

Mismatched Quantum Filtering and Entropic Information

[arXiv:1310.0291]

Mankei Tsang

Department of Electrical and Computer Engineering
Department of Physics
National University of Singapore

eletmk@nus.edu.sg
http://mankei.tsang.googlepages.com/

Feb 21, 2014

Cost of making a bad decision

Regret in Statistics

 $\text{mean-square error} = \mathbb{E}\left[X - \check{X}(Y)\right]^2$

Regret in Statistics

 $\text{mean-square error} = \mathbb{E}\left[X - \check{X}(Y)\right]^2$ $\text{minimum mean-square error} = \mathbb{E}\left[X - \mathbb{E}\left(X|Y\right)\right]^2$

 $\text{mean-square error} = \mathbb{E}\left[X - \check{X}(Y)\right]^2$

minimum mean-square error $= \mathbb{E}\left[X - \mathbb{E}\left(X|Y\right)\right]^2$

Regret = mse-mmse

- Measurement-induced squeezing, cooling, control, etc.
- linear Belavkin equation (continuous Gaussian measurements):

$$df_t = \mathcal{L}_t f_t dt + \frac{1}{2} \left(a_t f_t + f_t a_t^{\dagger} \right) dy_t, \tag{1}$$

Solve for unnormalized posterior f_t from $(\rho_0, a_t, \mathcal{L}_t)$.

- Measurement-induced squeezing, cooling, control, etc.
- linear Belavkin equation (continuous Gaussian measurements):

$$df_t = \mathcal{L}_t f_t dt + \frac{1}{2} \left(a_t f_t + f_t a_t^{\dagger} \right) dy_t, \tag{1}$$

Solve for unnormalized posterior f_t from $(\rho_0, a_t, \mathcal{L}_t)$.

■ Conditional expectation:

$$\mathbb{E}\left(q_t|Y_t\right) = \frac{\operatorname{tr} q_t f_t}{\operatorname{tr} f_t}.$$
 (2)

- Measurement-induced squeezing, cooling, control, etc.
- linear Belavkin equation (continuous Gaussian measurements):

$$df_t = \mathcal{L}_t f_t dt + \frac{1}{2} \left(a_t f_t + f_t a_t^{\dagger} \right) dy_t, \tag{1}$$

Solve for unnormalized posterior f_t from $(\rho_0, a_t, \mathcal{L}_t)$.

■ Conditional expectation:

$$\mathbb{E}\left(q_t|Y_t\right) = \frac{\operatorname{tr} q_t f_t}{\operatorname{tr} f_t}.$$
 (2)

Minimum mean-square error:

$$\mathsf{mmse}_t = \mathbb{E}\left[q_t - \mathbb{E}\left(q_t|Y_t\right)\right]^2. \tag{3}$$

- Measurement-induced squeezing, cooling, control, etc.
- linear Belavkin equation (continuous Gaussian measurements):

$$df_t = \mathcal{L}_t f_t dt + \frac{1}{2} \left(a_t f_t + f_t a_t^{\dagger} \right) dy_t, \tag{1}$$

Solve for unnormalized posterior f_t from $(\rho_0, a_t, \mathcal{L}_t)$.

Conditional expectation:

$$\mathbb{E}\left(q_t|Y_t\right) = \frac{\operatorname{tr} q_t f_t}{\operatorname{tr} f_t}.$$
 (2)

Minimum mean-square error:

$$\mathsf{mmse}_t = \mathbb{E}\left[q_t - \mathbb{E}\left(q_t|Y_t\right)\right]^2. \tag{3}$$

Suppose $q_t = (a_t + a_t^{\dagger})/2$, the **directly measured** observable. $y_t - \int_0^t d\tau \mathbb{E}(q_{\tau}|Y_{\tau})$ is a Wiener process, called the innovation process.

Filter Mismatch Regret

Assume a wrong model $(\rho'_0, a'_t, \mathcal{L}'_t)$:

$$df'_t = \mathcal{L}'_t f'_t dt + \frac{1}{2} \left(a'_t f'_t + f'_t a'^{\dagger}_t \right) dy_t,$$

$$\mathbb{E}'\left(q_t'|Y_t\right) = \frac{\operatorname{tr} q_t' f_t'}{\operatorname{tr} f_t'}.\tag{4}$$

Regret due to filter mismatch:

$$R \equiv \frac{1}{2} \int_0^T dt \left\{ \mathbb{E} \left[q_t - \mathbb{E}' \left(q_t' | Y_t \right) \right]^2 - \mathsf{mmse}_t \right\}. \tag{5}$$

Regret = Relative Entropy

$$R = D(dP||dP') \equiv \int dP(Y_T) \ln \frac{dP(Y_T)}{dP'(Y_T)}.$$
 (6)

- Relative entropy, Kullback-Leibler divergence, etc.
- A measure of **distinguishability** between distributions

Proof [arXiv:1310.0291]

 $lacktriangledown \operatorname{tr} f_t$ is probability density:

$$\operatorname{tr} f_t = \frac{dP(Y_t)}{dP_0(Y_t)},\tag{7}$$

 dP_0 = Wiener measure.

■ From Belavkin,

$$d\operatorname{tr} f_t = \operatorname{tr} df_t = \operatorname{tr} \mathcal{L}_t f_t dt + \frac{1}{2} \operatorname{tr} \left(a_t f_t + f_t a_t^{\dagger} \right) dy_t = \mathbb{E} \left(q_t | Y_t \right) (\operatorname{tr} f_t) dy_t. \tag{8}$$

Itō calculus $(dy_t^2 = dt)$:

$$\ln \operatorname{tr} f_T = \int_0^T dy_t \, \mathbb{E} \left(q_t | Y_t \right) - \frac{1}{2} \int_0^T dt \, \mathbb{E}^2 \left(q_t | Y_t \right), \tag{9}$$

(10)

Similar for $\ln \operatorname{tr} f_T'$ [Tsang, PRL 108, 170502 (2012)].

■ Relative entropy is expected log-likelihood ratio:

$$D(dP||dP') = \mathbb{E} \ln \frac{dP(Y_T)}{dP'(Y_T)} = \mathbb{E} \left(\ln \operatorname{tr} f_T - \ln \operatorname{tr} f_T' \right). \tag{11}$$

Use basic properties of conditional expectation and innovation process $\mathbb{E}[dy_t g(Y_t)] = \mathbb{E}[\mathbb{E}(dy_t | Y_t) g(Y_t)] = \mathbb{E}[dt \, \mathbb{E}(q_t | Y_t) g(Y_t)] = dt \, \mathbb{E}[q_t g(Y_t)]$

Example: Mismatched Initial Condition

Suppose dynamics and measurements are accurate ($\mathcal{L}_t = \mathcal{L}_t'$, $a_t = a_t'$), only $ho_0'
eq
ho_0$,

$$dP(Y_T) = \operatorname{tr} d\mu(Y_T)\rho_0,$$

$$dP'(Y_T) = \operatorname{tr} d\mu(Y_T)\rho_0'. \tag{12}$$

From quantum information,

$$D(dP||dP') \le D(\rho_0||\rho_0') = \operatorname{tr} \rho_0 \left(\ln \rho_0 - \ln \rho_0' \right).$$
 (13)

Regret is upper-bounded:

$$R \le \operatorname{tr} \rho_0 \left(\ln \rho_0 - \ln \rho_0' \right). \tag{14}$$

Ignorance Regret

- True model is one of $\{\rho_0^{\theta}, a_t^{\theta}, \mathcal{L}_t^{\theta}\}$, chosen with a prior distribution of $d\pi(\theta)$.
- If I know θ , $\mathbb{E}(q_t|Y_t) = \mathbb{E}(q_t|Y_t,\theta)$.
- If I don't know θ , mse is minimized by Bayesian estimation of both q_t and θ from Y_t ;

$$\mathbb{E}'(q_t'|Y_t) = \mathbb{E}_{\theta} \left[\mathbb{E}(q_t|Y_t, \theta)|Y_t \right]. \tag{15}$$

Observation probability measures:

$$dP(Y_T) = dP_{\theta}(Y_T), \qquad dP'(Y_T) = \mathbb{E}_{\theta} dP_{\theta}(Y_T). \tag{16}$$

Ignorance Regret

- True model is one of $\{\rho_0^{\theta}, a_t^{\theta}, \mathcal{L}_t^{\theta}\}$, chosen with a prior distribution of $d\pi(\theta)$.
- If I know θ , $\mathbb{E}(q_t|Y_t) = \mathbb{E}(q_t|Y_t,\theta)$.
- If I don't know θ , mse is minimized by Bayesian estimation of both q_t and θ from Y_t ;

$$\mathbb{E}'(q_t'|Y_t) = \mathbb{E}_{\theta} \left[\mathbb{E}(q_t|Y_t, \theta)|Y_t \right]. \tag{15}$$

Observation probability measures:

$$dP(Y_T) = dP_{\theta}(Y_T), \qquad dP'(Y_T) = \mathbb{E}_{\theta} dP_{\theta}(Y_T). \tag{16}$$

■ Regret due to **ignorance**:

$$\min_{\{\rho'_0, a'_t, \mathcal{L}'_t\}} \mathbb{E}_{\theta} R = \mathbb{E}_{\theta} D(dP_{\theta} || \mathbb{E}_{\theta} dP_{\theta}) \equiv I(\theta; Y),$$
(17)

Shannon mutual information.

iħψ=Hψ

Ignorance Regret

- True model is one of $\{\rho_0^{\theta}, a_t^{\theta}, \mathcal{L}_t^{\theta}\}$, chosen with a prior distribution of $d\pi(\theta)$.
- If I know θ , $\mathbb{E}(q_t|Y_t) = \mathbb{E}(q_t|Y_t,\theta)$.
- If I don't know θ , mse is minimized by Bayesian estimation of both q_t and θ from Y_t ;

$$\mathbb{E}'(q_t'|Y_t) = \mathbb{E}_{\theta} \left[\mathbb{E}(q_t|Y_t, \theta)|Y_t \right]. \tag{15}$$

Observation probability measures:

$$dP(Y_T) = dP_{\theta}(Y_T), \qquad dP'(Y_T) = \mathbb{E}_{\theta} dP_{\theta}(Y_T). \tag{16}$$

■ Regret due to **ignorance**:

$$\min_{\{\rho'_0, a'_t, \mathcal{L}'_t\}} \mathbb{E}_{\theta} R = \mathbb{E}_{\theta} D(dP_{\theta} || \mathbb{E}_{\theta} dP_{\theta}) \equiv I(\theta; Y),$$
(17)

Shannon mutual information.

Holevo bound for mismatched initial condition:

$$\min_{\{\rho_0', a_t', \mathcal{L}_t'\}} \mathbb{E}_{\theta} R = I(\theta; Y) \le \mathbb{E}_{\theta} D(\rho_0^{\theta} || \mathbb{E}_{\theta} \rho_0^{\theta}). \tag{18}$$

measure of parameter importance.

Maximin and Minimax Regret

■ Worst-case Bayesian regret (maximin regret):

$$\max_{d\pi} \min_{\{\rho'_0, a'_t, \mathcal{L}'_t\}} \mathbb{E}_{\theta} R = \max_{d\pi} I(\theta; Y) \equiv C, \tag{19}$$

which is channel capacity.

maximin is equal to minimax (von Neumann minimax theorem):

$$\max_{d\pi} \min_{\{\rho'_0, a'_t, \mathcal{L}'_t\}} \mathbb{E}_{\theta} R = \min_{\{\rho'_0, a'_t, \mathcal{L}'_t\}} \max_{d\pi} \mathbb{E}_{\theta} R = C.$$
(20)

■ Redundancy-capacity theorem:

$$C = \max_{d\pi} \min_{dP'} \mathbb{E}_{\theta} D(dP_{\theta}||dP') = \min_{dP'} \max_{d\pi} \mathbb{E}_{\theta} D(dP_{\theta}||dP'). \tag{21}$$

Poissonian Measurements

■ Belavkin equation:

$$df_t = \mathcal{L}_t f_t dt + \left[a_t f_t a_t^{\dagger} - f_t \right] (dy_t - dt), \qquad \operatorname{tr} f_t = \frac{dP(Y_t)}{dP_0(Y_t)}. \tag{22}$$

 dP_0 =Poisson process measure. Directly measured observable is $q_t = a_t^{\dagger} a_t$.

Define loss function

$$l(q, \check{q}) \equiv q \ln \frac{q}{\check{q}} - q + \check{q}.$$
 (23)

■ Define regret:

$$R_{l} \equiv \int dt \left[l\left(q_{t}, \mathbb{E}'(q_{t}'|Y_{t})\right) - l\left(q_{t}, \mathbb{E}(q_{t}|Y_{t})\right) \right]. \tag{24}$$

Same identity:

$$R_l = D(dP||dP'). (25)$$

Classical Estimation and Information

- T. E. Duncan, "On the calculation of mutual information," SIAM Journal on Applied Mathematics 19, 215–220 (1970).
- D. Guo, S. Shamai, and S. Verdu, "Mutual information and minimum mean-square error in Gaussian channels," IEEE Transactions on Information Theory, vol. 51, no. 4, pp. 1261–1282, april 2005.
- —, "Mutual information and conditional mean estimation in Poisson channels," IEEE Transactions on Information Theory, vol. 54, no. 5, pp. 1837–1849, 2008.
- S. Verdu, "Mismatched estimation and relative entropy," IEEE Transactions on Information Theory, vol. 56, no. 8, pp. 3712–3720, 2010.
- T. Weissman, "The relationship between causal and noncausal mismatched estimation in continuous-time AWGN channels," IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 4256–4273, 2010.
- R. Atar and T. Weissman, "Mutual information, relative entropy, and estimation in the Poisson channel," IEEE Transactions on Information Theory, vol. 58, no. 3, pp. 1302–1318, 2012.
- A. No and T. Weissman, "Minimax Filtering via Relations between Information and Estimation," arXiv:1301.5096, ArXiv e-prints, Jan. 2013.

- Regret = relative entropy
- Upper bound on regret
- Mutual information, channel capacity
- M. Tsang, arXiv:1310.0291.
- Quantum information for dynamical systems
- http://mankei.tsang.googlepages.com/
- eletmk@nus.edu.sg

