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Abstract. We show that it is always possible to convert a dissipationless linear sensor system
under quantum nondemolition measurements into a backaction-evading one using the technique
of quantum noise cancellation. This result generalizes ourearlier work on optomechanical sensors
[Tsang and Caves, Phys. Rev. Lett.105, 123601 (2010)].
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INTRODUCTION

Quantum mechanics mandates the presence of measurement-induced disturbance. For
future quantum sensors, such as optomechanical force sensors, gravitational wave detec-
tors, and atomic magnetometry, it will be important to isolate this measurement backac-
tion noise from the sensor output in order to optimize their sensitivities [1]. In a recent
work [2], we have shown how an optomechanical force sensor can be converted to a
backaction-evading sensor using a technique called quantum noise cancellation (QNC).
Prior to our work, Eugene Polzik’s group have applied a very similar technique to their
experiments with atomic spin ensembles [3]. In this paper, we wish to generalize the
QNC technique to arbitrary linear systems. Assuming that the linear sensor system is
under quantum nondemolition (QND) measurements and experiences no dissipation,
we shall show that the sensor can be made backaction-evadingby introducing a physi-
cally realizable auxiliary system and performing collective QND measurements of both
systems.

QUANTUM BACKACTION NOISE CANCELLATION FOR
LINEAR SYSTEMS

Let Q ≡ (q1, . . . ,qn, p1, . . . , pn)
T be a vector of 2n phase-space coordinates,

q ≡ (q1,q2, . . . ,qn)
T be the position vector, andp ≡ (p1, p2, . . . , pn)

T be the mo-
mentum vector. The Heisenberg equations of motion for a dissipationless linear system
under measurements can be written as

dQ(t)
dt

= A(t)Q(t)+B(t)ξ (t)+C(t)x(t), (1)



whereA is the drift matrix,ξ is the measurement backaction noise,x is the unknown
classical signal to be estimated from the sensor, andB andC are matrices that relate the
noise and signal inputs to the system. LetZ(t, t ′) be the impulse response of the system,
given by

dZ(t, t0)
dt

= A(t)Z(t, t0), Z(t0, t0) = I , (2)

I being the identity matrix, soQ(t) is given by

Q(t) = Z(t, t0)Q(t0)+
∫ t

t0
dt′Z(t, t ′)

[

B(t ′)ξ (t ′)+C(t ′)x(t ′)
]

. (3)

Without loss of generality, assume that the measurements are performed on the positions
q only:

y(t) = D(t)Q(t)+η(t) = Dq(t)q(t)+η(t), D =
(

Dq 0
)

, (4)

where y is a vector ofm observation processes,D is an m-by-2n matrix, η is the
observation noise vector,Dq is an m-by-n matrix, and the 0 denotes anm-by-n zero
matrix. If some of the measurements are performed on the momenta, one can always
redefine those momenta as position coordinates via a symplectic transformation of the
phase-space coordinates. For QND position measurements, the backaction noise acts on
momenta, so theB matrix can be expressed as

B =

(

0
Bp

)

, (5)

Bp being ann-by-m matrix and the 0 denoting ann-by-m zero matrix.
Consider the inhomogeneous solution ofy(t) due toξ (t):

yξ (t) = D(t)
∫ t

t0
dt′Z(t, t ′)B(t ′)ξ (t ′). (6)

If we split Z(t, t ′) into fourn-by-n matrices:

Z =

(

Zqq Zqp
Zpq Zpp

)

, (7)

yξ would be given by

yξ (t) = Dq(t)
∫ t

t0
dt′Zqp(t, t

′)Bp(t
′)ξ (t ′). (8)

The Zqp component of the impulse response thus causes the backaction noise on the
momenta to be coupled to the observations of the positions.

To perform noise cancellation, let us add an auxiliary system with coordinatesQ′(t),
drift matrix A′(t), and impulse responseZ′(t, t ′), all with the same dimensions as the
original system. If we measure

y(t) = D(t)[Q(t)+Q′(t)]+η(t), (9)



the original system will have the same dynamics, while the dynamics of the auxiliary
system is

dQ′

dt
= A′Q′ +Bξ , (10)

which has the same backaction noise acting on it.yξ becomes

yξ (t) = Dq(t)
∫ t

t0
dt′

[

Zqp(t, t
′)+Z′

qp(t, t
′)
]

Bp(t
′)ξ (t ′). (11)

The backaction noise in the observations can be eliminated if we make

Z′

qp = −Zqp. (12)

The question is then whether thisZ′ is physically realizable.
For a linear quantum system with no dissipation,Z(t, t ′) is a symplectic matrix [4].

This is equivalent to the conditions

ZT
qqZpq−ZT

pqZqq = 0, ZT
qpZpp−ZT

ppZqp = 0, ZT
qqZpp−ZT

pqZqp = I . (13)

We can satisfy the same conditions forZ′ andZ′

qp = −Zqp if we make

Z′ =

(

Zqq −Zqp
−Zpq Zpp

)

. (14)

This guarantees thatZ′ is also a symplectic matrix, which means thatZ′ and A′ are
physically realizable. If

A =

(

Aqq Aqp
Apq App

)

, (15)

it is not difficult to show that the desiredA′ is

A′ =

(

Aqq −Aqp
−Apq App

)

. (16)

If the original system is dissipative andZ(t, t ′) is nonsymplectic, the system will see
additional noise. In that case, even if we can find an auxiliary system withZqp = −Z′

qp
such that the backaction noise is cancelled, the auxiliary system is in general also
dissipative and would introduce even more noise uncorrelated with the other noise
sources to the observations, rendering the QNC technique less effective.

We can better understand the principle of QNC by writing downthe following equa-
tions of motion for the collective position and momentum vectors with theA′ given by



Eq. (16):

d(q+q′)
dt

= Aqq(q+q′)+Aqp(p− p′)+Cqx, (17)

d(p− p′)
dt

= Apq(q+q′)+App(p− p′)+Cpx, (18)

d(q−q′)
dt

= Aqq(q−q′)+Aqp(p+ p′)+Cqx, (19)

d(p+ p′)
dt

= Apq(q−q′)+App(p+ p′)+2Bpξ +Cpx. (20)

We see that the backaction noise is decoupled from the dynamics ofq+ q′ and p− p′.
Writing a new collective coordinate vector as

Q̃ =

(

q+q′

p− p′

)

, (21)

we have

dQ̃
dt

= AQ̃+Cx, y = DQ̃+η , (22)

which has the same dynamics as the original system, except that the backaction noise
is completely removed from the dynamics and the observations. It remains an open
question whether the QNC technique combined with quantum smoothing [5] will be
sufficient to enable arbitrary linear sensors to reach the fundamental sensitivity limit set
by the quantum Cramér-Rao bound [1].
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