Quantum Optical Temporal Phase Estimation by Homodyne Phase-Locked Loops

Mankei Tsang, Jeffrey H. Shapiro, and Seth Lloyd

mankei@mit.edu

Keck Foundation Center for Extreme Quantum Information Theory, MIT

Motivation

Sensing

- $v(t) \propto \dot{\phi}(t)$
- Metrology
 - Clock stability determined by $\dot{\phi}(t)$ fluctuations.
- Coherent Communications
 - PM: $m(t) \propto \phi(t)$
 - FM: $m(t) \propto \dot{\phi}(t)$

Quantization of 1D Optical Fields

Frequency modes:

$$[\hat{a}(\omega), \hat{a}^{\dagger}(\omega')] = \delta(\omega - \omega').$$
(1)

$$\hat{A}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d\omega \hat{a}(\omega) \exp[-i(\omega - \omega_0)t], \qquad [\hat{A}(t), \hat{A}^{\dagger}(t)] = \delta(t - t'). \tag{2}$$

Continuous-time Fock states:

$$|dn(t)\rangle \equiv \prod_{j} \frac{1}{\sqrt{dn(t_{j})!}} \left[\hat{A}^{\dagger}(t_{j})\sqrt{dt} \right]^{dn(t_{j})} |0\rangle,$$

$$\hat{A}^{\dagger}(t)\hat{A}(t)|dn(t)\rangle = \left[\sum_{j} dn(t_{j})\delta(t-t_{j}) \right] |dn(t)\rangle.$$
(3)

J. H. Shapiro, Quantum Semiclass. Opt. 10, 567 (1998).

Temporal-Phase POVM

Generalizing Susskind-Glogower phase states:

$$|\phi(t)\rangle = \sum_{dn(t)} \exp\left[i \int_{-\infty}^{\infty} dt \frac{dn(t)}{dt} \phi(t)\right] |dn(t)\rangle$$

$$= \sum_{dn(t)} \exp\left[i \sum_{j} dn(t_{j}) \phi(t_{j})\right] |dn(t)\rangle$$
(5)

Temporal-Phase POVM:

$$\hat{\Pi}[\phi(t)] \equiv |\phi(t)\rangle\langle\phi(t)|, \qquad P[\phi(t)] = \operatorname{Tr}\left\{\hat{\rho}\hat{\Pi}[\phi(t)]\right\}, \qquad (6)$$

$$\int D\phi(t) \ \hat{\Pi}[\phi(t)] = \hat{1}, \qquad D\phi(t) = \lim_{\delta t \to 0} \prod_{k} \frac{d\phi(t+k\delta t)}{2\pi}. \qquad (7)$$

Adaptive Homodyne Detection

- Single-mode phase measurement:
 - Wiseman, Phys. Rev. Lett. **75**, 4587, (1995).
 - Armen *et al.*, Phys. Rev. Lett. **89**, 133602 (2002).

Phase-Locked Loop (PLL)

- Viterbi, *Principles of Coherent Communications* (McGraw-Hill, New York, 1966).
- H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I (Wiley, New York, 2001); Part II: Nonlinear Modulation Theory (Wiley, New York, 2002).
- A. B. Baggeroer, State Variables and Communication Theory (MIT Press, Cambridge, 1970).

Phase-Locked Loop Design for Coherent States

Wigner distribution for coherent states is Gaussian.

Upon homodyne detection, a coherent state can be regarded as a classical signal with additive white Gaussian noise,

$$\eta(t) = \sin\left[\bar{\phi}(t) - \phi'(t)\right] + z(t), \quad \langle z(t)z(\tau)\rangle = \frac{1}{4|\alpha|^2}\delta(t-\tau), \quad |\alpha|^2 = \frac{\mathcal{P}}{\hbar\omega_0}.$$
 (8)

Wiener Filtering

Let the mean phase be a classical stationary Gaussian random process:

$$\left\langle \bar{\phi}(t)\bar{\phi}(\tau)\right\rangle = K_{\bar{\phi}}(t-\tau), \qquad S_{\bar{\phi}}(\omega) = \int_{-\infty}^{\infty} dt \ K_{\bar{\phi}}(t) \exp(i\omega t), \qquad (9)$$

 $\left\langle \left[\bar{\phi}(t) - \phi'(t)\right]^2 \right\rangle \ll 1, \qquad \eta(t) \approx 2|\alpha| \left[\bar{\phi}(t) - \phi'(t)\right] + z(t).$ (10)

 \square L(ω) can be designed using the Wiener filtering technique.

Example: Ornstein-Uhlenbeck Process

Power spectral density of mean phase $ar{\phi}(t)$:

$$S_{\overline{\phi}}(\omega) = \frac{\kappa}{\omega^2 + k^2}.$$
(11)

$$\Gamma = \sqrt{\frac{4\kappa\mathcal{P}}{\hbar\omega_0}} - k, \qquad \left\langle (\bar{\phi} - \phi')^2 \right\rangle = \frac{\hbar\omega_0 k}{4\mathcal{P}} \left(\sqrt{\frac{4\kappa\mathcal{P}}{\hbar\omega_0 k^2}} - 1 \right) \approx \frac{1}{2} \sqrt{\frac{\hbar\omega_0 \kappa}{\mathcal{P}}}. \tag{12}$$

- The special case of $k \to 0$ (Wiener process) has been studied by Berry and Wiseman.
- Use Kalman-Bucy filtering for Gaussian non-stationary random processes.

Smoothing

Frequency-Domain Smoothing

Smoothing can be achieved by PLL + post-loop filter:

_

Example: Ornstein-Uhlenbeck Process

For phase modulation, let $\overline{\phi}(t) = \beta m(t)$.

$$F(\omega) = \frac{k + \gamma}{-i\omega + \gamma} \exp(-i\omega t_d), \qquad \gamma \equiv \left(\frac{4\kappa\beta^2 \mathcal{P}}{\hbar\omega_0} + k^2\right)^{1/2}.$$
(13)

"Irreducible Error":

$$\left\langle (m-\widetilde{m})^2 \right\rangle = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{S_m(\omega)}{4|\alpha|^2 \beta^2 S_m(\omega) + 1} = \frac{\kappa}{2\gamma} \approx \frac{1}{4\beta} \sqrt{\frac{\hbar\omega_0 \kappa}{\mathcal{P}}}$$
(14)

 $\sim 3~\mathrm{dB}$ better than Wiener or Kalman-Bucy filtering.

State-variable approach: Bryson-Frazier or Mayne-Fraser-Potter smoothing

Multipass Position and Velocity Sensing

- Multipass constant phase measurements:
 - Giovannetti, Lloyd, and Maccone, Phys. Rev. Lett. **96**, 010401 (2006).
 - Higgins *et al.*, Nature **450**, 393 (2007).
- With a homodyne PLL, we can continuously monitor the mirror position and velocity simultaneously at the quantum limit using a high-power coherent state.
- If the optical beam hits the target multiple times before x(t) and v(t) change significantly, $\beta \propto M$, and the SNR can be increased.

Conclusion

Temporal-Phase POVM

- Phase-Locked Loop Design Using Estimation Theory
- General Quantum Theory of Smoothing

References:

- Tsang, Shapiro, and Lloyd, Phys. Rev. A **78**, 053820 (2008),
- Tsang, Shapiro, and Lloyd, Phys. Rev. A 79, 053843 (2009),
- Tsang, submitted to Phys. Rev. Lett. (e-print arXiv:0904.1969).

http://sites.google.com/site/mankeitsang/

mankei@mit.edu

Maximum A Posteriori (MAP) Estimation

To be more general, let

$$\bar{\phi}(t) = \int_{-\infty}^{\infty} d\tau h(t-\tau) m(\tau), \qquad \langle m(t)m(\tau)\rangle = K_m(t,\tau).$$
(15)

m(t) is the message we wish to estimate. For example,

$$h(t-\tau) = \beta \delta(t-\tau),$$
 $\bar{\phi}(t) = \beta m(t),$ (PM) (16)

$$h(t-\tau) = -2\pi \mathcal{F} \int_{t_0}^t du \delta(u-\tau), \quad \bar{\phi}(t) = -2\pi \mathcal{F} \int_{t_0}^t d\tau \ m(\tau). \quad (FM)$$
(17)

MAP estimation: solve for the "most likely" message given our full measurement record:

$$\frac{\delta}{\delta m(t)} \left\{ \ln P[m(t)|A(\tau)] \right\}_{m(t)=\tilde{m}(t)} = 0, \quad (18)$$
$$\frac{\delta}{\delta m(t)} \left\{ \ln W[A(\tau)|m(t)] + \ln P[m(t)] \right\}_{m(t)=\tilde{m}(t)} = 0. \quad (19)$$

Phase-Locked Loop Design via MAP Estimation

For coherent states, the MAP equation becomes

$$\widetilde{m}(t) = 2|\alpha| \int d\tau du \ K_m(t,\tau) h(u-\tau) \eta[A(u),\widetilde{\phi}(u)],$$
(20)

- **D** The feedback filter $h^T * K_m * h$ is non-causal, this PLL is unrealizable.
- Linearizing η again, MAP estimation can be achieved by PLL + post-loop filter:

Quantum-Limited Position and Velocity Estimation

$$\frac{dx}{dt} = v, \quad \frac{dv}{dt} = -\omega_m^2 x + \frac{2M\hbar\omega_0\cos\theta}{mc}I(t), \quad \langle I(t)I(\tau)\rangle_{\rm coh} = \frac{\mathcal{P}}{\hbar\omega_0}\delta(t-\tau). \quad (21)$$

Equivalent observation process by homodyne PLL:

$$y = (2Mk_0 \cos \theta)x(t) + w(t), \qquad \langle w(t)w(\tau) \rangle \approx \frac{h\omega_0}{4\mathcal{P}}\delta(t-\tau).$$
(22)

The mirror quantum state remains a Gaussian state under these approximations, and we can use Kalman-Bucy filtering.

Kalman-Bucy Filtering Errors

The Kalman-Bucy covariances at steady state $t \to \infty$ are

$$\left< \Delta x^2 \right> = \frac{\hbar}{2m\omega_m} \frac{\sqrt{2}}{Q} \left[(1+Q^2)^{1/2} - 1 \right]^{1/2},$$
 (23)

$$\frac{1}{2} \left\langle \Delta x \Delta v + \Delta v \Delta x \right\rangle = \frac{\hbar}{2m} \frac{1}{Q} \left[(1+Q^2)^{1/2} - 1 \right], \tag{24}$$

$$\left\langle \Delta v^2 \right\rangle = \frac{\hbar \omega_m}{2m} \frac{\sqrt{2}}{Q} \left[(1+Q^2)^{1/2} - 1 \right]^{1/2} (1+Q^2)^{1/2},$$
 (25)

$$Q \equiv \frac{8M^2\omega_0 \mathcal{P}\cos^2\theta}{m\omega_m^2 c^2}.$$
(26)

- Previously derived using a general QND measurement model in
 - Belavkin and Staszewski, Phys. Lett. A **140**, 359 (1989).
 - Doherty *et al.*, Phys. Rev. A **60**, 2380 (1999).
- At steady state, the conditioned mirror quantum state is a pure Gaussian state:

$$\left\langle \Delta x^2 \right\rangle \left\langle \Delta v^2 \right\rangle - \left(\frac{1}{2} \left\langle \Delta x \Delta v + \Delta v \Delta x \right\rangle \right)^2 = \frac{\hbar^2}{4m^2}.$$
 (27)

Quantum-Limited Smoothing

With post-processing, classical estimation theory predicts improved performance.
 Smoothing errors:

$$\left< \Delta x^2 \right> = \frac{\hbar}{8m\omega_m} \left[\frac{1}{(1+iQ)^{1/2}} + \frac{1}{(1-iQ)^{1/2}} \right],$$
 (28)

$$\left< \Delta v^2 \right> = \frac{\hbar \omega_m}{8m} \left[(1+iQ)^{1/2} + (1-iQ)^{1/2} \right],$$
 (29)

Uncertainty product:

$$\left< \Delta x^2 \right> \left< \Delta v^2 \right> = \frac{\hbar^2}{32m^2} \left[1 + \frac{1}{(1+Q^2)^{1/2}} \right] < \frac{\hbar^2}{4m^2}.$$
 (30)

Resolution of paradox: We estimate the position and velocity of the mirror some time in the past, but the past quantum state of the mirror has been irreversibly destroyed.

- We can't measure the mirror more accurately in the past without further disturbing it.
- We can't clone the past quantum state of the mirror and store it for future comparisons.
- We can't reverse the quantum dynamics of the mirror, because we have measured the phase and the radiation pressure force becomes unknown to us.

Delayed Estimation of Classical Information

We can still estimate a classical force $F_{\text{ext}}(t)$ with delay:

$$m\frac{dv}{dt} = -m\omega_m^2 x + F_{\rm rad}(t) + F_{\rm ext}(t).$$
(31)

For delayed estimation, current quantum trajectory theory needs to be modified.
 Belavkin, Carmichael, Wiseman and Milburn, ...

$$\hat{\rho}_c(t), |\widetilde{\psi}(t)\rangle \text{ given } \eta(\tau), \tau < t.$$
 (32)

• For smoothing, we need

conditioned "quantum state" at time t, given $\eta(\tau), t_0 \leq \tau \leq T$. (33)

Idea: Use two quantum states, one traveling forward in time from t_0 , and one traveling backward in time from T, ala Aharonov *et al.*

Fundamental Quantum Limits

A band-limited random process:

$$S_m(\omega) = \begin{cases} 1/b, & |\omega| \le \pi b, \\ 0, & |\omega| > \pi b, \end{cases} \quad \mathcal{N} \equiv \frac{\mathcal{P}}{\hbar \omega_0 b}, \quad \Lambda(r) \equiv \left(\mathcal{N} - \sinh^2 r\right) \exp(2r).$$
(34)

	SQL SNR	Squeezed	Threshold	Max. SNR
Homodyne PLL, PM	$4\beta^2 \mathcal{N}$	$4\beta^2\Lambda$	$\frac{\exp(4r)}{\Lambda}\ln(1+\beta^2\Lambda)\ll 1$	$\ll 8 \beta^2 \mathcal{N}^2 / \ln \mathcal{N}$
Homodyne PLL, FM	$12\beta^2\mathcal{N}$	$12\beta^2\Lambda$	$\frac{\exp(4r)}{\Lambda}\ln(1+\beta^2\Lambda)\ll 1$	$\ll 24 \beta^2 \mathcal{N}^2 / \ln \mathcal{N}$
POVM + PLL, PM	$4\beta^2 \mathcal{N}$	$4\beta^2\Lambda$	$\frac{1}{\Lambda}\ln(1+\beta^2\Lambda)\ll 1$	$4\beta^2 \mathcal{N}(\mathcal{N}+1)$
POVM + PLL, FM	$12\beta^2\mathcal{N}$	$12\beta^2\Lambda$	$\frac{1}{\Lambda}\ln(1+\beta^2\Lambda)\ll 1$	$12\beta^2\mathcal{N}(\mathcal{N}+1)$

Increasing modulation index β can enhance the SNR, but the optical bandwidth is also increased,

 $PM: \bar{\phi}(t) = \beta m(t), \qquad FM: \bar{\phi}(t) = -\pi\beta b \int_{-\infty}^{t} d\tau m(\tau), \qquad (35)$ $A(t) = |\alpha| \exp[i\bar{\phi}(t)], \qquad Optical B \sim (\beta+1)b. \qquad (36)$

Homodyne Detection

Output of homodyne detection:

$$\langle \hat{\eta}(t) \rangle \propto -i \left\langle \hat{a} \exp(-i\phi') - \hat{a}^{\dagger} \exp(i\phi') \right\rangle = 2|\alpha| \sin[\bar{\phi}(t) - \phi'(t)].$$
 (37)

- Statistics of $\hat{\eta}(t)$ obey Wigner distribution.
- Does not work if $\overline{\phi}(t)$ has large fluctuations.

Kalman-Bucy Filtering

D Model $\overline{\phi}(t)$ as solution of stochastic differential equations:

$$\frac{d\boldsymbol{x}}{dt} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u}, \qquad \langle \boldsymbol{u}(t) \otimes \boldsymbol{u}(\tau) \rangle = \boldsymbol{U}\delta(t-\tau), \qquad \bar{\phi}(t) = \boldsymbol{C}(t) \cdot \boldsymbol{x}(t), \qquad (38)$$

• Again linearizing $\eta(t) \approx \overline{\phi} - \widetilde{\phi} + z$, use $\eta(t)$ as the Kalman-Bucy "innovation", and obtain the Kalman-Bucy variance equation for $\Sigma(t) \equiv \langle [\boldsymbol{x}(t) - \widetilde{\boldsymbol{x}}(t)] \otimes [\boldsymbol{x}(t) - \widetilde{\boldsymbol{x}}(t)] \rangle$ and "gain,"

$$\frac{d\Sigma}{dt} = \mathbf{A}\Sigma + \Sigma \mathbf{A}^T - \frac{4\mathcal{P}}{\hbar\omega_0} \Sigma \mathbf{C}^T \mathbf{C}\Sigma + \mathbf{B} \mathbf{U} \mathbf{B}^T, \qquad \Gamma = \frac{4\mathcal{P}}{\hbar\omega_0} \Sigma \mathbf{C}^T.$$
(39)