Quantum Theory of Optical Temporal Phase in the Continuous Time Limit

Mankei Tsang, Jeffrey H. Shapiro, and Seth Lloyd

Research Laboratory of Electronics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA

We consider our recently proposed quantum theory of optical temporal phase in the continuous time limit.

We have recently introduced a quantum theory of optical temporal phase and instantaneous frequency for slowly varying signals in the discrete time domain [1]. In this paper, we consider the theory in the continuous time limit. The frequency-domain field operators satisfy the bosonic commutation relation:

$$[\hat{a}(f), \hat{a}^\dagger(f')] = \delta(f - f').$$

(1)

The time-domain envelope operators are defined as

$$\hat{A}(t) \equiv \int_{-\infty}^{\infty} df \ \hat{a}(f) \exp(-i2\pi ft), \quad [\hat{A}(t), \hat{A}^\dagger(t')] = \delta(t - t').$$

(2)

The Hilbert space can be spanned by Fock states. Let $dn(t)$ be a continuous-time discrete-photon-number process, and t_j be the times at which $dn(t_j) > 0$. The photon-number flux is then

$$I(t) \equiv \frac{dn(t)}{dt} = \sum_j dn(t_j)\delta(t - t_j).$$

(3)

A Fock state is defined as

$$|dn(t)\rangle \equiv \left\{ \prod_j \frac{1}{\sqrt{dn(t_j)!}} \left[\hat{A}^\dagger(t_j) \sqrt{dt} \right]^{dn(t_j)} \right\} |0\rangle, \quad \hat{1} = \sum_{dn(t)} |dn(t)\rangle\langle dn(t)|.$$

(4)

For pure states, the photon-number representation is $C[dn(t)] \equiv \langle dn(t)|\Psi\rangle$, related to the N-photon temporal wavefunction by

$$\psi_N(\tau_1, \ldots, \tau_N) = \sum_{dn(t)} C[dn(t)] \Phi_{dn(t)}(\tau_1, \ldots, \tau_N), \quad N = \int_{-\infty}^{\infty} dt \ I(t) = \sum_j dn(t_j),$$

$$\Phi_{dn(t)}(\tau_1, \ldots, \tau_N) \equiv \left[\frac{\prod_j dn(t_j)!}{N!} \right]^{1/2} \sum_P \prod_j \delta^2(\tau_{P(j,1)} - t_j) \times \cdots \times \delta^2(\tau_{P(j,dn(t_j))} - t_j).$$

(5)
where the summation over all permutations symmetrizes $\Phi_{dn(t)}$. The inverse relation is

$$C[dn(t)] = \left[\frac{N!dt^N}{\prod_t dn(t)!} \right]^{1/2} \psi_N(\ldots, t, \ldots, t, \ldots).$$

(6)

For example, a multimode coherent state can be written as

$$|\alpha(t)\rangle = \exp \left[-\frac{\bar{N}}{2} + \int_{-\infty}^{\infty} dt\ \alpha(t)\hat{A}^\dagger(t) \right]|0\rangle, \quad \bar{N} \equiv \int_{-\infty}^{\infty} dt\ |\alpha(t)|^2,$$

(7)

$$C[dn(t)] = \prod_t \exp \left[-\frac{1}{2} dt|\alpha(t)|^2 \right] \frac{\alpha(t)\sqrt{dt}}{\sqrt{dn(t)!}}.$$

(8)

and the photon-number probability density $|C[dn(t)]|^2$ describes a Poisson process,

$$[dn(t)]^2 = dn(t), \quad \langle dn(t) \rangle = |\alpha(t)|^2 dt,$$

(9)

$$\langle I(t)I(\tau) \rangle = \langle I(t) \rangle \delta(t - \tau), \quad \langle I(t) \rangle = |\alpha(t)|^2 = \frac{\mathcal{P}(t)}{h f_0},$$

(10)

$\mathcal{P}(t)$ being the optical power and f_0 the carrier frequency.

The Susskind-Glogower phase state is defined as the functional Fourier transform of Fock states,

$$|\phi(t)\rangle \equiv \sum_{dn(t)} \exp \left[i \int_{-\infty}^{\infty} dt\ I(t)\phi(t) \right] |dn(t)\rangle = \sum_{dn(t)} \exp \left[i \sum_j dn(t_j)\phi(t_j) \right] |dn(t)\rangle.$$

(11)

A temporal-phase POVM can then be written as

$$\hat{\Pi}[\phi(t)] \equiv |\phi(t)\rangle\langle\phi(t)|, \quad \int_{\phi_0(t)}^{\phi_0(t)+2\pi} D\phi(t)\ \hat{\Pi}[\phi(t)] = \hat{1}, \quad D\phi(t) \equiv \prod_t \frac{d\phi(t)}{2\pi}.$$

(12)

To measure the temporal phase in practice, in Ref. [1] we have designed homodyne phase-locked loops (PLLs) using the Wigner distribution. In the continuous time domain, the Wigner distribution of a squeezed state is

$$\Delta X_1(t) \equiv A(t) + A^\dagger(t) - \langle A(t) + A^\dagger(t) \rangle,$$

(13)

$$\Delta X_2(t) \equiv -i[A(t) - A^\dagger(t)] - \langle -i[A(t) - A^\dagger(t)] \rangle,$$

(14)

$$W_0[\Delta X_1(t), \Delta X_2(t)] \propto \exp \left[-\frac{1}{2} \sum_{k=1,2} \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} d\tau \ \Delta X_k(t) K_k^{-1}(t, \tau) \Delta X_k(\tau) \right],$$

(15)

$$K_{1,2}(t, \tau) \equiv \langle \Delta X_{1,2}(t)\Delta X_{1,2}(\tau) \rangle, \quad K_{1,2}(t, \tau) = K_{2,1}^{-1}(t, \tau),$$

(16)

$$\int_{-\infty}^{\infty} d\tau\ K_{1,2}(t, \tau) K_{1,2}^{-1}(\tau, u) = \delta(t - u).$$

(17)
Assuming that the squeezed state has time-invariant statistics, $K_{1,2}(t, \tau) = K_{1,2}(t - \tau)$, we can define the quadrature power spectral densities as

$$S_{1,2}(f) \equiv \int_{-\infty}^{\infty} dt \ K_{1,2}(t) \exp(i2\pi ft), \quad S_1(f)S_2(f) = 1. \quad (18)$$

For example, the coherent state has the covariance functions $K_{1,2}(t, \tau) = \delta(t - \tau)$, which means that it can be regarded as a classical signal with additive white Gaussian noise upon homodyne detection.

Assume that a message $m(t)$ is linearly encoded in the optical phase,

$$\bar{\phi}(t) = \int_{-\infty}^{\infty} d\tau \ h(t - \tau)m(\tau). \quad (19)$$

For example, for phase modulation $h(t - \tau) = \beta \delta(t - \tau)$ and for frequency modulation $h(t - \tau) = -2\pi F \int_{-\infty}^{t} du \ \delta(u - \tau)$. The a priori probability density for the message is assumed to be

$$P[m(t)] \propto \exp\left[-\frac{1}{2} \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} d\tau \ m(t)K_m^{-1}(t - \tau)m(\tau)\right], \quad K_m(t - \tau) \equiv \langle m(t)m(\tau) \rangle. \quad (20)$$

The conditional Wigner distribution, upon phase modulation, is

$$W[X_1(t), X_2(t)|m(t)] = W_0[Y_1(t), Y_2(t)], \quad (21)$$

$$Y_1(t) = X_1(t) \cos \bar{\phi}(t) + X_2(t) \sin \bar{\phi}(t) - 2|\alpha(t)|, \quad (22)$$

$$Y_2(t) = -X_1(t) \sin \bar{\phi}(t) + X_2(t) \cos \bar{\phi}(t). \quad (23)$$

The maximum a posteriori (MAP) estimate equation becomes

$$\frac{\delta}{\delta m(t)} \ln P[m(t)|X_1(t), X_2(t)] = \frac{\delta}{\delta m(t)} \left\{ \ln W[X_1(t), X_2(t)|m(t)] + \ln P[m(t)] \right\} = 0. \quad (24)$$

The solution of this equation gives the MAP estimate $\tilde{m}(t)$. For coherent states the MAP equation is

$$\tilde{m}(t) = 4|\alpha|^2 \int_{-\infty}^{\infty} d\tau \int_{-\infty}^{\infty} du \ K_m(t - \tau)h(u - \tau) \left\{ \sin[\bar{\phi}(u) - \bar{\phi}(u)] + Z(u) \right\}, \quad (25)$$

$$\langle Z(t)Z(\tau) \rangle = \frac{1}{4|\alpha|^2} \delta(t - \tau), \quad \bar{\phi}(t) \equiv \int_{-\infty}^{\infty} d\tau \ h(t - \tau)\tilde{m}(\tau). \quad (26)$$

Linearizing the MAP equation by assuming $\sin(\bar{\phi} - \bar{\phi}) \approx \bar{\phi} - \bar{\phi}$,

$$\tilde{m}(t) = \int_{-\infty}^{\infty} d\tau \ g(t - \tau)\phi(\tau), \quad \phi(t) \equiv \bar{\phi}(t) + Z(t), \quad (27)$$
where \(g(t - \tau) \) is the optimal linear filter,
\[
\int_{-\infty}^{\infty} d\tau \ g(t - \tau) \left[K_\phi(\tau - u) + \frac{1}{4|\alpha|^2} \delta(\tau - u) \right] = \int_{-\infty}^{\infty} dv \ K_m(t - v) h(u - v), \tag{28}
\]
and \(K_\phi \) is
\[
K_\phi(t - \tau) \equiv \langle \bar{\phi}(t) \bar{\phi}(\tau) \rangle = \int_{-\infty}^{\infty} du \int_{-\infty}^{\infty} dv \ h(t - u) K_m(u - v) h(\tau - v). \tag{29}
\]
In the frequency domain, defining
\[
G(f) \equiv \int_{-\infty}^{\infty} dt \ g(t) \exp(i2\pi ft), \quad S_m(f) \equiv \int_{-\infty}^{\infty} dt \ K_m(t) \exp(i2\pi ft),
H(f) \equiv \int_{-\infty}^{\infty} dt \ h(t) \exp(i2\pi ft), \tag{30}
\]
we can derive the irreducible error,
\[
G(f) = \frac{S_m(f)H^*(f)}{S_m(f)|H(f)|^2 + 1/4|\alpha|^2}, \quad \langle [m(t) - \bar{m}(t)]^2 \rangle = \int_{-\infty}^{\infty} df \ \frac{S_m(f)}{4|\alpha|^2 S_m(f)|H(f)|^2 + 1}. \tag{31}
\]
To implement the PLLs, we also need the realizable estimate of the phase in terms of the Wiener-Hopf filter,
\[
\phi'(t) = \int_{-\infty}^{t} d\tau \ g'(t - \tau) \phi(\tau), \quad \int_{-\infty}^{\infty} d\tau \ g'(\tau) \left[K_\phi(t - \tau) + \frac{1}{4|\alpha|^2} \delta(t - \tau) \right] = K_\phi(t). \tag{32}
\]
The error of Wiener filtering is
\[
\langle [\bar{\phi}(t) - \phi'(t)]^2 \rangle = \frac{1}{4|\alpha|^2} \int_{-\infty}^{\infty} df \ \ln \left[1 + 4|\alpha|^2 S_m(f)|H(f)|^2 \right], \tag{33}
\]
which is required to be much smaller than 1 for the linear analysis to be valid. Under this constraint, the quantum limits to temporal phase and instantaneous frequency measurements can be derived and are given in [1]. For broadband phase-squeezed states, we can replace \(|\alpha|^2 \) with \(|\alpha|^2 \exp(2\pi r) \) if the phase-locking is tight enough so that the anti-squeezed quadrature can be neglected.

This work is financially supported by the W. M. Keck Foundation Center for Extreme Quantum Information Theory.