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Quantum mechanics is potentially advantageous for certain
information-processing tasks, but its probabilistic nature and
requirement of measurement back action often limit the pre-
cision of conventional classical information-processing de-
vices, such as sensors and atomic clocks. Here we show that
by engineering the dynamics of coupled quantum systems, it
is possible to construct a subsystem that evades the laws of
quantum mechanics, at all times of interest, and obeys any
classical dynamics, linear or nonlinear, that we choose.

To do so, let us revisit the concept of quantum nondemo-
lition (QND) [1]. A QND observable is represented by a
Heisenberg-picture operator O(t) that commutes with itself
at times t and t′ when the observable is measured:

[O(t), O(t′)] = 0 . (1)

The most well-known QND observables are ones that remain
static in the absence of classical signals, viz.,

O(t) = O(t′) . (2)

Nowadays it is often assumed that Eqs. (1) and (2) are inter-
changeable as the QND condition [2, 3].

To show that there exists a much wider class of QND ob-
servables, we generalize the concept of a QND observable to
that of a quantum-mechanics-free subsystem (QMFS), which
is a set of observables O = {O1, O2, . . . , ON} that obey, in
the Heisenberg picture,

[Oj(t), Ok(t′)] = 0 for all j and k, (3)

at all times t and t′ when the observables are measured.
The operators can then be mapped to a classical stochastic
processes by virtue of the spectral theorem [4] and become
immune to the laws of quantum mechanics, including the
Heisenberg principle and measurement invasiveness.

To construct a QMFS, consider two sets of
canonical positions and momenta, {Q,P} =
{Q1, Q2, . . . , QM , P1, P2, . . . , PM} and {Φ,Π} =
{Φ1,Φ2, . . . ,ΦM ,Π1,Π2, . . . ,ΠM}, which obey the usual
canonical commutation relations. Suppose the Hamiltonian
has the form H = 1

2

∑M

j=1
(Pjfj +fjPj +Φjgj +gjΦj)+h,

where fj = fj(Q,Π, t), gj = gj(Q,Π, t), and
h = h(Q,Π, t) are arbitrary, Hermitian-valued functions.
The equations of motion for Qj(t) and Πj(t) become

Q̇j = fj

(

Q(t),Π(t), t
)

, Π̇j = −gj

(

Q(t),Π(t), t
)

. (4)

The Q and Π variables are dynamically coupled to each other,
but not to the incompatible set {Φ, P}, and thus obey Eq. (3)
and form a QMFS, as depicted in Fig. 1. A prime example
arises when one measures the collective position of a pair of
quantum harmonic oscillators {q, p} and {q′, p′}, one with

positive mass and one with negative mass, with Q = q + q′

and Π = (p−p′)/2. This QMFS, behaving as a classical har-
monic oscillator, has been experimentally demonstrated with
atomic spin ensembles [5] and also proposed to remove back-
action noise in optomechanics [6]. See Ref. [7] for a more
in-depth discussion.
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Figure 1: A quantum-mechanics-free subsystem.

It is possible to construct discrete-variable QMFSs as well.
Consider a three-qubit quantum Toffoli gate [8], which trans-
forms the Heisenberg-picture Pauli Z operators according to
Z ′

1
= Z1, Z ′

2
= Z2, Z ′

3
= (I−(I−Z1)(I−Z2)/2)Z3, where

I is the identity operator. The input and output Z operators all
commute, so the Z operators can be mapped to classical bits
that undergo classical information processing, and one can
use a circuit of Toffoli gates as a universal classical computer
to implement arbitrary classical discrete-variable dynamics in
discrete time.
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