
Quantum Optical Temporal Phase Estimation by Homodyne
Phase-Locked Loops

Mankei Tsang, Jeffrey H. Shapiro, and Seth Lloyd
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA

02139, USA
mankei@mit.edu

Abstract: Using classical estimation techniques, we design homodynephase-locked loops for
optical temporal phase and instantaneous frequency measurements at the quantum limit.
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1. Introduction

Accurate measurements of a temporally varying optical phase and instantaneous frequency are important for coherent
optical sensing, metrology, and communication applications. Such measurements are ultimately limited by quantum
uncertainties. Although extensive research concerning the quantum limits for single-mode phase estimation has been
done, few have considered the more general and practical problem of temporal phase estimation.

In this paper, we propose a general state-variable approachto the design of homodyne phase-locked loops (PLLs)
for quantum-limited temporal phase and instantaneous frequency estimation. Berry and Wiseman have previously
considered a simple homodyne PLL scheme when the phase to be estimated is a Wiener random process [1], while
we have recently proposed a frequency-domain approach to homodyne PLL design when the phase is any stationary
Gaussian random process [2]. The state-variable approach described in this paper unifies these two distinct approaches
and can be applied to a much wider class of Gaussian random processes.

2. Homodyne phase-locked loop design by Kalman-Bucy filtering

Let the mean optical phase that we wish to estimate be a solution of stochastic differential equations,

dx(t)
dt

= A(t)x(t)+B(t)u(t), φ̄(t) = C(t)x(t),
〈
u(t)⊗u(t ′)

〉
= Uδ (t − t ′). (1)

Upon homodyne detection, a coherent state can be regarded asa classical signal with additive white Gaussian noise,

p(t) = sin[φ̄(t)− φ̃(t)]+w(t),
〈
w(t)w(t ′)

〉
= W (t)δ (t − t ′), W =

h̄ω0

4P
. (2)

whereφ̃ is the local-oscillator phase andP is the average optical power. For other quantum states,w(t) cannot be
regarded as an additive white Gaussian noise, but it may still be desirable to approximate it as one to take advantage
of existing classical estimation techniques. Linearizingp ≈ φ̄ −φ ′ +w, one can use the Kalman-Bucy filtering theory
to design the homodyne PLL, as shown in Fig. 1.

Fig. 1. A homodyne phase-locked loop that implements Kalman-Bucy filtering.
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The optimal estimate ofx, defined as̃x, the Kalman-Bucy gainG, and the covariance matrixP are given by

dx̃
dt

= Ax̃+Gp, G = PCT W−1, P≡ 〈(x− x̃)⊗ (x− x̃)〉 ,
dP
dt

= AP+PAT −PCT W−1CP+BUBT , (3)

wherep = p is the homodyne output andW = W . 〈(φ̄ − φ̃)2〉 = CPCT ≪ 1 is required to ensure that the linearized
analysis is self-consistent. For instantaneous frequencyestimation, we can definēφ ∝ x1 anddφ̄/dt ∝ x2 ∝ dx1/dt
and estimatex2. For time-invariant systems, Kalman-Bucy filtering at steady state is equivalent to the Wiener filtering
proposed in [2]. For example, if̄φ is an Ornstein-Uhlenbeck random process,dφ̄/dt = −kφ̄ + Bu and letκ ≡ B2U ,
the steady-state phase variance is given by

〈(φ̄ − φ̃)2〉 =
h̄ω0k
4P

[(
4κP

h̄ω0k2 +1

)1/2

−1

]
. (4)

In the limit of k → 0, φ̄ becomes a Wiener random process and our result agrees with that derived by Berry and
Wiseman [1].

3. Smoothing

If delay is permitted in the estimation, one can improve uponKalman-Bucy filtering by taking into account more
advanced measurements and employing smoothing techniques[3, 4]. This can be done by taking the Kalman-Bucy
estimates̃x and covariance matrixP and solving the following differential equations backwardin time,

dx̊
dt

= Ax̊+BUBT P−1(x̊− x̃),
dQ
dt

= (A +BUBT P−1)Q+Q(A +BUBT P−1)T −BUBT , (5)

wherex̊ is the optimal smoothing estimates,Q ≡ 〈(x− x̊)⊗ (x− x̊)〉 is the smoothing covariance matrix, and the final
conditions are̊x(T ) = x̃(T ) andQ(T ) = P(T ). For the Ornstein-Uhlenbeck random process, the smoothingerror at
steady state can be shown to be

〈
(φ̄ − φ̊)2

〉
= CQCT =

κ
2k(4κP/h̄ω0k2 +1)1/2

, (6)

which agrees with that derived in Ref. [2] and is approximately 3dB smaller than the Kalman-Bucy filtering error. In
the limit of k → 0, the error is exactly 3dB smaller than that derived by Berryand Wiseman [1].

4. Conclusion

In conclusion, we have used a general state-variable approach to design homodyne PLLs for quantum-limited phase
estimation. Since the use of homodyne PLL for single-mode phase estimation has already been experimentally demon-
strated [5,6], we expect our proposed measurement schemes to be experimentally realizable using current technology
and useful for future metrology and communication applications.
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