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Abstract: The propagation of light can be studied in a hydrodynamic picture, which is especially
useful in nonlinear optics. Classical and quantum formulations of optical hydrodynamics are dis-
cussed.
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Newton considered light as a stream of particles. This particle picture of light can be described mathematically
by the eikonal equation in ray optics∇S(r) ·∇S(r) = n2(r) [1], whereS(r) is called the optical path andn is the
refractive index. The Poynting vector is proportional to∇S(r), and optical rays are trajectories that follow the Poynting
vector. These trajectories obey Fermat’s principle. Connections with fluid dynamics can be made by invoking the
paraxial approximation,k0S(r) = k0z+θ(r), and ∂θ

∂z ≪ k0. Defining the transverse ray vector as∇⊥θ , and assuming
n = n0 +∆n, ∆n≪ 1, we obtain an equation identical to the Euler fluid equationof motion,

k0
∂u
∂z

+u ·∇⊥u = k2
0n0∇⊥(∆n), (1)

with u playing the role of fluid velocity andz playing the role of time. The optical intensity, on the otherhand, obeys
the continuity equation in paraxial ray optics,

k0
∂ρ
∂z

+∇⊥ · (ρu) = 0, (2)

which is identical to the fluid continuity equation that governs the evolution of fluid density. If∆n depends on the
optical intensity, in a Kerr nonlinear medium for example, it becomes analogous to a negative fluid pressure that
depends on fluid density. Self-defocusing nonlinearity corresponds to a physical fluid pressure that increases with
density.

The particle picture of light is, of course, an approximation of the wave picture. In the paraxial regime, the hydro-
dynamic variables(ρ,θ) can be related to the wave envelopeA(r) by the Madelung transformationA(r) =

√ρ exp(iθ)
[2]. The optical envelope obeys the nonlinear Schrödinger equation. The wave picture adds a “quantum pressure” term
∇⊥[(2

√ρ)−1∇2
⊥
√ρ] to the right-hand side of Eq. (2), but a strong self-defocusing nonlinearity can dominate over the

quantum pressure effect, and the fluidic picture can still beuseful.

The optical phaseθ(r) takes the center stage in the fluid picture of light, but a quantum description of the optical
phase is, unfortunately, not trivial even for one discrete optical mode [3]. Previous studies of single-mode quantum
optical phase can be generalized to the continuous space with the aid of the sampling theorem [4]. By imposing cutoffs
to the momentum space, one can discretize space into discrete wave packet modes, and an optical phase operator can be
subsequently defined for each mode using the Pegg-Barnett theory [4, 5]. The continuous optical phase operatorθ̂(r)
can then be reconstructed from the discrete operators usingthe sampling theorem [4], and a quantum formulation of
optical hydrodynamics based on the intensity operatorρ̂(r) = Â†(r)Â(r) and a fluid velocity operator̂u(r) = ∇⊥θ̂(r)
can be envisaged.
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