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ABSTRACT

Applying the mathematics of quantum information to a Poisson semiclassical photodetection model, we derive
fundamental limits to parameter estimation and hypothesis testing with any measurement of weak incoherent
optical sources via linear optics and photon counting. Connections with our recent work on superresolution
imaging are highlighted.
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1. INTRODUCTION

Modern optical imaging research recognizes that both the wave nature and the particle nature of light play equally
important roles in determining the fundamental resolution of incoherent optical imaging. Diffraction blurs the
image, while the random arrival of photons introduces shot noise;1 the combination of the two effects contribute to
difficulties in extracting information from the blurred and noisy imaging data.2 As photon shot noise is becoming
the dominant noise source in fluorescence microscopy2 as well as astronomical imaging,3 a quantum formalism
that fully accounts for the wave-particle duality of light can offer novel and timely insights into the age-old problem
of optical resolution.4–7 The theoretical machinery of quantum information and quantum metrology,4,8–10 in
particular, enabled our recent discoveries on superresolution incoherent imaging,11–17 which promise substantial
improvements beyond previously established limits18–20 and have generated significant interest in the quantum
optics community.21–26

The goal of this paper is to introduce a semiclassical formalism that can reproduce most of our recent results,
which are focused on thermal sources, passive linear optics, and photon counting. Within such restrictions, it is
known that a semiclassical photodetection model suffices,27 but here we assume a simpler Poisson model that has
been widely employed in fluorescence microscopy2 as well as astronomical imaging28 to make connections with
the modern literature. We also apply the mathematics of quantum information4,8, 9 to our model to investigate
fundamental limits to statistical inference problems in optical sensing and imaging, without resorting to the
full quantum formalism. Although this semiclassical formalism is more restrictive, it offers a more pedagogical
treatment for readers less familiar with quantum mechanics and may be applied to other problems, such as
LIDAR and electron microscopy,19 that do not satisfy the assumptions needed by the quantum formalism.

2. MUTUAL COHERENCE MATRIX

Define α as a column vector of the complex amplitudes of the optical fields in J optical modes, which can be
spatial, frequency, or polarization modes. Explicitly, it can be written as

α =


α1

α2

...
αJ

 . (1)
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Define also its complex transpose as

α† =
(
α∗1 α∗2 . . . α∗J

)
. (2)

Assuming α to be random variables, the central quantity in statistical optics is the mutual coherence matrix,1,27

defined as

Γ ≡ E
(
αα†

)
, (3)

where E denotes the statistical expectation. Mathematically, Γ must be positive-semidefinite. The total energy
in the fields is given by

N ≡
∑
j

Γjj = tr Γ, (4)

where tr denotes the matrix trace operation. A normalized mutual coherence can also be defined as

g ≡ Γ

tr Γ
, (5)

such that tr g = 1 and Γ = Ng. The mathematical similarities and physical connections of g with the quantum
density matrix have been noticed by many.4–7,11,29,30

3. MEASUREMENTS

Consider a linear optical network that takes the J optical modes as part of its inputs and K more ancillary
inputs with zero fields, as depicted in Fig. 1. Mathematically, the mutual coherence matrix of the input fields
can be written as

Γ⊕ 0 =

(
Γ 0
0 0

)
, (6)

where 0 denotes a matrix with all zero elements and Γ⊕0 becomes the mutual coherence of the combined J +K
inputs. A passive linear optical network that processes the fields gives an output mutual coherence matrix given
by U(Γ ⊕ 0)U†, where U is the field scattering matrix.1,27 If the network is lossless, the total energy must
be conserved, and U must be a unitary matrix. The average energy in each output mode is then a diagonal
component of U(Γ⊕ 0)U†, or

n̄k = e†kU(Γ⊕ 0)U†ek = Npk, (7)

pk = e†kU(g ⊕ 0)U†ek, (8)

where ek is the unit column vector, with the kth element being 1 and other elements being zero, and pk is
normalized as

∑
k pk = 1. It is known mathematically that pk can be equivalently expressed as31

pk = tr (Ekg) , (9)

where the set of Ek’s are called a positive operator-valued measure (POVM) in quantum measurement theory.31

Conversely, given a POVM, it is known that there always exists a realization in the form of Eq. (8).31 This means
that any given POVM can in principle be realized via a linear optical network with vacuum ancilla inputs and
photon counting. Note that the physics here is still classical, and only the mathematics of quantum measurement
is employed.

Consider now a measurement of the energies of the output modes and assume that the photodetection
statistics of the outputs n = (n1, n2, . . . , nJ+K) are Poisson, viz.,

P (n) =
∏
k

exp (−n̄k)
n̄nk

k

nk!
, (10)

Proc. of SPIE Vol. 10029  1002903-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/06/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



Linear Optics

Figure 1. A schematic of an optical measurement with vacuum ancilla inputs, passive lossless linear optics, and photon-
counting measurements.

which is a standard model in fluorescence microscopy2 and also stellar imaging28 at optical frequencies and
beyond. It ignores bunching or antibunching effects but can be reproduced from ab-initio considerations in
quantum optics by assuming thermal statistics with low occupancy numbers.1,11,16,27 Another illuminating way
of writing Eq. (10) is

P (n) =

∞∑
L=0

M(n|L)Π(L), (11)

where

M(n|L) =

{
L!
∏
k p

nk

k /nk!,
∑
k nk = L,

0, otherwise
(12)

is the multinomial distribution conditioned on L photoelectrons32 and

Π(L) = exp(−N)
NL

L!
(13)

is the Poisson distribution for L with N being the average number of photoelectrons. Physically, pk can be
regarded as the probability distribution of each photoelectron, as determined by the normalized mutual coherence
matrix g of the optical fields and the measurement {Ek} according to Eq. (9).

4. PARAMETER ESTIMATION

The Fisher information is a standard precision measure for parameter estimation32,33 and is recently gaining
popularity in incoherent imaging.2,3, 28 For a family of probability distributions parameterized as P (n|θ) with θ
being a vector of parameters, the Fisher information matrix is defined as

Jµν(θ) ≡
∑
n

P (n|θ)
[
∂

∂θµ
lnP (n|θ)

] [
∂

∂θν
lnP (n|θ)

]
. (14)

It is often used to lower-bound the mean-square estimation error of any unbiased estimator via the Cramér-Rao
bound.32,33 Bayesian and minimax generalizations of the bound valid for any biased or unbiased estimator are
also possible.15,33,34

Assume that N is given and g depends on the unknown parameters θ, such as the locations of fluorophores
or stars. For a given n, L =

∑
k nk is also given, and the log-likelihood function can be expressed as

lnP (n|θ) = lnM(n|L, θ) + ln Π(L). (15)
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Since only g(θ) and thus pk(θ) depend on the parameters, we obtain

∂

∂θµ
lnP (n|θ) =

∂

∂θµ
lnM(n|L, θ), (16)

J(θ) =
∑
L

Π(L)J(θ|L), (17)

Jµν(θ|L) =
∑
n

M(n|L, θ)
[
∂

∂θµ
lnM(n|L, θ)

] [
∂

∂θν
lnM(n|L, θ)

]
. (18)

In other words, the Fisher information for the Poisson model is the average of the information for the multinomial
model. They can be easily evaluated to give

J(θ|L) = LJ (θ), (19)

Jµν(θ) = NJ (θ), (20)

J (θ) ≡
∑
k

pk(θ)

[
∂

∂θµ
ln pk(θ)

] [
∂

∂θν
ln pk(θ)

]
, (21)

where J (θ) is the Fisher information per photoelectron.

Equation (21) has the same form as Eq. (14), with pk(θ) now playing the role of a probability distribution,
which can be expressed in terms of a unit-trace positive-semidefinite matrix g(θ) and a POVM {Ek} according
to Eq. (9). These mathematical facts lead to an upper bound on J (θ) given by35

J (θ) ≤ K(θ), (22)

which means that K − J is positive-semidefinite. K is the Helstrom-Fisher information matrix4 defined as

Kµν(θ) ≡ Re tr [Lµ(θ)Lν(θ)g(θ)] , (23)

and the matrices Lµ(θ) are given implicitly by

∂g(θ)

∂θµ
=

1

2
[Lµ(θ)g(θ) + g(θ)Lµ(θ)] . (24)

K depends on the mutual coherence matrix g(θ) only and not the measurement {Ek}. In other words, Eq. (22) is
a limit on the Fisher information that can be extracted from the light using any linear optics and photon counting.
This is a more specific result than the quantum formalism,4,11 which is valid for any quantum measurement,
although the semiclassical formalism here involves only basic statistics optics concepts and does not presume
any knowledge of quantum mechanics.

Consider, for example, the problem of estimating the separation between two incoherent point sources.11,14,18–20

Using the multinomial or Poisson model, it was previously shown that, for direct imaging, the information J (θ)
decreases to zero for decreasing separation, especially when Rayleigh’s criterion is violated;18–20 this vanishing
of Fisher information is called Rayleigh’s curse in our work.11,14 Our computation of the Helstrom-Fisher in-
formation,11,14 on the other hand, shows that K(θ) is constant regardless of the separation and can be much
higher than the direct-imaging information. We have further shown that the methods of spatial-mode demulti-
plexing and image-inversion interferometry, both of which involve only linear optics and photon counting, offer
information that approaches the Helstrom-Fisher value and substantially improves upon direct imaging.11,14

5. BINARY HYPOTHESIS TESTING

For detection and hypothesis-testing problems, Chernoff and Bhattacharyya distance measures are more useful.33

The detection of binary stars in astronomy36 and protein multimers in fluorescence microscopy37 are notable

Proc. of SPIE Vol. 10029  1002903-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/06/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



applications. These measures are also relevant to the Ziv-Zakai and Weiss-Weinstein error bounds for parameter
estimation.34 Consider two probability distributions P (n|θ0) and P (n|θ1) and the quantity

B(s) ≡
∑
n

P (n|θ0)

[
P (n|θ1)

P (n|θ0)

]s
, 0 ≤ s ≤ 1. (25)

− inf0≤s≤1 lnB(s) is called the Chernoff information38 and − lnB(1/2) is called the Bhattacharyya distance.33

For a given n, L is uniquely determined, and if we assume further that Π(L) does not depend on θ, the
likelihood ratio becomes

P (n|θ1)

P (n|θ0)
=
M(n|L, θ1)

M(n|L, θ0)
, (26)

which gives

B(s) =
∑
L

Π(L)B(s|L), B(s|L) =
∑
n

M(n|L, θ0)

[
M(n|L, θ1)

M(n|L, θ0)

]s
. (27)

Again, this implies that B(s) for the Poisson model is the average of B(s|L) for the multinomial model. It is
straightforward to show that

B(s|L) = bL(s), b(s) = exp {N [b(s)− 1]} , b(s) ≡
∑
k

pk(θ0)

[
pk(θ1)

pk(θ0)

]s
. (28)

Notice that b(s) has the same form as Eq. (25) with pk(θ0) and pk(θ1) playing the role of probability distributions.
Together with Eq. (9), these facts imply39,40

b(s) ≥ inf
0≤r≤1

tr
[
gr(θ1)g1−r(θ0)

]
, (29)

b(1/2) ≥ tr

√√
g(θ1)g(θ0)

√
g(θ1). (30)

The lower bounds are again independent of the measurement and quantify the fundamental indistinguishability
of the two mutual coherence matrices. In particular, we have recently used the right-hand sides of Eqs. (29) and
(30) to investigate the fundamental limits to the resolution of one versus two incoherent sources;17 Krovi, Guha,
and Shapiro have similar results.41

Another fundamental quantity is the relative entropy, defined as

D ≡
∑
n

P (n|θ1) ln
P (n|θ1)

P (n|θ0)
, (31)

which is useful not only for hypothesis testing but also for communications.38 The assumption of Π(L) being
independent of θ again leads to

D =
∑
L

Π(L)D(L) = Nd, D(L) =
∑
n

M(n|L, θ1) ln
M(n|L, θ1)

M(n|L, θ0)
= Ld, d ≡

∑
k

pk(θ1) ln
pk(θ1)

pk(θ0)
, (32)

and a measurement-independent bound given by9

d ≤ tr {g(θ1) [ln g(θ1)− ln g(θ0)]} . (33)

6. CONCLUSION

The measurement-independent bounds presented here are powerful results, as they quantify the fundamental
limits to information extraction from weak incoherent optical sources through linear optics and photon counting.
Furthermore, given the POVM model of the optical measurement presented here, the attainability of the bounds
can be investigated by borrowing results from quantum information, which has identified POVMs that can attain
the bounds in many special cases.4,35,42,43 Compared with the full photodetection model,12,13,41 the Poisson
model is less general but leads to much simpler mathematics. Our recent work on superresolution imaging11,15–17

showcases the utility of such a mathematical formalism, and it is hoped that the semiclassical treatment here
will bring it to a wider audience.
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