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Abstract: It is shown that, contrary to popular belief, the multiphoton absorption rate is reduced if
entangled photons are used to reduce the feature size of multiphoton lithography.
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One of the main promises of quantum lithography [1], besidesthe reduction of feature size, is the enhancement of
the multiphoton absorption rate, since classical multiphoton lithography requires unrealistically high optical powers.
Botoet al. argued heuristically that, for quantum lithography, as thephotons are correlated in space, time, and number,
they are contrained to arrive at the same place and the same time, leading to an enhancement of the multiphoton
absorption probability. Here we show that, unfortunately,the heuristic argument by Botoet al. with respect to the
spatial domain is not correct. In fact, the opposite is true:A reduction of feature size can only be achieved by spatially
anti-correlated photons, as such, the photons arrive at the same place less often than uncorrelated photons, leading to
a reduced multiphoton absorption probability. Consider the generalN-photon state,

|Ψ〉 =
1√
N!

∫

dk1dk2...dkNφ(k1,k2, ...,kN)|k1,k2, ...,kN〉 =
1√
N!

∫

dx1dx2...dxNψ(x1,x2...,xN)|x1,x2, ...,xN〉, (1)

whereφ is the configuration-space probability amplitude in the momentum domain andψ is the corresponding quantity
in the real space, related to the former by anN-dimensional Fourier transform. Both are subject to the normalization
condition

∫

dk1dk2...dkN |φ |2 =
∫

dx1dx2...dxN |ψ|2 = 1. The resolution limit means thatφ(k1, ...,kN) = 0 for any
|ki|> 2π/λ . TheN-photon absorption probability is given by

〈

: IN(x) :
〉

= 1
N! 〈Ψ|[Â†(x)]N [Â(x)]N |Ψ〉= |ψ(x,x...,x)|2,

which is theconditional probability distributionwhen all photons arrive at the same place x. Hence, the multiphoton
absorption rate depends on how often these photons arrive atthe same place. The nonclassical state that achieves the
minimum feature size is given by

φ ∝
∫

dkG(k)δ (k1− k)δ (k2− k)...δ (kN − k), ψ ∝
∫

dk√
2π

G(k)exp[iNk(x1 + x2 + ...+ xN)] , (2)
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The original nonclassical state proposed by Botoet al., |Ψ〉 ∝ |N〉k′ |0〉−k′ + |0〉k′ |N〉−k′ , is equivalent to the state given
by Eqs. (2) whenG(k) ∝ δ (k − k′) + δ (k + k′). Because all photons are constrained to have the same momentum,
G(k) is allowed to have the same resolution limit as the one-photon case, that is,G(k) = 0 for |k| > 2π/λ , thereby
producing a minimum multiphoton absorption feature size∼ λ/N. However, the ideal state given by Eqs. (2) is not
normalizable and therefore not physical. In fact, one can show that

〈

: IN(x) :
〉

approaches zero if one constructs a
normalizable state that approaches the ideal state given byEqs. (2). Physically, this is because the photons in the ideal
state have zero uncertainty in their relative momenta, and by the Heisenberg uncertainty principle, the photons must
have infinite uncertainty in their relative positions, meaning that the photonsnever arrive at the same place together
to produce a multiphoton absorption event. In general, a multiphoton state that enhances the lithographic resolution
must have reduced uncertainty in the relative momenta of thephotons in order to obey the resolution limit, leading to
increased uncertainty in the relative positions and a reduced probability of all photons arriving at the same place.

In conclusion, while entangled photons can have a higher accuracy in where they arrive together, they are con-
strained by the resolution limit to arrive together less often, so there is a trade-off between feature size reduction and
absorption rate.
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