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Abstract: Using classical estimation techniques, we design homogyrase-locked loops for
optical temporal phase and instantaneous frequency neaeuts at the quantum limit.
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1. Introduction

Accurate measurements of a temporally varying optical plaasl instantaneous frequency are important for coherent
optical sensing, metrology, and communication appliceticuch measurements are ultimately limited by quantum
uncertainties. Although extensive research concerniagttantum limits for single-mode phase estimation has been
done, few have considered the more general and practidallgonoof temporal phase estimation.

In this paper, we propose a general state-variable apptogble design of homodyne phase-locked loops (PLLS)
for quantum-limited temporal phase and instantaneousiénecy estimation. Berry and Wiseman have previously
considered a simple homodyne PLL scheme when the phase &tib®td is a Wiener random process [1], while
we have recently proposed a frequency-domain approachmadhyne PLL design when the phase is any stationary
Gaussian random process [2]. The state-variable appraschided in this paper unifies these two distinct approaches
and can be applied to a much wider class of Gaussian randaagzes.

2. Homodyne phase-locked loop design by Kalman-Bucy filtemg

Let the mean optical phase that we wish to estimate be aaolafistochastic differential equations,

d);iit) =AOX) +B(Hu(b), o(t) = CH)X(1), (ut)@u(t)) = Us(t—t). 1)

Upon homodyne detection, a coherent state can be regardedassical signal with additive white Gaussian noise,

L= ~ hap
p(t) = sin(t) - o(t)] +w(t), (witw(t')) =W(t)3(t —t), W= 2
where& is the local-oscillator phase an is the average optical power. For other quantum staég,cannot be
regarded as an additive white Gaussian noise, but it maystilesirable to approximate it as one to take advantage
of existing classical estimation techniques. Linearizing ¢ — ¢’ +w, one can use the Kalman-Bucy filtering theory
to design the homodyne PLL, as shown in Fig. 1.
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Fig. 1. A homodyne phase-locked loop that implements Kalmanyliering.
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The optimal estimate of, defined ax, the Kalman-Bucy gaifs, and the covariance matriare given by

% =AX+Gp, G=PC'W! P=(x-X)@((x-X), % = AP+ PAT —PCTW-ICP+BUBT, (3)
wherep = p is the homodyne output anf =W. ((¢— @)2) = CPCT < 1 s required to ensure that the linearized
analysis is self-consistent. For instantaneous frequestiynation, we can defing 0 x; anddg/dt O x, O dxg /dt
and estimate. For time-invariant systems, Kalman-Bucy filtering at slieatate is equivalent to the Wiener filtering
proposed in [2]. For example, @ is an Ornstein-Uhlenbeck random procesg/dt = —k¢ -+ Bu and letk = B?U,
the steady-state phase variance is given by

- ~ hapk 4k P 12
(p— @)% = A l(ﬁwokz +1> — 1] ) (4)

In the limit of k — O, (E becomes a Wiener random process and our result agrees \aitkleghived by Berry and
Wiseman [1].

3. Smoothing

If delay is permitted in the estimation, one can improve upg@man-Bucy filtering by taking into account more
advanced measurements and employing smoothing techr{Bugs This can be done by taking the Kalman-Bucy
estimate& and covariance matri® and solving the following differential equations backwardime,

df(i g Tp-1/8 ¥ in Tp-1 Tp—1\T T
afo+BUB P (x—X), Ef(A+BUB PHQ+Q(A+BUB'P )" —BUB', (5)
wherex is the optimal smoothing estimateé3 = ((x — X) ® (x — X)) is the smoothing covariance matrix, and the final
conditions are&x(T) = X(T) andQ(T) = P(T). For the Ornstein-Uhlenbeck random process, the smoo#hing at
steady state can be shown to be

— o2\ _ T_ K
((o-9?) =cQcT - 2K(4K 2 [Aepk? + 1)1/2° ©

which agrees with that derived in Ref. [2] and is approxirlyaBelB smaller than the Kalman-Bucy filtering error. In
the limit of k — 0, the error is exactly 3dB smaller than that derived by Barrgt Wiseman [1].

4. Conclusion

In conclusion, we have used a general state-variable agptoadesign homodyne PLLs for quantum-limited phase
estimation. Since the use of homodyne PLL for single-modesplestimation has already been experimentally demon-
strated [5, 6], we expect our proposed measurement scherbesiperimentally realizable using current technology
and useful for future metrology and communication appiire.
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