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We consider our recently proposed quantum theory of optical temporal phase in

the continuous time limit.

We have recently introduced a quantum theory of optical temporal phase and instanta-
neous frequency for slowly varying signals in the discrete time domain [1]. In this paper,
we consider the theory in the continuous time limit. The frequency-domain field operators

satisfy the bosonic commutation relation:

la(f).a'(f)] = a(f = f). (1)
The time-domain envelope operators are defined as
A(t) = /_Oo df a(f)exp(—i2n ft), [A@t), AT(t)] = o6(t — t)). (2)

The Hilbert space can be spanned by Fock states. Let dn(t) be a continuous-time discrete-
photon-number process, and ¢; be the times at which dn(¢;) > 0. The photon-number flux

is then

Zdn t - tj). (3)

A Fock state is defined as

dn(t) (A1) V] d"“”} 0),

{H N Z( (4)

For pure states, the photon-number representation is Cldn(t)] = (dn(t)|¥), related to the

N-photon temporal wavefunction by

Un(T1, .. TN ZCdn [Baney(T1,---,7n), N = /dt[ Zdn

Hj dn(t;)! V2 1 1
Can(y (11, TN) = | T > 162 (rpey — t) x - X 82 (TpGaneyy) — 1), (5)
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where the summation over all permutations symmetrizes ®g,). The inverse relation is

Cldn(#)] = {H]ﬂ;lf(]v) }1/2 onl... dia’t—i ). (6)
For example, a multimode coherent state can be written as
a(t)) = exp {—g 4 /_Z dt oz(t)fﬂ(t)} 0), N= /_Z dat Ja(t)P, (7)
dn(t)
e [—%dtla(tw] [a(t)ﬂ)! , (®)
and the photon-number probability density |C[dn(t)]|* describes a Poisson process,
[dn(t)]” = dn(t), (dn(t)) = |a(t)[dt, (9)
(L) (7)) = (1)) do(t —7), (I(t) = la(®)]® = ZL;)), (10)

P(t) being the optical power and fy the carrier frequency.
The Susskind-Glogower phase state is defined as the functional Fourier transform of Fock

states,

6) = Y exp [@/_oo dt 1(1)6( } dn() = 3 exp [ > dnit;) ] dn(®). (1)

dn(t)

A temporal-phase POVM can then be written as

$o(t)+2m ) A
T6(1)] = o(0)) (). /¢ Do M) =1, Do =122 ()

o(t) , 2T

To measure the temporal phase in practice, in Ref. [1] we have designed homodyne phase-
locked loops (PLLs) using the Wigner distribution. In the continuous time domain, the

Wigner distribution of a squeezed state is

AXL(£) = A(t) + A*(8) — (A(t) + A*(2), (13)

AXy(t) = —i[A(t) — A™(t)] — (—i[A(t) — A*(D)]), (14)

WolAX1 (), AX(#)] o exp | —— Z / dt/ dr AX(OK (6, )AX() |, (15)
k: 1,2

Kio(t, 1) = (AX12(0)AX15(7)),  Kio(t,7) = Ky 1 (8,7), (16)

/_ Z dr Kyt T KD () = 8(t — ). (17)



Assuming that the squeezed state has time-invariant statistics, Ky 2(t,7) = Ky 2(t — 1), we
can define the quadrature power spectral densities as

Sia(f) = /_ Tt Koo (1) exp(i2n f), S1(f)Sa(f) = 1. (18)

For example, the coherent state has the covariance functions K o(t,7) = 0(t — 7), which
means that it can be regarded as a classical signal with additive white Gaussian noise upon
homodyne detection.
Assume that a message m(t) is linearly encoded in the optical phase,
o(t) = / dr h(t — 7)m(T). (19)
For example, for phase modulation h(t — 7) = (d(t — 7) and for frequency modulation
h(t — 1) = —2nF fioo du 6(u — 7). The a priori probability density for the message is

assumed to be

P[m(t)] o< exp [—% /00 dt /00 dr m()K,; 't —7)m(7)|, Knlt—7)=mt)m(r)).

(20)
The conditional Wigner distribution, upon phase modulation, is
WXy (t), Xo(t)|m(t)] = Wo[Y1(2), Ya(2)], (21)
Yi(t) = Xu(t) cos o(t) + Xo(t) sin o(t) — 2|a(t)], (22)
Ya(t) = =X, (1) sin ¢(t) + X (1) cos a(1). (23)

The maximum a posteriori (MAP) estimate equation becomes

%@) i Plm()} X1 (6), X2(0) = 5075

The solution of this equation gives the MAP estimate m(t). For coherent states the MAP

{an[Xl(t),Xg(t)|m(t)] + lnP[m(t)}} —0. (24)

equation is

m(t) = 4|al? /Z dr /O; du K, (t — 7)h(u — 1) {sin[q?)(u) — p(u)] + Z(u)} . (25)
1 _ o

(Z(t)Z(T)) = W(S(t —-7), o) = / dr h(t —1)m(T). (26)
Linearizing the MAP equation by assuming sin(¢ — ¢) ~ ¢ — ¢,
)= [ dr gt =)o), olt) = d0) + 2(0), (27)



where g(t — 7) is the optimal linear filter,

/_Z dr gt — 1) [K¢(T _u)+ ﬁa(f _ u)] _ /_Z do Kot — o)h(u—v),  (28)
and Kj is

Kt —7) = (o(t)d(1)) = /OO du /00 dv h(t —u) Ky (u — v)h(T — v). (29)

In the frequency domain, defining

G(f) = /OO dt g(t) exp(i27 ft), Sw(f) = /OO dt K, (t) exp(i27 ft),
H(f) = /OO dt h(t)exp(i27 ft), (30)
we can derive the irreducible error,
_ Sm(f)H*(f) ~ oy [ Sm(f)
) = st i 0= = [ e

(31)

To implement the PLLs, we also need the realizable estimate of the phase in terms of the
Wiener-Hopf filter,
t 00 1
o' (t) = / dr ¢'(t — 7)9p(7), / dr ¢'(71) [K¢(t —7)+ Wé(t - 7')] = Ky(t). (32)
—00 0

The error of Wiener filtering is

(lo(t) — &' ()% : /Oo df In[1+4a*S,(NIH)I], (33)

IR
which is required to be much smaller than 1 for the linear analysis to be valid. Under this
constraint, the quantum limits to temporal phase and instantaneous frequency measurements
can be derived and are given in [1]. For broadband phase-squeezed states, we can replace |a|?
with |a|? exp(2r) if the phase-locking is tight enough so that the anti-squeezed quadrature
can be neglected.
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