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mean-square error = £ | X — X(Y)]Q
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mean-square error = £ | X — X(Y)]Q

minimum mean-square error = E [ X — E (X\Y)]2
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mean-square error = £ | X — X(Y)]Q

minimum mean-square error = E [ X — E (X\Y)]2

Regret = mse—mmse
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Quantum Filtering

D
Yi={yrito <7 <t} Y;:{yﬂtOSTSt}

m Measurement-induced squeezing, cooling, control, etc.
m linear Belavkin equation (continuous Gaussian measurements):

dft = Lt fedt + % (atft + fta;r) dyt, (1)

Solve for unnormalized posterior f: from (pg, at, L+).
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Quantum Filtering

D
Yi={yrito <7 <t} Y;:{yﬂtOSTSt}

Measurement-induced squeezing, cooling, control, etc.
linear Belavkin equation (continuous Gaussian measurements):

1
dft = Lt fedt + 5 (atft + fta;r) dyt,

Solve for unnormalized posterior f: from (pg, at, L+).
Conditional expectation:

trqtft
E(gt|Y:) = ——

Minimum mean-square error:

mmse; = E[q: — E (¢¢|Y2)]” .

(1)

(2)

(3)
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Quantum Filtering

D
Yi={yrito <7 <t} Y;:{yﬂtOSTSt}

Measurement-induced squeezing, cooling, control, etc.
linear Belavkin equation (continuous Gaussian measurements):

dft = Lt fedt + % (atft + fta;r) dyt, (1)

Solve for unnormalized posterior f: from (pg, at, L+).
m Conditional expectation:

tr Qtft
E(g:|Y:) = : (2)
tr ft
®m Minimum mean-square error:
mmse; = E [q: — E (¢:|Y2)]? . (3)

m Suppose g = (ar + aI)/Q, the directly measured observable. y; — fot dr E(q-|Y7) is a Wiener
process, called the innovation process.

4/13



N

@7 Y, = {yrito <7 < t}
m  Assume a wrong model (p},a}, L}):
/ ! gl 1 ! gl BNAN /(] trq(tt/
dft: Lyfedt + — (atft + ftat ) dyq, E (qt|Yt) = (4)
2 tr f/

m Regret due to filter mismatch:

R= %/()Tdt{E g — ' (q}[¥2)]? — mmse; }. (5)
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dP(Y7)
dP'(Yr)

(6)

R = D(dP||dP’) = /dP(YT)ln

m Relative entropy, Kullback-Leibler divergence, etc.
B A measure of distinguishability between distributions
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Proof [arXiv:1310.0291]

tr f¢ is probability density:

dFPpy = Wiener measure.
From Belavkin,

1
dtr fe = trdfy = tr L¢ fedt + 5 tr (atft + fta,l) dyr = E (q¢|Yr) (tr ft) dys.

1t calculus (dy? = dt):

T 1 T
Intr f;r = / dy: E (q¢|Yz) — 5/ dt E? (qt|Y),
0 0

Similar for Intr f7. [Tsang, PRL 108, 170502 (2012)].
Relative entropy is expected log-likelihood ratio:

dP(Y7)

D(dP||dP") = Eln ———~
(@P||dP') = Eln 250

=E (lntrfT — lntrféﬂ) :

Use basic properties of conditional expectation and innovation process
Eldytg(Yt)] = E[E(dy:[Yt)g(Y:)] = E[dt E(qt|Y:)g(Ye)] = dt Elgeg(Y?)]

(7)

(8)

(9)
(10)

(11)

7/13



m  Suppose dynamics and measurements are accurate (£L; = L}, ax = a}), only p{, # po,

dP(Yr) = trdu(Yr)po, dP'(Yr) = trdu(YT)pp. (12)

m From quantum information,

D(dP||dP") < D(pollph) = tr po (Inpo — In ) (13)

m Regret is upper-bounded:
R < trpo (Inpg — Inpp) . (14)
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Ignorance Regret

True model is one of {pf,a¥, LI}, chosen with a prior distribution of dr(0).
If | know 6, E(q¢|Y:) = E(q¢|Yz, 0).

If | don't know 6, mse is minimized by Bayesian estimation of both ¢g; and 6 from Y%;

E'(q:]Y:) = Eg [E(q:[Y2, 0)[Yz] . (15)

Observation probability measures:

dP(Yr) = dPy(Yr), dP'(Yr) = Eg dPy(YT). (16)
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Ignorance Regret

B True model is one of {pf,a?, £?}, chosen with a prior distribution of dm(6).
m If | know 0, E(q¢|Y:) = E(q¢|Y%,0).
If | don't know 6, mse is minimized by Bayesian estimation of both ¢g; and 6 from Y%;

E'(q:]Y:) = Eg [E(q:[Y2, 0)[Yz] . (15)

m Observation probability measures:

dP(Yr) = dPy(Yr), dP'(Yr) = Eg dPy(YT). (16)

B Regret due to ignorance:

min E@R:EQ D(dPQHEQ dpg) = I(Q;Y), (17)
{rp,a3, L1}

Shannon mutual information.
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Ignorance Regret

B True model is one of {pf,a?, £?}, chosen with a prior distribution of dm(6).
m If | know 0, E(q¢|Y:) = E(q¢|Y%,0).
If | don't know 6, mse is minimized by Bayesian estimation of both ¢g; and 6 from Y%;

E'(q:]Y:) = Eg [E(q:[Y2, 0)[Yz] . (15)

m Observation probability measures:

dP(Yr) = dPy(Yr), dP'(Yr) = Eg dPy(YT). (16)

B Regret due to ignorance:

min E@R:EQ D(dPQHEQ dpg) = I(Q;Y), (17)
{rp,a3, L1}

Shannon mutual information.
m Holevo bound for mismatched initial condition:

min Ky R=1(6;Y) <Eg D(p§|| Ee pp)- (18)
{Poaataﬁt}

B measure of parameter importance.
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Maximin and Minimax Regret

m  Worst-case Bayesian regret (maximin regret):

max min EyR=maxI(6;Y)=C, (19)
dm {pg,ay,L4} dm

which is channel capacity.
B maximin is equal to minimax (von Neumann minimax theorem):

max min EypR= min maxEgR=C. (20)
dr {p{,a},L}} {p{,a},L}} dm

B Redundancy-capacity theorem:

C = inEy D(dPy||dP’) = mi Eg D(dPy||dP"). 21
max min Bg D(dFp||dP") = min max Eg D(dFy||dF") (21)

10 / 13



Poissonian Measurements

m Belavkin equation:

dP(Yt)

dft = Ly fedt + [atfta,l — ft} (dyt — dt) : tr fr = m (22)
d Py =Poisson process measure. Directly measured observable is g = aiat.
m Define loss function
N q -

l(q,Q)qung—qﬂLq. (23)

m Define regret:
R = /dt [0 (e, B (| Ye)) — 1 (qe, B(qe|Y2))] - (24)

m  Same identity:
R; = D(dP||dP’). (25)
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Conclusion

Regret = relative entropy

Upper bound on regret

Mutual information, channel capacity

M. Tsang, arXiv:1310.0291.

Quantum information for dynamical systems
http://mankei.tsang.googlepages.com/
eletmk@nus.edu.sg
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