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m Braginsky and Khalili, Quantum Measurement
m Caves et al.,, RMP 52, 341-392 (1980).
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Quantum Cramér-Rao Bound (QCRB):

*
*
*
*

No-go theorem

Lower bound on mean-square estimation error given initial state and dynamics
Valid for any measurement (POVM) on Aous

No clue on attainability and best measurement

M. Tsang, H. M. Wiseman, and C. M. Caves, PRL 106, 090401 (2011).
Detection (Helstrom) bounds: M. Tsang and R. Nair, PRA 86, 042115 (2012).
Decoherence: M. Tsang, NJP 15, 073005 (2013).
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Experiment approaching the quantum limit

m K. Ilwasawa, K. Makino, H. Yonezawa, M. Tsang, A. Davidovic, E. Huntington, A. Furusawa,
arXiv:1305.0066 (PRL?)

m Coherent state/phase-squeezed light + classical PZT mirror + homodyne phase-locked loop +
smoothing
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Experimental results

Green: Coherent states

Red: Phase-squeezed light

Solid line: classical Wiener theory
Dashed lines: QCRB

This is remarkable because

*

QCRB offers no clue about whether it is attain-
able.

QCRB offers no clue about what's the best
measurement to approach it.

Large number of parameters in a waveform.
Large number of optical modes in continuous-
wave beam.

Homodyne phase-locked loop + smoothing is
pretty good.

More complicated photonic circuit/quantum
computer won't help much.
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Waveform parameter estimation

m System and observation equations:

T _ par) + e, (1)

y(t) = O=(t) + n(t), @)
(D)) = Q3 — 1), )
(n(tyn(t")) = Rt — 1) (@

m  Our study so far assumes F', C, @), R are known exactly and we estimate z(t) from y(t) (linear
estimation).
m What if we don’t know and linearization doesn’t work?

¢ System ldentification: How to perform parameter estimation?
¢ Experimental Design: How to enhance sensitivity to parameters?
¢ Quantum Limits?

m Applications: many sensing applications rely on these parameters:

Optical resonance frequency: cavity enhanced detection of nanoparticles
Mechanical resonance frequency: e.g., Albrecht, Rugar et al., JAP 69, 668 (1991).
Noise power/Damping rate: Thermometry/bolometry, rheology, etc.

System identification: Demonstration of optomechanical phenomena, e.g., cooling,
ponderomotive squeezing, BAE, etc.

L R K 2 2
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Optomechanical parameter estimation

m Most optomechanics experiments don’t do statistics properly, e.g., Gavartin, Verlot, Kippenberg,

N
m S

*
*

ature Nanotech. 7, 509 (2012).

. Z. Ang, G. I. Harris, W. P. Bowen, M. Tsang, arXiv:1307.3800:

Analytic results for classical Cramér-Rao bounds

Expectation-Maximization (EM) algorithm (smoothing + iteration, converges to
maximum-likelihood) [Shumway and Stoffer, Time Series Analysis and its Applications]
EM can also estimate most of the other parameters, e.g., mechanical resonance frequency,

damping rate, useful for system identification.
See also Guta and Yamamoto, arXiv:1303.3771.
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ext question: How to enhance parameter sensitivity?
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Forward
Output Ve current
v
dc bias f

Reverse saturation

current
Reverse breakdown
current

B Photon induces avalanche electron-hole-pair creation
P side Electron
Energy
Epy -—- o it el ' Position
L

(=) a free electron
(®) u free hole

B Yariv and Yeh, Photonics 8/21



Temperature (mK)
Increase in temperature induces phase transition and gigantic increase in resistance
Irwin and Hilton, Cryogenic Particle Detection, Topics Appl. Phys. 99, 63152 (2005).
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Final straw that broke a camel’s back

TES is an example of classical phase transitions.

: What if we want to detect optical phase shifts/resonance frequency shifts:
Hr = wa'a? (5)
B use quantum phase transitions:
H =wa'a+ He (6)

m Think of Ho as a coherent control Hamiltonian that increase the system sensitivity (e.g.,
ground state) to w.
m Examples:

Ising (spin-spin interaction, magnetic field)

Dicke (light-atom interaction)

Bose-Hubbard (bosons in lattice)

Dicke-Ising (Heisenberg-scaling metrology: Gammelmark and Molmer, NJP 13, 053035
(2011))

L 2R K 2R 2
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Quantum transition-edge detectors

m Laser/OPO near threshold (sensitive to cavity detuning)

H:waTa—l—)\(a2—i—aT2>—|—... (7)
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Loschmidt echo and Helstrom bound

m T[wo Hamiltonians:

Hy :wQaTa—I—HC (8)
Hq :(wo—|—5)aTa—|—Hc (9)

m Let |¢) be, say, ground state of Hy. Define

2
F = [(p|U]Uoly) (10)

called Loschmidt echo (Peres, Quantum Theory).
m Used to study time reversibility of quantum chaos. Big drop in F' for small Aw implies time

irreversibility, chaos. [Gorin et al., Phys. Rep. 435, 33156 (2006)].
B  Quantum metrology: Suppose H = Hgp when no perturbation and H = H; when there is.

min P, = - (1 - m) . (11)

E(Y) 2

Small F' means small P, (for the optimal POVM).

Don't worry about photon-number constraints (photons are cheap)

Coherent state, no Ho: —In Popyin &~ —In F o< §2t2, § 1/t

Ground state of Hy, parametric H, H; is above critical point: —In F o< V/§t, § 1/t2,
M. Tsang, PRA 88, 021801(R) (2013).
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Continuous measurements

m Continuous homodyne/heterodyne measurements
m Classical fidelity (Bhattacharyya distance) below threshold:

> dS2 Q Q
—InF = E/ d In 51() + So(9D)| (12)
2w 2 2 IS @S0 ()]
m Fisher information G
Flw,w+6) ~1—G(w)s?/4 (13)
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Testing quantized energy

B Question: how to demonstrate quantized mechanical en-
ergy?

m Thompson et al.,, Nature; Sankey et al., Nature Phys. 6,
707 (2010)

¢ Santamore, et al., PRB 70, 144301 (2004)
¢ Jacobs et al.,, PRL 98, 147201 (2007)
¢ Miao et al,, PRL 103, 100402 (2009)
¢ Clerk et al., PRL 104, 213603 (2010).

m Begging the question: prove quantum mechanics by as-
suming quantum mechanics

Expected values can't be measured in finite time.
Asymmetric sidebands with heterodyne

¢ Safavi-Naeini et al.,, PRL 108, 033602 (2012).
¢ Brahms et al,, PRL 108, 133601 (2012).
¢ http://www.youtube.com/watch?v=pktWhH6m DM

m Linear Gaussian model:

¢ Khalili et al., PRA 86, 033840 (2012).

¢ Jayich et al. NJP 14, 115018 (2012).

¢ Safavi-Naeini et al., NJP 15, 035007 (2013).
¢ M. Tsang, arXiv:1306.2699.
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Quantum hypothesis testing

Compare quantum model with your best classical model
e.g., under quantum hypothesis H:

dys = nedt + dV4, (14)

n¢ is energy of quantized harmonic oscillator in thermal bath.
compare against classical hypothesis Hg:

dys = Erdt + dV4. (15)

&t should be energy of classical harmonic oscillator in thermal bath.

Statistical hypothesis testing:

¢ M. Tsang, PRL 108, 170502 (2012).
& Do likelihood-ratio test.
¢ Nice formula (valid for any dy; = Xidt + dV4%):

)

P(Y|H1) Belavkin Filter | 1,
L = / (:U’l — /,Lo) __— under H; [ T—, —
P(Y|H0 R Observations Likelihood
dy —_— Ratio
[ S -] (16) e
R "’
Quantum filtering expectations: o =

E [Xt|7-[0], M1 = E [Xt|7‘[1].
& Classical case: Duncan, Inform. Control 13, 62
(1968). 16 /21



Expected information

How well is the testing procedure expected to work?
Information measure: relative entropy

InA - F [ln A|H1] = D(P1||P()) (17)

Increases with more data

Cute formula valid for dy; = X¢dt 4+ dV; and any X; (unpublished, use martingale property of
innovation E[dy: — p1dt|YVe, H1] = 0 and orthogonality principle for quantum conditional
expectations E[h(Y)(u1 — X)| Ve, H1] = 0):

D(P||Po) = E /R p1— po) — = if(m 1o ‘7{1} (18)
=E M;dt (11 — po) — Cg (01— 1d) )Hl} (19)
et
= [ SB[ %) — (1 — X2 | (1)

Relates relative entropy to mismatched quantum filtering error.

Classical case: Weissman, IEEE TIT 56, 4256 (2010).

Relates mutual information, classical filtering and smoothing errors: Duncan, SIAM JAM 19, 215
(1970); Guo, Shamai, and Verdu, IEEE TIT 51, 1261 (2005), etc. 17 /21



Different notions of classicality

B  Quantum-mechanics-free systems:

¢ QND condition in Heisenberg picture

[Oj (t), O (t/)] = 0. (22) :

¢ Measurement of the commuting observables only

¢ Spectral theorem: Any classical deterministic/stochastic
model can be framed this way.

m Koopman, PNAS 17, 315 (1931).
m  Gough and James, IEEE TAC 54, 2530 (2009).

¢ Backaction-evading
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m Caves et al.,, RMP 52, 341-392 (1980).

m Tsang and Caves, PRX 2, 031016 (2012).

m |f one has access to these commuting observables only,
he/she would never find out about quantum mechanics.
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Classical simulable systems

m Efficiently simulable by classical stochastic systems
m Examples:

¢ linear Gaussian (nonnegative Wigner)

¢ Gottesman-Knill theorem

¢ Any dynamics with nonnegative quasiprobability rep-
resentations

m ad-hoc rules on system/observation noise (epistemic re-
strictions)
m This class is incredibly important for QIP as a no-go:

¢ Quantum computing
m No need for quantum computer
¢ Quantum simulation

m Good news for quantum chemistry, condensed
matter etc.

¢ Quantum filtering/estimation

m Good news because we can use finite-dimensional
classical algorithms to avoid curse of dimension-
ality:

o Kalman filter

¢ Monte Carlo/particle filters
19/ 21



What’s truly quantum?

m Bell-type (Bell, CHSH, Kochen-Specker, etc.) theorems rule out a wide class of classical
models

¢ Contextuality
¢ Nonlocality: related to contextuality. (Mermin RMP)

m Universal quantum computation: Single-photon sources, beam splitters, phase shifters,
photodetectors (Knill-Laflamme-Milburn)
m Boson sampling (Aaronson et al.)
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Summary

Waveform QCRB

¢ Theory: M. Tsang, H. M. Wiseman, and C. M. Caves,
PRL 106, 090401 (2011); M. Tsang, NJP 15, 073005
(2013).

¢ Experiment: lwasawa et al., arXiv:1305.0066.

Optomechanical parameter estimation

¢ S. Z. Ang et al., arXiv:1307.3800.
Quantum transition-edge detectors

¢ M. Tsang, PRA 88, 021801(R) (2013).
Continuous quantum hypothesis testing

¢ M. Tsang, PRL 108, 170502 (2012).

¢ M. Tsang, “Relative entropy and mismatched quan-
tum filtering error,” unpublished.

¢ M. Tsang, arXiv:1306.2699v2.

supported by the Singapore National Research Foundation
Fellowship (NRF-NRFF2011-07).
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