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Abstract. We show that it is always possible to convert a dissipatEsilinear sensor system
under quantum nondemolition measurements into a backaetiading one using the technique
of quantum noise cancellation. This result generalizesadier work on optomechanical sensors
[Tsang and Caves, Phys. Rev. Lafi5, 123601 (2010)].
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INTRODUCTION

Quantum mechanics mandates the presence of measuremecg¢dndisturbance. For
future quantum sensors, such as optomechanical forcersegsavitational wave detec-
tors, and atomic magnetometry, it will be important to i$eldis measurement backac-
tion noise from the sensor output in order to optimize thensitivities [1]. In a recent
work [2], we have shown how an optomechanical force sensoreaconverted to a
backaction-evading sensor using a technique called gorantise cancellation (QNC).
Prior to our work, Eugene Polzik’s group have applied a vanjlar technique to their
experiments with atomic spin ensembles [3]. In this paperwish to generalize the
QNC technique to arbitrary linear systems. Assuming thatlittear sensor system is
under quantum nondemolition (QND) measurements and expEss no dissipation,
we shall show that the sensor can be made backaction-evaglimgroducing a physi-
cally realizable auxiliary system and performing colleetQND measurements of both
systems.

QUANTUM BACKACTION NOISE CANCELLATION FOR
LINEAR SYSTEMS

Let Q = (01,...,0n, P1,---,Pn)’ be a vector of B phase-space coordinates,
q= (qu,q,...,qn)" be the position vector, ang = (pg,p2,...,Pn)" be the mo-
mentum vector. The Heisenberg equations of motion for ag#ienless linear system
under measurements can be written as

dQ(t)

= AQW) +BE(H) +CU)xX(Y), (1)



whereA is the drift matrix,¢ is the measurement backaction noisés the unknown
classical signal to be estimated from the sensor,BaaddC are matrices that relate the
noise and signal inputs to the system. Eét t') be the impulse response of the system,
given by
dZ(t,to)
dt

| being the identity matrix, sQ(t) is given by

= A)Z(t, 1), Z(to,to) =1, (2)

t
Q) =Z(t,0)Q(to) + | dt'z(t,t") [B(t)& (") +C(t")x(t)] . 3)
0
Without loss of generality, assume that the measuremeafsesformed on the positions
g only:

y(t) = D()Q(t) +n(t) = Dg(H)a(t) +n(t), D=(Dq 0), (4)

wherey is a vector ofm observation processeb, is an m-by-2n matrix, n is the
observation noise vectoDq is anm-by-n matrix, and the 0 denotes amby-n zero
matrix. If some of the measurements are performed on the mi@nene can always
redefine those momenta as position coordinates via a sytigpleansformation of the
phase-space coordinates. For QND position measuremieatsatkaction noise acts on
momenta, so thB matrix can be expressed as

BZ('Sp)’ ©

Bp being am-by-m matrix and the O denoting arby-m zero matrix.
Consider the inhomogeneous solutiory(f) due toé (t):

ye(t) = D(t) [ dYZ(t.t)BE)E (M), ©)

to

If we split Z(t,t") into four n-by-n matrices:

(I %) g
ys would be given by
t
V(1) = Dalt) | diZap(1.V)By(1)E (V). ®)

The Zyqp component of the impulse response thus causes the backactise on the
momenta to be coupled to the observations of the positions.

To perform noise cancellation, let us add an auxiliary systéth coordinate€Y (t),
drift matrix A'(t), and impulse respons#(t,t’), all with the same dimensions as the
original system. If we measure

y(t) =DM)[QM) + Q' ()] +n(t), (9)



the original system will have the same dynamics, while theaglyics of the auxiliary
system is

dQ(_ 1~
W_AQ+BE, (20)

which has the same backaction noise acting oyxibecomes

t
Ve (t) = Dg(t) /t At [Zap(t,t') + ZLt, )] Bp()E (V). (11)
0
The backaction noise in the observations can be eliminfted make
Zop=—Zap. (12)
The question is then whether ttdSis physically realizable.

For a linear quantum system with no dissipatid@ft,t’) is a symplectic matrix [4].
This is equivalent to the conditions

T T T T T T
Zaalpq— Zpafaq =0,  ZgpZpp—ZppZap=0.  ZggZpp—Zpglap=1.  (13)

We can satisfy the same conditions BrandZ;,, = —Zq if we make
7 — ( Zgqg  —Zap ) ) 14
—Zpa Zpp (1)

This guarantees that’ is also a symplectic matrix, which means tl&tand A’ are
physically realizable. If

A= Aqq qu > , 15

< Apq App (19)
it is not difficult to show that the desirel is

A < Agg  —Agp ) . 16

—Apg  App (16)

If the original system is dissipative art,t’) is nonsymplectic, the system will see
additional noise. In that case, even if we can find an auyigstem withZ,, = —Z;,
such that the backaction noise is cancelled, the auxiligsgesn is in general a?so
dissipative and would introduce even more noise uncogeélatith the other noise
sources to the observations, rendering the QNC technigsesféective.

We can better understand the principle of QNC by writing délenfollowing equa-
tions of motion for the collective position and momentumtees with theA’ given by



Eqg. (16):

NALD) _ g+ o) + Aqpp— 1)+ Ca. (7)
d(pd—_t'd) = Apq(q+ ) + App(P— P') +CpX (18)
99 o)+ Acplp+ B) + Cox 19)
d(pd—Jtrp/) = Apq(ad—a) +App(P+ P') +2Bp& +Cpx. (20)

We see that the backaction noise is decoupled from the dysamhg+q andp—p'.
Writing a new collective coordinate vector as

= ( g+
Q—(p_d>, (21)

we have

d ~ ~

2 —aG+cx y=DG+1, (22
which has the same dynamics as the original system, excapth® backaction noise
is completely removed from the dynamics and the obserwatitirremains an open
guestion whether the QNC technique combined with quantuimogimmg [5] will be
sufficient to enable arbitrary linear sensors to reach thddmental sensitivity limit set
by the quantum Cramér-Rao bound [1].
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