpose of fluid simulations
especially for three-dimensional problems, but the speed, parallelism and configurability of optics promise vast advantages
over numerical computation and fluid experiments.
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