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CHAPTER 1

Why Study Quantum Optics?

I’ll tell you the elephant in the room upfront: No major industry, apart from the academia and a few startups
(e.g., https://www.idquantique.com/, https://www.xanadu.ai/, https://www.psiquantum.com/),
currently requires their employees to know quantum optics.

Classical optics, together with some rules of thumb, such as the quantization of electromagnetic energy and the
existence of spontaneous emission, are enough to describe every major optical technology that exists today (e.g.,
cameras, light-emitting diodes, solar cells, photodetectors, lasers, optical communications, photolithography). In
other words, if you won’t be doing physics for research, it is enough to stick with Maxwell’s equations and the early
quantum theory invented by Planck (£ = nhv) and Einstein (the phenomena of absorption, stimulated emission,
and spontaneous emission) [1]. A lot of quantum effects, even the photoelectric effect [2], can be explained without
quantizing the EM fields.

If you will be doing research, however, then studying quantum optics is a no-brainer, as it is a gateway to many
fields of physics at the graduate level:

(1) Quantum optics is an important example of quantum field theory. According to the standard model,
everything in physics (bar gravity) is a quantum field, and quantum optics, i.e., the quantum theory of
electromagnetic fields, is the first example you will likely learn.

(2) Many important experiments in quantum information and quantum foundations rely on quantum optics.
For example, you need quantum optics to describe how quantum Key distribution works and experiments
there are all based on quantum optics.

Quantum optics experiments have also been used to test some fundamental properties of physics, as
recognized by the 2012 and 2022 Nobel prizes (https://www.nobelprize.org/prizes/physics/
2012/summary/ and https://www.nobelprize.org/prizes/physics/2022/summary/).

A founder of quantum optics, Roy Glauber, has won a Nobel prize as well (https://www.nobelpri
ze.org/prizes/physics/2005/summary/).

(3) Quantum measurement theory and open quantum system theory are often studied in conjunction with
quantum optics because examples in those theories are most commonly demonstrated with quantum optics
experiments—see, again, the 2012 Nobel prizes for example (https://www.nobelprize.org/prize
s/physics/2012/summary/).

(4) Gravitational-wave detectors are giant Michelson optical interferometers that detect tiny movements
in the mirrors due to gravitational waves, and they are now so sensitive that they are limited by the
fundamental quantum fluctuations of the light beams. A quantum technique called optical squeezing is
now being used to reduce the quantum fluctuations (https://www.ligo.org/science/Publication
-SqueezedVacuum/).

In general, the study of sensors at the fundamental quantum level is called quantum metrology,
and it is often studied in conjunction with quantum optics because optical sensors are arguably the most
important application of quantum metrology (gravitational-wave detection, telescopes, microscopes, etc.).
The probabilistic nature of quantum mechanics place fundamental limits to the sensor precision, and we
need a quantum theory of light if we want to derive those fundamental limits and find out how the sensors
can be improved in the presence of quantum effects.

(5) In deep-space optical communication (https://www.nasa.gov/mission/deep-space-optical
-communications-dsoc/), the received optical signal on earth or satellite is so weak that one must
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design the system and the measurement carefully in accordance with quantum optics to minimize quantum
sources of noise [3].

Most quantum experiments in research with atoms, ions, or superconducting circuits, e.g., for quantum
computing, use optical beams or microwaves as probes to measure and control the systems, and a quantum
theory of light is often needed to make the theory of light-matter interaction consistent.

Experiments on light-atom interactions have won a few Nobels as well (https://www.nobelprize
.org/prizes/physics/1997/summary/, https://www.nobelprize.org/prizes/physics/20
12/summary/).

Besides atoms, ions, and superconducting circuits, people have also proposed the use of photonics (optical
devices) for quantum computing (see, e.g., https://www.xanadu.ai/, https://www.psiquantum.c

om/).

Will any of these quantum technologies become a major force in the future industry? I don’t know and I cannot
promise anything. The economic factor should not be the main reason you study quantum optics anyway. Apart
from research, here are some noble reasons why one may want to study quantum optics:

ey
2

3)

4

You like optics and just want to learn more about it.

You are deeply annoyed that classical electromagnetism is unable to predict the quantization of electro-
magnetic energy.

You are deeply curious how electromagnetism can be generalized and combined with the quantum theory
invented by Schrodinger and Heisenberg. You want your physics unified under one formalism and don’t
want just a bunch of seemingly arbitrary rules, like the early quantum theory by Planck and Einstein.
You want a taste of quantum field theory, quantum measurement theory, and open quantum system theory.

In other words, curiosity should be your reason. If you have it, I welcome you to this course.
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CHAPTER 2

Classical Electromagnetism (EM)

2.1. Classical EM and what’s wrong with it

Classical electromagnetism (EM) is specified by four Maxwell’s equations:

0B oFE
v.E=", V.B =0, VxE=-2" V x B = poJ + poeo—. 2.1)
€0 ot ot
All quantities here E, B, J, p are functions of the three-dimensional position vector
r=xzx+yy+ 2z 2.2)

and a time variable ¢ € R, where (z,y, 2) € R? are the three Cartesian coordinates and
{z,9,2} (2.3)

are unit vectors in three orthogonal directions. The electric field E(r, t), the magnetic field B(r, t), and the current
density J(r,t) are vector fields, i.e., each vector field prescribes a three-dimensional vector at each point (7, )
in space and time, while the charge density p(r,t) is a scalar field, i.e., it prescribes a real number at each (r, ).
€0, a real positive constant, is called the free-space permittivity, and ug, also a real positive constant, is called the
free-space permeability.

Classical EM works fantastically well except for one “tiny”” problem: in the study of blackbody radiation, the
physics doesn’t seem right unless we assume that the energy of an EM mode can exist only in discrete quanta:

’Energy inamode =nhy, n=20,1,2,... ‘ 2.4)

where v is the frequency of the EM mode in Hertz, h is the Planck constant given by

|h =6.626--- x 10~ Joule sec. | (2.5)

and n is a nonnegative integer. This is disturbing because nowhere in classical EM says that energy has to be
discrete.

2.2. Sinusoidal modes of free EM fields

Before we go into quantum, we need to learn the concept of modes in classical EM. Modes are the fundamental
degrees of freedom in EM. Each mode has a specific solution for its EM fields, and an arbitrary solution can be
expressed as a linear combination of the mode fields.

To be concrete, we begin by assuming that there are no sources (p = 0, J = 0), so only EM fields in free space
are present. They should obey the source-free Maxwell equations

OB 1 OF
V-E=0 V-B=0 VXxE=—"— VxB=—— 2.6
b) ) X at) X C2 at’ ( )
where
1
c= ~ 3 x 10® m/s 2.7)

v H0o€0
is the speed of light. Think of the dynamics as an initial-value problem: given some EM fields at ¢ = 0, what are
the fields at a later time ¢?
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There are a few other assumptions we can make to simplify the math: consider EM fields in a box, each side
with length L, and periodic boundary conditions on all sides of the box. In other words, we assume

L L L L L L ’8
e[ L] ve[ L4 B ey
and the EM fields at x = —L /2 are equal to the fields at x = L/2, the fields at y = —L/2 are equal to the fields
aty = L/2, etc. To model EM fields in infinite space, we’d take the limit L — oo, but we won’t do that for now to
simplify the math.

The periodic boundary condition doesn’t sound physical, but it simplifies the math and we care about the
solution only as an approximation of L — co anyway, when the boundary condition shouldn’t matter. If you want,
you can assume other boundary conditions, e.g., the walls of the box are perfect conductors; the result will be the
same in the L — oo limit.

One approach of solving the Maxwell’s equations in free space that will also work in quantum optics is to write
the fields at initial time ¢ = O as

Emm:Z]%wm+@@@m (2.9)
BWMZE:;kXMW@Hﬂ%%ﬂ. (2.10)

J

A simpler way of writing these expressions is

E(r,0) =Y [aju;(r) +ccl, (2.11)

j
B(r,0)=>_ :jk: X [ou;(r) +c.cl. (2.12)
j

where c.c. denotes the complex conjugate of the first term in the square bracket. Each term in the sum is the E field
or the B field of a mode, labeled by the mode index j. Let’s examine the expressions in detail:

(1) The central quantity in these expansions is the mode function w; (7). It is a complex vector field given by

I .
uj(r) = 3% exp(ik - r). (2.13)

This corresponds to a complex sinusoidal wave in EM. Each sinusoidal wave is a mode.

Remark 2.1. In both classical and quantum optics, it is extremely convenient, and indeed standard, to
regard the electric field as complex, i.e., we omit the complex conjugate (c.c.) in a lot of discussions of
the electric field. If you see a complex electric field in any discussion, just assume that the electric field
in reality is the complex solution + c.c.

(2) Each mode index j of the mode function w () is really a shorthand for a set of quantities
Jj=(k,s) (2.14)

that specify the mode, where

k= ko + kg + k2| (2.15)

is areal vector called the wavevector of the mode. The length of k, denoted as |k| or k, is the wavenumber

given by
k=lk|=\/kZ+EkZ+E2 (2.16)
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Define the unit vector of k as

k
Ea
and assume that it is one of the three axes of another Cartesian coordinate system. Let e; and es be the

other unit vectors for the other two axes; see Fig. 2.1. Then k - r is the coordinate of r along the k axis,
€ - r is the coordinate of r along the é; axis, etc. we can write r as

k= (2.17)

r=(k-r)k+ (& -7)él + (& 1)és. (2.18)

The sinusoidal function exp(ik - ) = exp [zk‘(lzz : r)} is periodic with respect to the coordinate k - 7

along the k axis but doesn’t depend on the other two coordinates. This means that if we look at any point
in space and move in any direction along e; or es, the function stays constant in the plane perpendicular
to k. A sinusoidal wave is thus an example of a plane wave.

€L,2

FiGure 2.1. Let k = k/|k| be the unit vector pointing in the direction of k. We can write
k-r= k(ic - ). When we take the dot product of the position vector = with a unit vector k,
k - 7 is the coordinate of the position r along the k axis. In other words, exp(ik - r) depends on
only the position coordinate along the k axis. If we think of k as one of the three axes of another
Cartesian coordinate system, then exp(ik - ) does not depend on the other coordinates along the
other directions €, ; and €y ». For example, if k = k2, then exp(ik - ) = exp(ikz) is periodic
with respect to the z coordinate but stays constant along = and y.

Only sinusoids with certain discrete values of the wavevector can satisfy the periodic boundary
conditions. To be specific, each wavevector has three real components chosen from the following possible
values

272’“, ky = 2”% k, = 27;”3, gy, ns = 0, £1,£2, ... (2.19)
It is often useful to denote each wavevector of a mode as a point in k space, as shown in Fig. 2.2. If we
assume an infinitely big box L. — oo, then the three components would become three continuous real
variables, i.e., (ky, ky k.)€ R3, and k can be an arbitrary real vector.

(3) The second quantity s in the mode index j = (k, s) denotes the polarization of the mode. There are two
possible values for s and we usually write

s € {1,2}, (2.20)

ky =

denoting the two possible polarizations of each sinusoidal wave given a wavevector k. €; = €y ¢ is the
unit polarization vector of the mode—ey, ; is one polarization vector and ey, o is the other polarization
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Ficure 2.2. Each dot denotes a possible wavevector k of an EM mode inside a box with lengths
all equal to L. The set of all wavevectors form a rectangular lattice in k space. Two adjacent
wavevectors are separated by a distance of 27/ L.

vector. We can write it as
€rs = ez + ey +e.z (2.21)

where e, e,, e, are complex numbers that are also functions of (k, s). They may be complex numbers in
case we want to assume circular polarizations. Often it is too tedious to write down ey, , explicitly and it
suffices to know that it obeys the properties

k-ep,=0 (polarization is perpendicular to wavevector) (2.22)
e - 1, s=¢ . .
s €y = s = 0. s (unit length, orthogonal polarizations) (2.23)
k1 X e = k. (right-hand rule for &, 1, & 2, k) (2.24)

0 is called the Kronecker delta. The complex conjugate * operation on a vector €j, ; means that we take
the complex conjugate of each of its Cartesian components.

(4) The sum Y ; 1s really Yk 2. 1., we sum over all possible values of the wavevector k of the modes
according to Eq. (2.19) and all possible polarizations s of the modes according to Eq. (2.20).

(5) wj is the natural frequency of the mode j (angular, with the unit radian/sec). It is a function of the
wavevector k only and given by

w; = clkl, (2.25)

where c is the speed of light given by Eq. (2.7).
(6) The mode functions here are orthonormal, in the sense that

* . 3., e ]-a ]:l7
///box ui(r) - w(r)d’r =6, = {0’ P4l (2.26)

The operation on the left-hand side is called an inner product between two vectoral functions u;(r) and
u;(r). The integral is over the whole 3D space of the box. The Kronecker delta means that, if we take the
inner product of a mode function with itself, we get 1 (i.e., the mode function is normalized), and if we
take the inner product of one mode function with another mode function, we get 0 (i.e., the mode functions
are “orthogonal” to one another).
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(7) Each a; is a complex number that we call the amplitude of mode j. The amplitudes are determined by
the initial conditions, such as E(r,0) and % K although we won’t need to know how exactly.
t=
In principle, if an experimenter has total control of the initial conditions, they will be free to set the amplitude
aj of each mode to be an arbitrary complex number. This is why we call each mode a degree of freedom: its initial
condition in terms of «/; can be arbitrary and is not required to depend on the initial conditions of other modes. (A
proof of this fact is too tedious and we take it as given here.)

Side note. You may think of the mode functions as a basis for the fields, i.e., any EM fields can be expressed as a
linear combination of the mode functions, and the algebra of vector fields, e.g., inner product, is very similar to the
linear algebra described in Appendix B, even though we are still working with classical physics.

Here’s the neat thing about Eqs. (2.11) and (2.12): once we’ve found the amplitudes {c;} from the initial
conditions, the fields at a later time ¢ are simply given by

E(r,t) = Z [ exp(—iw;t)u;(r) + c.c]. (2.27)
J

Br) =Y wik X [0t exp(—iwjt)u; (r) + c.cl, (2.28)

Everything looks exactly the same as Eqs. (2.11) and (2.12), except that we multiply each mode amplitude by
exp(—iw;t). Each mode of the EM fields has a very simple time dependence: it simply oscillates at the natural
frequency w; = c|k|. When the modes have this simple time dependence, we call the modes the normal modes of
the fields.

Remark 2.2. The word “normal” is definitely way overused in physics and mathematics. It means different things
in different contexts, so be careful.

You can check that Eqgs. (2.27) and (2.28) satisfy the source-free Maxwell’s equations at all times. Notice also
that

o exp(—iw;t)u;(r) < e soj exp(ik - r —iclk|t), (2.29)

which is the sinusoidal plane-wave solution of EM fields that we know and love. «; is the complex amplitude of
the wave; it tells us how strong each sinusoidal wave is (via its magnitude |a;|) and also the phase of the wave (via
its phase Za;).

2.3. Energy of EM modes

Another neat thing about the normal-mode expansion of the EM fields is that the total energy at any given time
becomes very simple:

total energy = 2¢g Z ]aj]2, (2.30)
J

where € is the free-space permittivity. Each mode has energy

energy in mode j = 2¢gay;|?, (2.31)

and the total energy is simply the sum of all the energies of all the modes. Remember «; is any complex number,
S0 | |2 can be any nonnegative number, and the energy of each mode can be any nonnegative number in classical
EM.
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2.4. Each normal mode is a harmonic oscillator

We now come to a crucial viewpoint that will help us quantize EM fields: Think of each normal mode as a
harmonic oscillator. Remember that o/; is a complex amplitude that models the oscillation of each normal mode.
As a function of time ¢, the complex amplitude for each mode is simply

a;(t) = aj exp(—iwjt). (2.32)

Define the “position” variable as

as(t) = ;5 [ (1) + o5 (8)] 233)
and the “momentum” variable as
p1) = = [ay(t) — (1) @34)
Then we find that
dqéit) = w;p;(t), dpéft) = —w;q;(1), (2.35)
q;(t) = 4;j(0) cos(wjt) + p;(0) sin(w;?), p;(t) = —q;(0) sin(w;t) + p;(0) cos(w;t). (2.36)

These are the same as the equations of motion for a harmonic oscillator with natural frequency w;. Moreover, notice
that each normal mode is, by definition, uncoupled to the other normal modes: the equations of motion for each
normal mode depend only on the variables of that mode, and any motion of the other modes does not bother it at all.

Remark 2.3. Other problems, e.g., in mechanics, may define the “position” and “momentum” variables differently
with different constants in front, but we can always get the versions here by a simple rescaling.

A useful picture of the harmonic-oscillator dynamics in a phase space is shown in Fig. 2.3. In EM and optics,
the ¢;(t) and p;(t) variables are also called quadratures. We will call ¢;(t) the q-quadrature and p;(¢) the
p-quadrature to avoid confusion with the position vector r and the wavevector k, which are apples and oranges.

Remark 2.4. It is important to stress that the quadratures here determine the oscillations of the EM fields in each
mode; they are not the position and momentum of any object moving in real space. q;(t) and p;(t) merely behave
like position and momentum mathematically, they are called generalized coordinates in Hamiltonian mechanics.

Side note. The terminology “quadratures” comes from communication theory (https://en.wikipedia.org
/wiki/Quadrature_amplitude_modulation).

A strategy of quantizing the EM fields is now at hand: assume that each normal mode is a quantum harmonic
oscillator, and the real and imaginary parts of the complex amplitude become “position” and “momentum’” operators.
This is indeed what Dirac did when he wrote down the first fully quantum theory of EM [4].

Most importantly, we know that the energy of a quantum harmonic oscillator is quantized, so we are able to
prove the quantization of the EM energy of each mode using Dirac’s theory.

With the concept of normal modes, we can already derive the spectrum of blackbody radiation following Planck;
see Appendix A.

Exercise 2.1. Verify Eq. (2.26).

Exercise 2.2. What is the wavelength of each sinusoidal mode, given k? How is it related to w; and the frequency
in Hertz v; = w;/(2m)?

Exercise 2.3. Check that exp(ik - r) satisfies the periodic boundary condition along x, y, z.

Exercise 2.4. Suppose that we write the wavevector k in the spherical coordinate system as

k = k(sin 6 cos ¢ + sin 0 sin ¢y + cos 0z). (2.37)


https://en.wikipedia.org/wiki/Quadrature_amplitude_modulation
https://en.wikipedia.org/wiki/Quadrature_amplitude_modulation
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Dj = ﬂlmaj/

=17~ (qj (O)vpj (O))
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Ficure 2.3. In the phase space, we think of the g-quadrature g; and the p-quadrature p; as two
orthogonal axes. It’s useful to visualize (g;(t),p;(t)) as a phase-space trajectory. For a harmonic
oscillator, the trajectory is a clockwise circular path.

Show that
€j,1 = cos b cos ¢z + cos O sin ¢y — sin 0z, (2.38)
€2 = — sin QT + cos gy (2.39)
satisfy Egs. (2.22)—(2.24).
Exercise 2.5. Suppose that
k=kz, er1 = \}5(50 +1ig). (2.40)
Find ey, » so that Egs. (2.22)—(2.24) are satisfied. If the electric field at a certain position is given by
E(0,t) x ég,1 exp(—iw;t) + €, 1 exp(iw;t), (2.41)
Describe how the electric-field vector changes as a function of time. Do the same if
E(0,t) o< g 2 exp(—iw;t) + €}, 5 exp(iw;t). (2.42)
Exercise 2.6. Using Eqs. (2.37)—(2.39), show that the following formula holds:
> eulk, s)eu(k, s) = bun — % (2.43)
s

where u,v € {z,y, 2} and e,(k, s) is the component of &, along the @ axis. Do the same for the vectors in
Exercise 2.5. Also try to derive this formula just from Eqgs. (2.22)—(2.24).

Exercise 2.7. Verify that Egs. (2.27) and (2.28) obey the source-free Maxwell’s equations in free space.
Exercise 2.8. The EM energy density (energy per unit volume) is given by
1
E(r,t) = %)E(r,t) -E(r,1) + 5 —B(r,1)- B(r,t). (2.44)
Ho

Use this equation and Egs. (2.27) and (2.28) to verify Eq. (2.30).



CHAPTER 3

Quantization of Free EM Fields

Chapter 2 shows that there are many normal modes for EM fields in a box. Each mode is labeled by

j = (k,s) 3.1)
in terms of the wavevector k and the polarization s. Each mode oscillates in time at a frequency
w; = c|k|, (3.2)

and the equations of motion for each mode are uncoupled from those of all other modes. These facts are hints
that we may treat each mode as a quantum harmonic oscillator. Simply put, quantum EM is nothing but a large
number of quantum harmonic oscillators.

We will be using the abstract Hilbert-space theory with the bra-ket notation, as reviewed in Appendix B.

3.1. Quantum harmonic oscillator

Let us focus on just one mode for now and review the theory of one quantum harmonic oscillator using the
language of quantum optics. We begin by assuming that the Hilbert space H possesses an orthonormal basis

{In) :n €{0,1,2,...}} (3.3)

where each |n) models the state of the mode with an integer photon number n € {0,1,2,...}. We call each |n) a
number state. The number states are orthonormal in the sense that

(n|m) = dpm = {

1, n=m,

0, n#m. (34

To express the fact that the number states are a basis of the Hilbert space, we use the completeness condition

=Y In)(n, (3.5)
n=0

where 1 is the identity operator, defined by I [¢) = |¢) for any |¢)) € H. This relation says that any |¢) can be
written as

) =Ty = In) (nly), (3.6)
n=0

which is a linear combination of {|n)}. Orthonormality + completeness together imply that the set {|n)} is an
orthonormal basis.
Any quantum state can be expressed as a superposition of the number states:

) = tnln), 3.7)
n=0

where 1, = (n|1) as a function of n is the wavefunction in the number basis. If the state is normalized, we assume
(Y]¢) = 1. (3.8)

15
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This implies that the wavefunction should also be normalized as
o0
Sl =1, (3.9)
n=0

Define an annihilation operator @ and a creation operator &', which is the adjoint of G. They are so called
because the effect of applying a on each number state is to reduce the number as follows:

a0y =0, alny=+vnn—-1), n=12,... (3.10)

while the effect of applying G on each number state is to increase the number as follows:

allny =vn+1jn+1). (3.11)

The annihilation and creation operators satisfy the commutation relation

[a,aq s (3.12)

The number operator is defined as

n=ala, (3.13)

and each number state is an eigenstate of n, with eigenvalue n:

nin) =nin). (3.14)
We can then write 7 in the diagonal form
o0
A= nln)(n|. (3.15)
n=0

1

= 7(& n aT), (3.16)
1

ﬁz—%(d—fﬁ). (3.17)

Mathematically, these really behave like the position and momentum operators we know and love in elementary
quantum mechanics; different people may put different constants in front of these formulas but we’ll stick to our
definition here.

Our quadrature operators obey the commutation relation

(4,9 = il. (3.18)

We often write

6,4 =1, 4,p) = i, (3.19)

by replacing I with 1. This is slightly sloppy, since a commutator of two operators is supposed to give another
operator, but it is a harmless abbreviation since I and 1 act on everything in exactly the same way.
Another basis of the Hilbert space can be constructed from the g-quadrature eigenstates

{lg =z) : z € R}. (3.20)
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They are defined by
ldlg=2) =xlg=u),] (3.21)
<q:x|q:$’> =§(x — ), (3.22)
such that the diagonal form of ¢ is
o
| = / zlg =) (g = x| dz, (3.23)
—00
and the completeness condition is
N o0
I = / lg =) (¢ = x| dx. (3.24)
—00
Similarly, for the p-quadrature operator p,
Blp=v)=ylp=1y), (p=ylp=y)=0y—y), (3.25)
o0 “ o0
ﬁz/ ylp=y) (p = yldy, I=/ lp=y) (p=yldy. (3.26)
— 00 —00

Remark 3.1. Do not confuse the x,y here (eigenvalue of |q = x) or |p = y)) with the coordinates of the position
vector r = x& + yy + zz! They are completely unrelated things. Unfortunately we have to recycle symbols for
different uses a lot, as is often the case in physics.

To relate the two sets of eigenstates, we have the following relations

1

(g=zlp=y) = Nors exp(iyz), (3.27)
lp = \/ﬂ/ exp(iyz) |¢ = x) dz, (3.28)
lg = x) \/%/ exp(—iyz) [p = y) dy. (3.29)

The preceding discussion can be applied to a lot of quantum systems with infinite-dimensional Hilbert spaces,
not just harmonic oscillators. What makes the system a harmonic oscillator is its Hamiltonian

H = hwa'a = hwn, (3.30)
where
(1) we have made the harmless assumption that the ground-state energy is zero,
(2)
h
2

is Planck’s constant divided by 27 (we’ll be using /& mostly rather than h).
(3) w is the natural frequency of the mode (the frequency at which the harmonic oscillator oscillates in
classical physics).

The eigenvalues of H = hwh are 0, hw, 2hw, . .., and if we measure H in a von Neumann measurement, the
outcome is always one of the eigenvalues. This is one key reason that we model EM fields as quantum harmonic
oscillators—to make it fit with evidence from blackbody radiation that the EM energy of each mode is quantized.
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Another way to see that the harmonic-oscillator model is the right one is to look at its equations of motion in
the Heisenberg picture. Define the unitary operator

U(t) = exp <—;_Lflt>. (3.32)
The Heisenberg picture of an operator O is defined as
O(t) = UT(t)OU (1), (3.33)
which obeys the equation of motion
dO(t)  ifa o ] Gk [a
= [O(t),H} = —=0') {O,H}U(t). (3.34)

Assume that a(0) = a, G(0)
picture operators as

G, p(0) = p are operators at ¢t = 0 in the Heisenberg picture. Define the Heisenberg-

a(t) = Ut (H)al(t), G(t) = UT(6)gU(t), p(t) = UT(0)pU(¢). (3.35)
Then it is straightforward to show that
da(t)

Tl —iwa(t), a(t) = &exp(—iwt),‘ (3.36)
it) = 12 [a(e) +at )], o(t) = 122 ) - af ()], (3.37)
d(fi(tt) — wp(t), dd(tt) = —w(t). (3.38)

These Heiseberg equations agree with the classical ones in Sec. 2.4.

Exercise 3.1. Derive the formulas

i = —(i+ i), it = (a—ip) (339)
Exercise 3.2. Prove the following:
In) = (% |0) . (3.40)
Exercise 3.3. Compute
(nlgln), (nlpln), (nl@[n), (n|p*In), (n|@pln), (n|pgn) (3.41)
for a number state |n).
Exercise 3.4. The variance of a Hermitian operator A is defined as
(A4%) = (0] 42[) — (] Aw)) (3.42)
The uncertainty relation for the quadratures would then be given by
(Ag®) (Ap®) > C, (3.43)

where C'is a certain constant. Use the uncertainty relation you learned from quantum mechanics to find C'. Compute
<Aq2> and <Ap2> for a number state |n) and confirm that the uncertainty relation is satisfied.
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Exercise 3.5. Define the Heisenberg picture of annihilation and creation operators as
a(t) = Ut(H)al (t), at(t) = Ut@)alo @), (3.44)

where U is an arbitrary unitary operator (not necessarily that for a harmonic oscillator). Prove that the equal-time
commutation relation remains

[a(t),cﬂ (t)] - (3.45)

(This fact is important, as it means that, even if we change the Hamiltonian to model more complicated light-
matter interactions, this commutation relation must remain the same at all times in the Heisenberg picture. If your
calculation violates this relation somehow, it’s wrong.)

Exercise 3.6. Write the ket-bra form of @ with respect to the number basis {|n) : n =0,1,... }, i.e., write

=Y ammln)(m| (3.46)

n=0m=0
and find the matrix entries a,,,. Do the same for a1, ¢, and p.

Exercise 3.7. Numerical exercise: The matrix representation of ¢ with respect to the number basis has infinite
entries. Approximate ¢ by the finite sum

N—1N-1
0~ Y gum |n) (m] (3.47)

n=0 m=0
and find the eigenvalues of the right-hand side for N = 5,10, 20, . .. using a numerical software. Are they all real?

How do they behave when you increase N?

Exercise 3.8. Define the q-quadrature wavefunction as

Ye(z) = (g = 2|¢)) (3.48)

and the p-quadrature wavefunction as

Yp(y) = (p=yl). (3.49)

(1) Find the normalization conditions for the wavefunctions.
(2) Find the relation between the two wavefunctions.

3.2. Quantization of multiple normal modes

Now we take all the normal modes discussed in Chapter 2 and assume that each normal mode is a quantum
harmonic oscillator. Recall that each normal mode is labeled by j = (k, s), and we denote the Hilbert space for the
normal mode j as H;. We set the Hilbert space for all the normal modes to be the tensor product (see Sec. B.8) of
all the individual H;’s, in accordance with how multiple degrees of freedom are treated in quantum mechanics.

Strictly speaking, we have an infinite number of normal modes, but I will assume for now that there are only
J normal modes so that the math looks less scary. To simplify the notation even more, I will denote the J normal
modes by j = 1,2,...,J. When I write j = 1 I mean it’s the first normal mode, and when I write j = 2 I mean
it’s the second normal mode, etc., and we don’t worry about the (k, s) properties of the modes for now.

We write the Hilbert space for the J harmonic oscillators as the tensor product

H=H1QHs® - QHj. (3.50)

The important property of this big Hilbert space is that it has an orthonormal basis constructed by the number states
for each H ;:

]nl,nQ,...,nJ>E]n1>®]n2)®~--®|nj>, eachnj:O,l,Q,... (3.51)
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In other words, |n;, 12, n3,...) denotes the quantum state with n; photons in mode 1, ny photons in mode 2, etc.
Each state in H in general can be expressed as the superposition

)= 3" 3" N Yningeny In1ina, ), (3.52)

n1=0n2=0 n =0
wnfng...nj - <n17 ng,..., nJ‘w) . (353)

Note that each sum Zij:o is an infinite sum, and there are .J such sums. The wavefunction 9y, ., , now depends

on J photon-number variables (n1,...,n;z).
We can write the annihilation operator for mode j as a;. It is now defined by
&j | <M1, O, UZES PR > = O, (354)
&j | ey M1, Mgy M1y - - > =V | sy My—1, My — 1,?7,j+1 .. > . (355)

In other words, it acts on mode j in the same way as before, while leaving all the other modes alone. Mathematically,
a; is an abbreviation of

dj:j1®"'®jj71®&®fj+1®“'®fJa (356)

where each I ;j is the identity operator on mode j. The identity operators do nothing to all the other modes, while a
on the right-hand side acts on the Hilbert space #; in the usual way.

With a;, we can now define the creation operator d}, the photon-number operator
iy = alag, (3.57)
and the quadrature operators
. L/, . . I .
g = E(aj + a})7 Dj = E (aj — a;r-), (3.58)

all of which act on the jth mode only and do nothing on the other modes. The important commutation relations are
now given by

laj, a1 = 0, a},aﬂ —0, aj,aﬂ = 6., (3.59)

45, q1] =0, [Dj,pi] =0, (45, D1] = 0. (3.60)

As before, we have [a;, d}] = 1 and [}, pj] = 4 for the same mode. The new feature here is that each operator for

a mode commutes with any operator for all the other modes, so, for example, [a;, &;] = 0if j # [. Again, these
definitions are pretty general for a quantum system with multiple degrees of freedom; what makes them harmonic
oscillators is the Hamiltonian:

J J
H=>"hwij = hwjilay, (3.61)
j=1 i=1

where wj; is the natural frequency of mode j. The Heisenberg-picture equation of motion for each mode is now
given by

Ut) = exp<—;ﬁt), daét(t) = —iw;a;(t), a;(t) = UT(0)a;U(t) = a; exp(—iw;t), (3.62)
which agrees with the classical version.

If your whole world consists of EM fields only, then there’s nothing more you need to model it. A basic
quantum-optics experiment consists of preparing some state |¢)) for the J normal modes at ¢t = 0, let time pass, and
then measure the modes—the probability distribution of the outcomes follows Born’s rule. If you need to refresh
your memory, probability theory is reviewed in Appendix C and quantum mechanics is reviewed in Appendix D.
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Exercise 3.9. The vacuum state is defined as

[[vac) = [0,0,...,0),| (3.63)

i.e., no photon in all modes. Each number state can be written as
\nl,ng,...,nﬁ = A|VaC> (3.64)

in terms of the vacuum state and a certain operator A. Find A.

3.3. Maxwell’s equations

We still have to show that the formalism is consistent with Maxwell’s equations, and the easiest way is to assume
that E(r,t) and B(r,t) are operators in the Heisenberg picture. We replace Eqgs. (2.11) and (2.12) with

. Ao\ Y2
E(r,O):Z(%) {idjuj(r)—i&;u;(r)}, (3.65)

B(r.0)=3" ( h >1/2k x [z'ajuj(r) - ia}u;(r)]. (3.66)
J

2€0wj

where the complex amplitude «; has been replaced by the annihilation operator ia; times (fuw; /2¢€) 12 while o has

.i.
j A A

(hw;/2¢0)'/? is introduced so that the energy of each mode computed from E and B becomes hiw; (d}&j +1/2),

to make it consistent with the Hamiltonian of a harmonic oscillator. These equations are often abbreviated as

been replaced by —:a ; times the same constant. The extra 7 is a convention that is explained in Appendix E. The factor

. huw.\ Y2

E(r,0) = Z <2€;> liajuj(r) + H.c.], (3.67)

. B 1/2

B(r,0) = Z < 260%) k x [iajuj(r) + Hcl, (3.68)
J

where H.c. denotes the Hermitian conjugate (i.e., adjoint) of the first term in the square brackets.

Remark 3.2. Beware that, on the right-hand side of Egs. (3.67) and (3.68), a; (and &;- in the H.c.) are the only
quantities that are operators; the rest remain c-numbers. Keep in mind that

(1) The kets, the bras, and the operators (anything with a hat) are abstract quantities that we may call Q-
numbers. Examples include |1), (1
in Appendix B.

(2) Anything else without a hat is called a c-number. Examples include r, t, k, €;, and uj(r). By definition,
a c-number commutes with any Q-number, i.e., we are free to exchange the order of a Q-number and a
c-number in a product.

(3) The divergence V-, the curl V x, and the time derivative 0/0t are applied to functions of v and t in the
usual sense. Do not confuse them with the abstract operators.

, aj, and &;r-. They follow the abstract Hilbert-space theory outlined

For example, a; in Eq. (3.67) is an abstract operator, and a;w;(r) is simply a product of the Q-number . with the
c-number w;(r). If we want, we can write it as w;(r)a; because they commute, and G is not an operator acting on
w;(r). Think of the Q-numbers as snobs that live in their own abstract world and play with themselves only; they
can pass through any c-number in a product.
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Now that we have clarified the algebra, it is straightforward to show that the Heisenberg equations of motion
become

R ) ) R N 1/2

E(r,t)=U)E(r,00U(t) = Z <ZC:;> [ia; exp(—iw;t)u;(r) + H.c], (3.69)
R X R R no\ 12

B(r,t) = U'(t)B(r,0)U(t) = Z (2€0wj> k x [iaj exp(—iw;t)u;(r) + H.c.]. (3.70)

These operators obey the same Maxwell equations given by Egs. (2.6) for free space with no source. They imply,
for example, that, given an initial state |)), the averages

(WIB(r6) ), (@ B(r.t)]) (3.71)

obey Maxwell equations, so classical EM holds on average (you are asked to show this in Exercise 3.10). The
average of a Heisenberg-picture annihilation operator

(1] @y exp(—iwjt) |¢) (3.72)
is the average complex amplitude of mode j as it oscillates in time, and
(W] hwjatag i) (3.73)

is the average energy in mode j. In general, we should treat the EM variables that we measure as random variables,
the probabilistic properties of which come from the quantum theory.

Exercise 3.10.

(1) Derive Egs. (3.69) and (3.70) from Egs. (3.67) and (3.68).
(2) Show that E(r,t) and B(r,t) obey Egs. (2.6).

(3) Show that (1| E(r,t) [4) and (¢| B(r,t) [¢)) obey Egs. (2.6).
Hint: The Q-numbers a;, d}, 1), and (| do not depend on the position vector 7, while V- and V x are applied

to functions of r.

3.4. Continuum of modes

So far we’ve assumed EM fields inside a box and periodic boundary conditions. This assumption is a bit
artificial, and to model EM fields in infinite space, i.e., (x,y, z) € R3, we should take the L. — oo limit. There are
two ways of doing it: stick with the box formalism and take the L — oo limit at the end of a calculation, or take the
limit for the box formalism before starting a calculation. We will discuss the second approach in this section.

The first thing to note is that the wavevector no longer takes discrete values as per Eq. (2.19); with L — oo,
k = k,x + kyy + k.2 can now be an arbitrary vector, and Eq. (2.19) becomes

(uy by, kz) € R3. (3.74)

In other words, we no longer have a discrete set of modes; we say that we have a continuum of modes.

Recall that the sum ), = >, > is over the discrete set of wavevectors and the two polarizations s € {1, 2}.
With (kg ky, k2) € R3, >, =3 ko Dk, 2k, 18 not really well defined, but we can turn it into an integral. To do
S0, we '

(1) define

Ak =" (3.75)

which is the spacing between adjacent values of k;, ky, k.,
(2) define a scaled annihilation operator as

a(k,s) = —==aj, (3.76)
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(3) rewrite the mode function w;(r) given by Eq. (2.13) as

1 (2m\%2 .
u](’r) = W <L) ek’s exp(zkz . ’I") =

Then we can rewrite the electric field given by Eq. (3.67) as

AK*2e(k, s) exp(ik - 7). (3.77)

(27r)3/2

1/2
(7' 0) 3/2 Z Z (26()) [ia(k, s)e(k, s) exp(ik - r) + H.c.] (Ak)3. (3.78)

kaky k. S

Now we take the L — oo limit, which is the same as the Ak — 0 limit, and the triple sum >, . (... )(AK)3 is
a Riemann sum that becomes the triple integral:

1/2
B(r,0) 3/2 Z /ﬂ < 2¢0 ) ia(k, s)éx,s exp(ik - 7) + Hedk, (3.79)

Wi = c!k\ (3.80)

/// Dd’k /// dkgdkydk.. (3.81)

The important new feature is that the new annihilation operator defined by Eq. (3.76) is now a function of continuous
variables (ky, ky, k.) € R? and obeys the commutation relation

ak.s).al (k. 5] = (Alk)g(sjj, s 3k — K)oa, (3.82)

where §2 is the three-dimensional Dirac delta function given by
5 (k — k') = 0(ky — ki) (ky — K,)5 (k> — K.). (3.83)
The magnetic field given by Eq. (3.68) likewise becomes

) 1 ho\Y? i .
B(r,0) = (2n)i zs:/// <2€0wk> k x [ia(k, s)ék s exp(ik - r) + H.c.]d’k. (3.84)

In the Heisenberg picture,

a(k, s, t) = Ul (®a(k, s)Ut) = a(k, s) exp(—iwgt), (3.85)
and the EM fields become

. 1 Y 2 ) . .
E(r,t) 2W)3/2 Z /// < 200 ) ia(k, s)éx, s exp(ik - r — iwgt) + H.e]dk, (3.86)

A 1 1/2
B(r,t) = (27r)3/2 Z /// <260wk> k x [ia(k, s)ék, s exp(ik - r — iwgt) + H.c.|dk, (3.87)

which obey the free-space source-free Maxwell’s equations, just as before.

We have succeeded in taking the L — oo limit by using calculus. Instead of assuming a discrete set of modes,
we now have a continuum of modes, where k is a vectoral continuous variable, while the polarization labeled
by s remains discrete. Instead of a sum Z over the discrete set, we now have > _ [[[(.. .)d3k, and instead of

the Kronecker delta ;;, we now use 53(k — k')6ss. We no longer need to refer to a box; L has disappeared
completely from the equations. The price to pay is that the new annihilation and creation operators now obey a
fancier commutation relation given by Eq. (3.82), and we don’t have the simple picture of a discrete set of harmonic



3.5. TRANSFORMATION OF MODES 24

oscillators anymore. For example, a'(k, s)a(k, s) is not a photon number exactly but a photon-number density, and
we get a photon-number operator only if we integrate it in k-space like this:

(Y, s) = ///v al(k,s)a(k,s)dk, (3.88)

which corresponds to the total photon number in all the modes with wavevector k inside a k-space volume V. The
Hilbert space in the continuum case also becomes very difficult to write down, unlike the discrete case where we
have the number states {|n1,...,n)} as an orthonormal basis. We will have to wait until Sec. 5.6 to show how.

3.5. Transformation of modes

Recall that the normal modes are sinusoidal waves. The EM fields of a sinusoidal wave remain nonzero even if
we go to the ends of the universe (zr — £oo or y — 00 or 2 — +00), so a sinusoidal wave by itself is actually
not a physical solution to Maxwell’s; it is, at best, an approximation. It is thus often convenient in optics to use a
different set of modes that are a bit closer to reality.

The math is simpler if we assume a discrete set of modes, so let’s come back to the box formalism. The standard
way of defining a different set of modes is to express the normal-mode annihilation operators {G;} in terms of a

new set of annihilation operators {b; } as

aj =Y Wb, (3.89)
l

where W is a unitary matrix with complex-number entries. To see a physical meaning of Eq. (3.89), plug it in
Eq. (3.67) to obtain

R hw; \ V2 .
E(r,0) = Z <2€0> i Z Wiibyuj(r) + H.c. e
l

o\ 12 )
_ () 3 [iblvl(r) tHel, (3.90)
l

where I have defined a new mode function v;(r) as

vi(r) = ijl-/Qleuj (r) Zw,lc/2W(k75)lék7s exp(ik - 1), (3.91)
7 k,s

which is a superposition of sinusoidal waves. Each by is the annihilation operator of a new optical mode with mode
function v; (7). In particular, the average (1| b; |1/ determines the average complex amplitude in front of v;(r) in
the average electric field ()| E(r,0) [¢)).

Wj as a function of j = (k, s) determines the weight of each sinusoidal wave in the expansion of v;(r) given
by Eq. (3.91), which resembles a Fourier series. We call 1}, the (k, s)-space amplitude of the new mode /.

This method is consistent with how we define modes in classical optics, where we define an optical mode as a
superposition of sinusoidal waves.

Because IV is unitary, Eq. (3.89) implies

[Bl, Bm} —0, [z}l, EH = S, (3.92)

so these operators behave the same way as the standard annihilation/creation operators for harmonic oscillators,
and we can also think of the new modes as a set of oscillators. The new feature of these new modes is that they
may not be normal modes any more. To compute the Heisenberg picture of by, first write each b; in terms of the
normal-mode {a;} as

b= (W ha, =Y Whaj, (3.93)

J J



3.5. TRANSFORMATION OF MODES 25

where the last step uses the fact that TV is unitary so W~! = W and (WT) W;‘l. Then the Heisenberg picture
is

bi(t) = UT ()b, U (t) Z Z " exp(—iwjt) (3.94)
= Z Zijb ] exp(—iw;t) = Z Vlm(t)i)m, (3.95)
Vim (t Z W exp(—iw;t). (3.96)

We see that the Heisenberg equations of motion for the new modes are coupled (except in special cases), so we
should consider the new set of modes as coupled oscillators.

Remark 3.3. Beware that T on a c-number matrix, such as W here, means the conjugate transpose, so that
(Why; =W, (3.97)

where x denotes the entry-wise conjugate. On the other hand, T on an abstract operator, such as a, means the
adjoint; see Appendix B. We use the same symbol | to denote the two different operations depending on the context,
but there should be no ambiguity because here we always put hats on operators and resort to the index notation for
matrices when clarity is needed. For example, the adjoint of Eq. (3.89) is given by

f
- (Z szél> =D (Waub)" = Wb, (3.98)
l ! !
where we need to take the conjugate of each c-number Wj; to pull it out of the adjoint.

Exercise 3.11. Verify Egs. (3.92), given Eq. (3.89) and the fact that IV is a unitary matrix.

Exercise 3.12. Show that
> bfby = Z ata;. (3.99)
!
This equation says that the total photon number is conserved regardless of the mode set.

Exercise 3.13. Rewrite the Hamiltonian in terms of {Bl} and {ZA);} Rederive Egs. (3.95) and (3.96) from this
Hamiltonian.

3.5.1. Example: two polarization modes. For a simple concrete example, let’s look at two normal modes
with the same k = kz, with s = 1,2. These are sinusoidal plane waves propagating in the z direction with two
polarizations. Suppose that

€k, = T, €k2 =Y, (3.100)

so the first mode is -polarized, and the second mode is y-polarized. Write the annihilation operators for these two
modes as a; and ao, respectively. We can define an alternative set of polarization modes by assuming

1 /1 1 . 1 . 1
W=— =wf, by = — (a1 + a2), by = — (a1 — as). 3.101

The mode function for the first new mode with annihilation operator 31 becomes

o > Wiruy(r) = Winua (r) + Warua(r) (3.102)

1
x —=ég 1 exp(ik - r) + (& + g) exp(ik.z), (3.103)

V2

ér2exp(ik-r) =

Sl

V2
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1
V2

vi(r) = Z Wiou;(r) = Wiaui(r) + Waoua(r) (3.104)
J

which is also linearly polarized, with a new polarization vector —= (& + ¢). Similarly,

x \}i(ﬁc — y) exp(ik,z). (3.105)

Thus, we have obtained a new set of linear polarization modes with polarization vectors % (z + g) and % (x —9),
as illustrated by Fig. 3.1.

€r2 =Y

Ficure 3.1. Given one wavevector k = kz and two polarization modes with polarization vectors
er,1 = x and e 2 = ¥, one can define an alternative set of polarization modes with polarization

vectors (& + ¢)/v/2 and (& — §)/v/2.

This example demonstrates the fundamental fact that there is a lot of freedom in choosing the polarization
vectors of the two polarization modes. Using the unitary I/ matrix, we are free to redefine the polarization modes
with polarization vectors that are convenient for a given problem.

Exercise 3.14. If
1
W=— <1 1.), (3.106)

1 —1
what are the new polarizations?
Exercise 3.15. Suppose that two polarization modes have the same k = kz and polarization vectors
€r1 =, €r2 = 1. (3.107)

Let their annihilation operators be a; and ao, respectively. If we would like to define two new polarization modes
with the same k but with polarizations

ér1 = (cos0)x + (sinh)y, ek 2 = (—sinf)x + (cos )y, (3.108)
find the annihilation operators 131 and 132 for the new modes in terms of a; and as.

Exercise 3.16. If two polarization modes have the same k and two new polarization modes are defined using the
formalism in Sec. 3.5.1 with an arbitrary unitary 2 x 2 matrix W, show that the new modes remain normal modes.

3.5.2. Example: pulse mode. For another example, we focus on the mode function v;(r) for a specific new
mode [ and choose WWj; to be nonzero only for j = (k,s) with k, = 0, b, = 0, and s = 1. Then v;(r) is a
superposition of sinusoidal waves with the same polarization and all propagating in the 2z direction, since k = k, 2.
As§ume that s = 1 is the polarization with e;_3 ;1 = , and we know that wjl./Q = /c|k| = \/c|k.|. Then we can
write

Wi = 0510k,00k,0wi(k=), (3.109)
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where w; (k) is some function of &, and the mode function becomes

vi(r) < &Y /elk|wi (k) exp(ik.2). (3.110)
k-

The sum >, o =>4 >y, Dk, >, has been simplified to a single sum }, ., which is a simple Fourier series,
and in the . — oo limit it is an inverse Fourier transform. For example, suppose that w; (k) looks like
L, [X]<1/2
0, |X[>1/2,

3.111)
K

wy (k) o rect (kz — ko) exp(—ik.z), rect X = {

where &, kg, z; are all real numbers. In other words, w; (k) is a rectangle with center at k, = ko and width equal
to k, multiplied by a phase factor exp(—ik,z;) with a certain constant z; that depends on the mode index [. If

Kk < ko, (3.112)
then w; (k) is a very sharp function centered at k, = ko, and we may approximate
clkz|wi(k,) = /clko|w(kz). (3.113)
By the inverse Fourier transform of a rectangle function, the mode function in real space would look like
in(mX
v(r) o & sinc {%(z - zl)] expliko(z — z1)], sinc X = Sm:)r() (3.114)

This function in real space is localized along z with center at z = z; and width o< 1/k—a simple model for an
optical pulse, also called a wavepacket sometimes. See Fig. 3.2 for plots of the rect and sinc functions. The phase
factor exp[iko(z — z;)] models the fact that an optical pulse has rapid oscillations along the z direction under the
sinc envelope.

g € AEEN sinc | 2= (z — )| i
rect (B prermeaes ikolz— 2] ]}
exp(—ik.z) 1 E CEPLTROLE = & ! i
! 1 = 1'-‘4 " ‘~\ -
i, e

Ficure 3.2. Functions with rect and sinc envelopes.

In general, we don’t have to use the rectangle function for the (k, s)-space amplitude. The important point of
this example is that the (k, s)-space amplitude 7;; determines the electric field of a new mode through a Fourier
series.

Side note. Eq. (3.112) comes from the slowly-varying envelope approximation commonly made in optics, when
there are many oscillations under the envelope, i.e., exp(ikoz) oscillates rapidly and sinc[5=(z — 2)] is relatively
slowly varying along z.

Exercise 3.17. Assume the continuum-mode formalism in Sec. 3.4. Define new mode annihilation operators as

b = Z// Wi (k, s)a(k, s)d°k, (3.115)
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where each W;(k, s) is a (k, s)-space amplitude of the mode, generalizing W}, in the discrete case.

(1) Find the condition on the functions {W;(k,s)} such that {;} obey the commutation relation given by
Eq. (3.92). Prove that

Z// Wi (k, 8) W (k, 8)d3k = . (3.116)

(2) Let
Wik, s) = 0a X (k)Y (ky)Z(k2), (3.117)
kz - kO

Zi(ky) = Crect ( > exp(—ik,z), (3.118)

where X (k) and Y (k,) are some functions that satisty
/ |X (ko) |2dk, = 1, / Y (ky)2dk, = 1. (3.119)

Find the positive real constant C'
(3) Show that, if

2
o =20+ 21, (3.120)
K

where [ is an integer, then Eq. (3.116) is satisfied.
(4) Define

A(r,s) = W///exp(ik-r)&(kz,s)dgk. (3.121)

(5) Find a(k, s) in terms of A(r, s).
(6) Find [A(r, ), Af(r', s")].
(7) Let

b :Z// Wi (r,s)A(r, s)d>r. (3.122)

Find the relation between V~Vl and the W in Eq. (3.115). Prove that
Z// Wi (r, )W (r, 8)d>r = 6. (3.123)
S

(8) Given Egs. (3.117) and (3.118), find W;(r, 5).
(This exercise gives a precise definition of pulse modes in the continuum formalism, without all the ~ signs
and unknown constants. The definition in terms of fl(r, s) shows that one can just as well define modes using
amplitude functions {WW;(r, s)} in real space.)

3.5.3. Decomposition of Hilbert space in terms of the new modes. Once we have a new set of modes with
annihilation operators {b1, ba, ... }, we can define a new orthonormal basis of the Hilbert space. A number state
with respect to the new set of modes is defined as

_ (™ @)
~ V! Vg

where b : in the ket emphasizes that it is defined in terms of the b operators. Physically, |b: n,...,n ) represents
a quantum state with n; photons in the first new mode, n2 photons in the second new mode, etc. Exercise 3.18 asks
you to prove that this set is also an orthonormal basis of the multimode Hilbert space.

b:ny,...,ny) |vac), eachmn;=0,1,2,..., (3.124)
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(Note that the orthonormality of the basis relies on the standard commutation relations given by Eqgs. (3.92),
which follow from our assumption that the W matrix is unitary. This section wouldn’t work at all if W weren’t
unitary!)

We learned earlier in Sec. 3.2 that the multimode Hilbert space H is constructed from a tensor product of Hilbert
spaces H1 ® - - - ® H y of the normal modes. It turns out that we can just as well regard the multimode Hilbert space
as a tensor product of Hilbert spaces {#;} in terms of the new modes. The mathematical procedure is as follows:

(1) Let H; be a Hilbert space for one new mode labeled by [, with an orthonormal basis denoted as {|b; : n) :
n € {0,1,2,...}}. An annihilation operator b for this mode is defined in the usual way by

bloy:n) =+vnlb:n—1). (3.125)

(2) Associateeach |b : nq, ..., ny) state in the multimode Hilbert space H with a product state in H} ®- - ~®7—Lf]
like this:

b:ni,....,ng) =1[b1:n1)®|b2:n2) ®---®|by:nyg). (3.126)

This association is just like Eq. (3.51): it gives a one-to-one mapping between each |b: ny,...,ns) € H

and a product state [b; : 1) ® --- ® |by 1 ny) € H] @ -+ ® H;. The one-to-one mapping between the
two orthonormal bases implies that the two Hilbert spaces are isomorphic, and we write

H=HioH,2 - @H). (3.127)

(Isomorphic is just a fancy word to say they are the same thing; see Sec. B.9 for a precise definition.)
(3) Since each b; acts on one new mode only and does nothing to all the other modes, i.e.,

blb:...ong,..)=milb:...,m—1,...), (3.128)

we can associate each b; on the multimode Hilbert space H with a single-mode annihilation operator bon
H; as follows:

h=Fo ol eboll, o o, (3.129)

just like Eq. (3.56), where each I | is the identity operator on 7;.

Physically, the modes are the degrees of freedom for EM, and this section says that we are free to choose any set of
modes as the degrees of freedom as long as Eq. (3.89) holds with a unitary W as we change from one set to another.
We can define a new tensor-product decomposition # ® - - - ® H/; for the multimode Hilbert space, such that the
new operators {b; } act on the new decomposition H; @ - - - ® ', in the same way as the old operators {a;} act on
the original decomposition H; ® - - - ® H . Normal modes are special only because the Hamiltonian in terms of
them is simple.

I stress that there is nothing mysterious about changing the degrees of freedom; we do that all the time in
classical physics. For example, consider a particle with Cartesian position coordinates (x,y) € R? in 2D. We may
change the coordinates to, say, u = (z + y)/+/2 and v = (x — y)/+/2, which are Cartesian position coordinates in
their own right. A preferred alignment of the coordinate system emerges only if we consider the dynamics, e.g., a
force may act on the particle in the (Z + ¢)//2 direction, in which case (u,v) are convenient.

For a 2D quantum particle, we have two position operators & and ¢ on a tensor-product Hilbert space H =
H1 ® Ho, and the change of our Cartesian coordinate system mentioned earlier would lead to new position operators
@ = (£ +9)/V2and & = (& — §)/+/2. The physics can’t care less how we define our Cartesian coordinate system,
so the Hilbert space H should remain the same, while there should exist a new decomposition of H as H} @ H,
such that & and © act on them the same way Z and ¢ act on H1 ® Ho.

The transformation of EM modes follows the same principle; we just have a lot more of them.

Exercise 3.18.
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(1) Prove that the set
{lb:n1,...,ny5) eachn; =0,1,2,...} (3.130)
is orthonormal, i.e., they obey
(b:my,....mylb:ni,...,n5) = OminiOmans - - - Omyn, - (3.131)

(2) Prove that Eq. (3.130) is also a basis of the Hilbert space H, meaning that any |¢)) € H can be expressed
as a linear combination of the set, i.e., for any |¢)) € H, there exists a wavefunction \Ifnl,_,nj such that

W)= D Wnym; bina,...,my). (3.132)
Ni,...,vJ

Exercise 3.19. Suppose that there are just two polarization modes, and follow Sec. 3.5.1. Let

|vac) . (3.133)

Assume that W is given by Eq. (3.101).

(1) Write each |b : n1,n2) in terms of {|a : nq, ne)}, for total photon number n; + 1y up to 2.
(2) Write each |a : n1,n2) in terms of {|b : nq,ne)} for total photon number up to 2.
(3) Repeat (1) and (2) if W is given by Eq. (3.106).

Exercise 3.20. The most general way of defining new modes is to take the new mode annihilation operators {I;l} to
be
h=UaqU, 1=1,...,/J (3.134)
where U is a unitary operator that doesn’t depend on .
(1) Show that the new annihilation operators {131} still obey Egs. (3.92).
(2) The new vacuum state |vac’) is defined by
b |vac’y =0 VL. (3.135)
Find a relation between |vac’), U, and the old |vac).

(3) The new number states are defined by
pim .. b

J
vnil.. . ny! ‘vac'> ’

|b:ny,...,ny) (3.136)

Show that they are an orthonormal basis.
(4) Find a unitary operator U such that we retrieve the transformation given by Eq. (3.89) as a special case.
(This problem requires Chapter 6.)
(5) The so-called Bogoliubov transformation gives
=Y (Cljaj + Slja}). (3.137)
J
Find the conditions on the C' and .S matrices so that the new annihilation operators still obey Egs. (3.92).
(6) Find a unitary operator U that gives the Bogoliubov transformation.
(7) Find a; in terms of {b;} for the Bogoliubov transformation.



CHAPTER 4

Single-Mode States

There are three fundamental ingredients of quantum mechanics/quantum optics:

(1) The initial state modeled by |)) or the density operator p (see Sec. D.6).
(2) The dynamics governed by the Hamiltonian H.
(3) The measurement.

This chapter and the next will study some common quantum states assumed in quantum optics. To be gentle,
this chapter considers only one EM mode, which may be a normal mode or a general mode in the sense of
Sec. 3.5. We will follow the notation of Sec. 3.1, i.e., the annihilation operator is @, the creation operator is a',
the number operator is 7 = afa, the g-quadrature operator is § = (@ + a')/+/2, and the p-quadrature operator is

p=(a—a")/(vV2i).

4.1. Number states

The number states [n), n € {0,1,2,...} have been discussed in Sec. 3.1. The set of all number states
{In) : n € {0,1,2,...}} is an orthonormal basis of the single-mode Hilbert space, i.e., they are orthonormal
((m|n) = 6ppm) and complete (I = 37, |n) (n|). We also know that each |n) is an eigenstate of the photon-number
operator 71 = @' with eigenvalue n (7 |n) = n |n)). |0), in particular, is called the vacuum state. We use a letter n
or m to denote a number state |n) usually. It is also called a Fock state sometimes.

Recall that |¢ = z) is an eigenstate of the g-quadrature operator ¢ = (& + a')/+/2 with eigenvalue x. The
g-quadrature wavefunction of each number state turns out to be

2
L (@) exp (-‘””) @1

2nplrl/4 2

which is a Hermite-Gaussian function and H,, is the Hermite polynomial of degree n (https://en.wikipedia
.org/wiki/Hermite_polynomials), as is well known from kindergarten quantum mechanics.

The problem with number states is that it is extremely difficult to observe or prepare them in a real experiment
and they are just a terrible model of the quantum state of light from any common light source (sun, stars, LEDs,
lasers, etc.). For example, if we measure the photon number in an optical mode generated by a common light source,
we would always find a random outcome following some probability distribution, e.g., Poisson or exponential. The
result of measuring the photon number of a number state |n), on the other hand, will always be deterministic and
exactly equal to n.

Another problem is that a number state always gives zero mean fields, so it is difficult to reproduce classical
EM with number states. From Exercise 3.3, you should have found that (n|§|n) = 0 and (n|p|n) = 0. These
results would mean that (n|a|n) = 0 and (n|a' |n) = 0, and the average EM fields for the optical mode (n| E |n)
and (n| B |n) would also be zero.

(¢ =aln) =

Exercise 4.1. Assume a number state |n).

(1) Find the probability distribution of the photon number 7.
(2) Find the probability density of g.
(3) Find the probability density of p.
(The probability distribution of an observable A is defined as the probability distribution of the outcome if a
von Neumann measurement of A is performed; see Appendix D for a quick review.)

31
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4.2. Coherent states

To make quantum optics agree with classical EM, the simplest quantum state one can assume is a coherent state.
It is commonly denoted by |«) with a greek letter o or 3, where o € C is a complex parameter that determines
all the properties of the state. We call o the amplitude of the coherent state. In terms of the number states
{ln) :n=0,1,2,...},itis defined as

_ o g~ "
|a) = exp (—2> 7;) Wi In) . 4.2)

An interesting and useful property of a coherent state is that it is an eigenstate of the annihilation operator & and the
eigenvalue is a:

ala) = ala). (4.3)

Conversely, any eigenstate of a is a coherent state with amplitude equal to the eigenvalue. Since a is not a Hermitian
operator, a von Neumann measurement of a is undefined, but we can measure the quadratures, and the expected
values of ¢ and p are given by

= j —ioa a*) = eq
<q>=<a!q!a>—ﬂ( +a*) = V2Rea, (4.4)
) = {alple) = —=(a —a*) = V2Ima, @45)

These relations are reminiscent of the relation between the quadratures and the complex amplitude for an optical
mode in classical optics, as discussed in Chapter 2, except that here the relations hold for the expected values of
G and p. Unlike a number state, we can get any values of (¢) and (p) for a coherent state by choosing its complex
paramater . By assuming a coherent state for each mode (ja) = @); [a;)), we can get back classical EM if we

look at the mean fields (| E |a) and (o] B |av).

Side note. The coherent states were first proposed by Schrodinger, but the importance of coherent states to quantum
optics was first recognized by Glauber, who won a Nobel prize for that insight.

An important feature of quantum mechanics is that a measurement outcome is random usually, so we shouldn’t
just look at its mean, we should study the probability distribution as well. A nice property of coherent states is that
it gives simple probability distributions for common measurements.

(1) The probability distribution of the photon number 7 is given by

’a‘Zn

[(nla)* = exp(~|af?) =, (4.6)

which is a Poisson distribution with mean number |«|?. See the top row of Fig. 4.1 for some plots.
(2) The probability density of the g-quadrature operator ¢ is

g = z|o)|? = \}%exp [—(x—\/iRan], 4.7)

which is a Gaussian probability density with mean /2 Re o and variance 1/2 (see Sec. C.6 for a quick
review).
(3) Similarly, the probability density of the p-quadrature operator p is

(p = yla)? = \}%exp[—(y—mmaf]. 48
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We can no longer think of a quantum coherent state as just a single point in phase space in the classical picture
(Fig. 2.3). There are uncertainties in both quadratures if we measure them.

The Poissonian or Gaussian noise modeled by these probability distributions for a coherent state is commonly
called the quantum shot noise.

Exercise 4.2. Verify that Eq. (4.2) is normalized, i.e., (a]a) = 1.

Exercise 4.3.

(1) Show that a coherent state |«) with o = 0 is identical to the vacuum state |n) with n = 0, so no confusion
arises if we write |0).
(lg = 0) and |p = 0), on the other hand, are different, so we need the notation ¢ = and p = to be
clear.)
(2) Find the photon-number distribution | (n|c) |? and show that, as v — 0, it is the same as the photon-number
distribution | (n|0) |? for the vacuum state.

Exercise 4.4. Verify Egs. (4.3)—(4.5).

Exercise 4.5. Derive Eq. (4.2) from Eq. (4.3). This means that Eq. (4.3) can also be used as a definition of a coherent
state.

Exercise 4.6. Find the variance of the photon number if the probability distribution is given by Eq. (4.6).
Exercise 4.7. Compute the variances
(A¢?) = (al¢®|a) — (el da)), (Ap%) = (a] §°|a) — (o] pla))? 4.9)

directly, without using Eqs. (4.7) and (4.8). Your answers should agree with the variances of the probability densities
given by Egs. (4.7) and (4.8). Show that the variances obey the uncertainty relation

(Ag®) (Ap®) > C, (4.10)
where C' is a constant you should derive.

Exercise 4.8. Let the fractional variance of an observable be <A02> / <O)2. Compute the fractional variance of 7,
g, and p for a coherent state |«v) and show that it approaches 0 as Re @« — oo and Im o« — o0, i.e., the observables
are increasingly deterministic for large a.. (We get back classical EM with no noise in this limit.)

Exercise 4.9. A quantum covariance of two observables A and B can be defined as
COV(A, B) = (| Ao Bv) - (Wl Al)) (I Blv)). (.11
where o is called the Jordan product, defined as

AoB

N

(AB n BA). (4.12)
Compute COV(q, p) for a coherent state |c).
Exercise 4.10. Compute the expected value of the photon number
(n) = (o] n|cv) (4.13)
for a coherent state and the variance, defined as
(An?) = (a| 7 |a) — ({a] 7t |a))?. (4.14)

Answer: for the variance, you should obtain

(An?) = (n). (4.15)

Exercise 4.11. Given two coherent states |«) and |3), compute («|).
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Exercise 4.12. Show
-1
I= / ) (o] da, d*a = (dRea)(dIma). (4.16)
7T
d?a means that we treat any function of « as a function of two real variables: Re o and Im «, and the integration is

over the 2D complex plane.
(This identity means that any state can be expressed as a linear combination of coherent states given by

) =11) =+ [[ o) talo) o @.17)

so {|a) : a € C} is a complete vector set of the Hilbert space, even though the elements are not orthogonal to each
other.)

Exercise 4.13. Let the Hamiltonian be the harmonic-oscillator Hamiltonian
H = hwala. (4.18)

If the initial state is a coherent state |«), find the state in the Schrodinger picture after time ¢, i.e., compute
exp (_;m> o). (4.19)

4.3. Displacement operator

There’s a lovely way of writing the coherent state in terms of the so-called displacement operator ﬁ(a) and the
vacuum state |0):

ja) = D(a) |0), (4.20)
D(a) = exp (adT - a*d). (4.21)
The displacement operator is very useful in itself. You should convince yourself that ﬁ(a) is unitary, and
DY(a) = D(-a). (4.22)
It is called a displacement operator mainly because of what it does to a in the Heisenberg picture:
Df(a)aD(o) = a + a. (4.23)
Then it’s easy to show
DY (a)§D(e) = G+ V2Rea, (4.24)
DY (a)pD(a) = p+V2Ima. (4.25)

In other words, the displacement operator is a special unitary that displaces the quadrature operators in the Heisenberg
picture by c-numbers, depending on the o parameter. Another useful property is

D(a)D(B) = e™B I D(a 4 B). (4.26)

The exponential factor e ™(#"@) is an unimportant c-number phase factor that won’t show up in the Heisenberg
picture, i.e.,

DY (a)DN(B)AD(B)D(a) = D' (a+ B)AD(a + B), (4.27)

so the total effect of two displacements is the same as the effect of one net displacement.
We will see throughout this book that the displacement operator is very handy when doing math concerning a
coherent state.

Exercise 4.14. Show that D(«) is unitary. Verify Eq. (4.22).
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Exercise 4.15. Use the Baker-Campbell-Hausdorff (BCH) formula (https://en.wikipedia.org/wiki/Bake
r%E2%80%93Campbel 1%E2%80%93Hausdorff_formula) to show
D(a) = em3lafPeed’ g—a*a _ g3laf —a”agaal (4.28)
Exercise 4.16. Verify Eqs. (4.20), (4.23)—(4.25).
Exercise 4.17. A displacement operator can also be expressed as
exp(1£q — inp), (4.29)
where ¢ and 7 are real numbers.

(1) If we want to write this as D(«), find £ and 7 in terms of a.
(2) Using the BCH formula, one can write

exp(i£q — inp) = cexp(i§q) exp(—inp) = dexp(—inp) exp(i€q). (4.30)
where ¢ and d are complex numbers. Find ¢ and d.
(3) Find
D(@)lg=2), D(a)lp=y). 4.31)

(4) Verify Egs. (4.6)—(4.8).
Exercise 4.18. Let
¢ = D ()¢D(a) (4.32)

be the Heisenberg picture of g-quadrature operator § after displacement. Show that the variance of ¢’ remains the
same, i.€.,

(A¢®) = @1(@) [0) = (Wl |¢))° (4.33)
is the same as (Ag?) for any state |¢)).

4.4. Thermal states

We need to use a density operator p (see Sec. D.6) to describe the thermal state. Quantum thermodynamics
tells us that, when a system is in thermal equilibrium with some bath and only energy is exchanged with the bath,
the quantum state of the system (excluding the bath) is given by the Gibbs state

p= %exp(—ﬂﬁ), b= kBlT’ Z =tr [exp(—ﬁf[)}, (4.34)
where H is the Hamiltonian of the system, kp is Boltzmann constant, 7" is the temperature, tr is the operator trace
(see Appendix B for the definition), and Z is called the partition function if we regard it as a function of 3. For
example, if we have a resonator and we leave it alone at some temperature, then the EM modes in the resonator
should be in the thermal state. We may think of Z as just a constant to normalize the density operator (tr p = 1).
For one normal mode with natural frequency w, H = hwh, so p can be expressed as

1 . -
p= exp(—pLhwn), ‘ Z = tr [exp(—Bhwn)]. ‘ (4.35)
Recall that we can write the number operator # in the diagonal form (Appendix B)
oo
A => nln)(n|. (4.36)
n=0

Any function of 7 is then defined as

f(R) =2 f(n)n) (nl, 4.37)
n=0


https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula
https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula

4.4. THERMAL STATES 36

and the trace of such a function becomes
tr[f()] =) f(n). (4.38)

It follows that another way of writing p for a thermal state is

=3 %exp(—ﬁhwn) ) (nl = 3 Pu ) {n]. (4.39)
n=0 n=0

We can think of this p as a mixture of photon-number states, and the mixing probability distribution P, is the
exponential distribution

P, = %exp(—ﬁhwn). (4.40)
With the thermal state, the probability distribution of 7 coincides with P,,:
(n|pln) = P,. (4.41)
In particular, the mean photon number is
- = 1
(n) = tr (np) = nz:%n (n| pln) = r;)nP = o) =T (4.42)

which agrees with Bose-Einstein statistics. In terms of (n), p and P, can also be expressed as

M TEi(or: 1) P~ i) 8

See the bottom row of Fig. 4.1 for some plots.

Poisson, n = 0.2 Poisson, n = 1.6 Poisson, n = 4.9

0.8 ] 0.8 0.8
0.6 ] 0.6 0.6
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0.4 1 0.4+ 0.4+
0.2 1 0.2+ III 0.2+
0 — 0 0 -.lll..-_
0123 456 738910 0123 456 738 910 0123456 78 910
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) Exponential, n = 0.2 1 Exponential, n = 1.6 ) Exponential, n = 4.9
0.8 — 0.8+ 0.8+
0.6 — 0.6+ 0.6+
Al oS &5
0.4 1 0.4+ 0.4+
0.2 1 0.2+ 0.2+
0 — 0 0 Il...----__
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Ficure 4.1. Plots of the Poisson distribution for coherent states (top row) and the exponential
distribution for thermal states (bottom row) for some mean photon numbers (n).
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A fundamental result discovered by Glauber is that the thermal state can also be expressed as a mixture of
coherent states:

Glauber’s formula: |p = // ®(a) |a) (o] d*a, d*a = (dRea)(dIm ), (4.44)

where the mixing probability density is a Gaussian given by

B(a) = 7r<1n> exp <—|<O;L’>2> (4.45)

so we can also think of a thermal state as a noisy coherent state, where the complex amplitude « is a zero-mean
complex Gaussian random variable.
One nice thing about Glauber’s formula is that the quadrature probability densities

(g=z|plg=x), (p=vylplp=y) (4.46)

become simple to compute for a thermal state.
Exercise 4.19. Convince yourself that

Z =" exp(—Bhwm) = - expt_ﬁhw) = (n) + 1. (4.47)

m=0
Exercise 4.20.

(1) Find the photon-number distribution P, for a thermal state as Siw — oo (infinite w or zero temperature).
(2) Show that, as Shw — oo, the thermal state approaches the vacuum state, viz.,

lim 5 — |0)(0]. (4.48)

Bhw—00

Exercise 4.21. Find the variance of the photon number for a thermal state in terms of (n). The variance is defined
as

(An?) = tr (A2p) — [tr (7p)]°. (4.49)

Answer: you should obtain

(An?) = (n) + (n)>. (4.50)

This is larger than the variance of the coherent state given by Eq. (4.15), meaning that a thermal state is “noisier”
than a coherent state with the same mean photon number (n). When (n) < 1, however, this variance is close to the
Poissonian variance (n).

Exercise 4.22. Let 7' = 300 K (room temperature). Find the mean photon number (n) and the probability P[n > 1]
that the photon number is nonzero for a thermal state if

(1) v = 2.4 GHz (microwave frequency)
(2) Free-space wavelength A = 1, 550 nm (typical wavelength for optical fiber communication).

Conversely, if we desire (n) = 0.01, find the temperature 7" for each case above.
(The low average photon number and low P[n > 1] at optical frequencies at typical temperatures is the main
reason why we can usually assume a vacuum initial state in quantum optics.)

Exercise 4.23. Compute the probability that the measured photon number is equal to 2 for a coherent state with
mean photon number (n). Do the same for a thermal state with the same mean photon number. Expand each
result in Taylor series for (n) < 1 and show that the probability of measuring two photons in a thermal state is
approximately twice the probability of measuring two photons in a coherent state. This effect is called bunching.
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Side note. In the 1950s, people were really confused that weak thermal light doesn’t show Poissonian photon-
counting statistics exactly and the probability of counting two photons in one mode is higher than expected. The
bunching effect was explained first by Leonard Mandel [5] using semiclassical optics, and then Glauber estalished
the quantum formalism to explain bunching [6].

Exercise 4.24. Verify that [ ®(a)d?a = 1, so that ® is really a probability density function.

Exercise 4.25. Compute the probability densities given by Eqs. (4.46) for a thermal state. Use them to find the
means and variances of the quadratures:

(g) = tr (4p), (p) = tr (pp), (.51
(A¢%) = tr (¢°p) — [t2(dp)]", (Ap?) = tr (5°p) — [tr(pp))*. (4.52)
Exercise 4.26. Define a unitary operator as
R(0) = exp(—ind), (4.53)
where 6 is a real number.
(1) Find
a(0) = R'(0)aR(0), q(0) = RT(0)dR(0), p(0) = RN (0)pR(9) (4.54)

in terms of a and 6. ¢(#) and p(#) are also called quadrature operators.
(2) Show that

(0) = =) = RN(0) |g = =) (4.55)
is an eigenstate of ¢(#) with eigenvalue z, and
p(8) = y) = R(9) Ip = y) (4.56)
is an eigenstate of p(6) with eigenvalue y.
(3) Show
(a(0) = zq(0) = 2") = 6(a — 2'), (p(0) = ylp(0) =y') =y — /), (4.57)
and the completeness conditions
I= [ 1al6) = 2} al6) = ol d, I= [ O =n o) =vid. @5

In other words, {|q(#) = x) : © € R} is an orthonormal basis (in the sense of Dirac), and sois {|p(6) = y) :
y € R}
(4) Show that G(6) and p(#) have the diagonal forms

1) = [ 214(0) = o) (a(0) = sl (4.59)
P(6) = / "y 1p(6) = 4) (p(6) = ] dy. (4.60)

(Once we have the diagonal forms, we know that the outcome of a von Neumann measurement of G(6)
would have probability density (¢(0) = x| p|q(f) = z), and the outcome of a von Neumann measurement
of p(0) would have probability density (p(0) = y| p |p(0) = y).)
(5) Compute

R(9) |a). (4.61)

Your answer should be a coherent state with another complex amplitude.
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(6) Find the probability density of () given a coherent state |«), i.e., compute
(a(0) = z|a) ", (4.62)

Do the same for p(6).
(The point of this exercise is to show that any quadrature of a coherent state has a Gaussian distribution
with variance 1/2.)
(7) Find the probability density of G(#) given a thermal state. Do the same for p(6).

4.5. Sudarshan representation

In quantum optics, there exist many different definitions of whether a state is considered classical or nonclassical.
Since a coherent state gives results very close to classical EM (Gaussian statistics for quadratures, Poisson statistics
for photon number), it is considered a classical state by any definition. If a quantum state is given by a mixture of

coherent states, i.€.,
// ) ) (ol e, (4.63)

where ®(«) is a probability density (i.e., nonnegative for all «v), then it is also commonly considered as a classical
state, since it’s just a noisy coherent state with a random amplitude «, and quantum calculations often agree with
classical optics.

Sudarshan discovered that, in general, given any p, it is always possible to derive a formula for ®(«), so any
state can be written in the form of Eq. (4.63) in principle. ®(«) is hence called the Sudarshan representation of
the quantum state (also called the Glauber-Sudarshan representation or the P function sometimes).

The important caveat is that, for certain quantum states, ®(a) may go negative and very weird (consisting of
derivatives of the Dirac delta function; see https://en.wikipedia.org/wiki/Glauber-Sudarshan_P_rep
resentation), so we can no longer regard Eq. (4.63) as a mixture of coherent states, and classical optics no longer
works as well. For this reason, a state is often called nonclassical whenever ®(«) goes negative for some value
of a.

Side note. In this book, we always use P to denote a probability distribution. Since the Sudarshan representation
may go negative, we use the symbol ® rather than P.

For most common light sources, such as lasers, LEDs, lamps, stars, fluorescent particles, Eq. (4.63) with a
nonnegative ® works very well, the noise due to ® is often much stronger than the quantum shot noise, and there is
no good reason to use the quantum theory. An important exception is when photon counting that is close to ideal
can be performed. The probability distribution of the photon count becomes

2n
Mandel’s formula : | (n|j|n) = // ®(a)|(n]a)|?d*o = // o) exp( mP)%an. (4.64)
n.

The measurement outcome must remain discrete, with n = 0,1,2,.... If ® is nonnegative, Eq. (4.64) is called a
semiclassical formula, since we can regard the complex amplitude « as a classical random variable with probability
density ®(c) and the Poissonian |(n|a)|? as the probability distribution of the photon number conditioned on a.
In other words, if ® is nonnegative, we can treat the EM fields as classical and stochastic, and the discreteness of
photon number appears only when a photon-number measurement is performed.

// d(a)d?a = 1, (4.65)

regardless of whether it’s a probability density.

Exercise 4.27. Show that ®(«) must obey
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Exercise 4.28. Let (n) = tr(np) be the mean photon number. Given Eq. (4.63) where ® is a probability density,
show that the photon-number variance given by Eq. (4.49) must obey

(An?) > (n). (4.66)

In other words, the variance cannot go below the variance of a Poisson random variable. If the variance goes below
(n), then it’s a smoking gun that ® for the state cannot be a probability density. Use this fact to show that ¢ for a
number state p = |n) (n| with n > 0 cannot be a probability density.

Hint: use the law of total variance (see https://en.wikipedia.org/wiki/Law_of_total_variance or
Eq. (C.48)).

4.6. Normal ordering and optical equivalence theorem
Suppose that we are given an operator in the form
flahg(a), (4.67)

where f(a') is a function of a' only and g(a) is a function of @ only. We call this a normally ordered operator,
with all the a' on the left and all the  on the right. Some examples:

ata, atataa, exp(uaT) exp(v*a). (4.68)

Then it can be shown that

tr [1(ahg(@i] = [ @@ s@gtaria. (4.69)

where we replace a' in f(a') by the variable o* and a in g(a) by « on the right-hand side. In other words, the
expected value of a normally-ordered operator can be computed by taking the average of the c-number function
f(a*)g(«) using the Sudarshan ®. Eq. (4.69) is called the optical equivalence theorem, which is a handy result in
quantum optics.

Exercise 4.29.

(1) Verity Eq. (4.69).

(2) Let

A =n?=ataala. (4.70)
Rewrite it in normal-ordering form (i.e., a sum of terms in the form of Eq. (4.67)) and compute (A) =
tr(Ap) using the optical equivalence theorem for a coherent state and a thermal state.

(3) Compute (A) directly using the photon-number distributions of a coherent state (Poisson) and a thermal
state. Confirm that you obtain the same results as the previous part.

Exercise 4.30.

(1) Show that the Poisson distribution can be expanded as a power series with respect to (n) given by

<n>n _ 1 n n+1
exp(— (n) - = m(<n> ()™ + . ) 4.71)
(2) Show
n=1pln=1)=tr (a*a,s) - (a*a*aaﬁ) v 4.72)
1
ol Al o\ _ 1+ At afana) Afatatana s
<n—2]p|n—2>—2[tr(aaaap> tr aaaaaap)—f—...}. (4.73)

(This is a way of computing (n = 1| p|n = 1) and (n = 2| p|n = 2) for weak light in any state, general-
izing Exercise 4.23.)


https://en.wikipedia.org/wiki/Law_of_total_variance

CHAPTER 5

Multimode States

EM fields have many modes, and the real fun starts in quantum optics when we consider many modes. This
chapter studies some common multimode states in quantum optics, generalizing Chapter 4.

5.1. Coherent states

5.1.1. Definition in terms of the displacement operator. Let’s consider J EM modes and denote each mode
by j = 1,2,...,J. The annihilation operator for mode j is a;, as before. The easiest way to define a coherent state
for multiple modes is to first define a multimode displacement operator as

D(a) = exp Z (aj&; - H.c.) , (5.1)
J
where
a1
a=|:]ec’ (5.2)
ag

is a vectoral complex amplitude (each «; is a complex number) and H.c. denotes the Hermitian conjugate of the
T

first term aj&j, ie., of

J
Egs. (3.59)), the BCH formula says we can break D () into a product of single-mode displacement operators

D(a) = Dy(ev) ... Dy(ay), (5.3)

a; in this case. Because operators for different modes commute with one another (see

Dj(aj) = exp (ajd; - Hc) (5.4)

Each Dj (cyj) is in terms of a; and &; only, so it acts only on mode j and does nothing on all other modes.
A multimode coherent state can now be defined as

la) = D(ax) |vac), (5.5)

where |vac) is the multimode vacuum state (zero photon in all modes). The coherent state has some special
properties.

5.1.2. Separability. Let the Hilbert space for mode j be H; and each number state in H; be |nj>j, n; =
0,1,2,.... Recall that the vacuum state is a tensor product of {|0),}:

[vac) = |0); @ |0)y @ --- ©10);. (5.6)

We see from Eq. (5.4) that each D;(c;) acts on H,; only and has no effect on all the other modes. So D(cx) |vac)
becomes

) = D(a1)]0), ® D(az) [0), © -+ @ D(ay) |0}, (5.7)
=|la1) @]az) @ - ®|ay) .| (58)

In other words, a multimode coherent state is a tensor product of single-mode coherent states.

41
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This separable property of the coherent state turns out to hold regardless of the set of modes we assume. Recall
from Sec. 3.5 that we can build our multimode Hilbert space using any set of modes, as long as the new operators
are related to the old operators by

dj = Z lei)l, Bl = Z fldj, (59)
l

J

where W is a unitary matrix (W1 = WT). Let’s plug this expression into Eq. (5.1) to obtain

D(a) = exp [Z (613; - H.c.) ,
l

B=3 oW (5.11)
J

(5.10)

Notice that the displacement operator has the same dependence on {I;l} as it did on {a; }, except that the amplitudes
{B;} are transformed. To make the notation clearer, let’s write

A
B=|:], 612
Br
to clarify the dependence of a displacement operator on the mode operators. In matrix notation, Eq. (5.11) can be
expressed as

b(a Do) = exp Z <ajd} — H.C.) , ﬁ(b : B) = exp [Z (61?); — H.C.) ,

J l

B=Wla, (5.13)
so that Eq. (5.10) becomes
D(a:a)=Db:Wia), (5.14)
and the coherent state can now be expressed as
la) = D(a: a)|vac) = D(b: Wia)|vac) . (5.15)

We now follow Sec. 5.1.2 to write the multimode Hilbert space as | ®@ - - - ® H/; for the new modes. Write the
vacuum state in terms of the zero-number states in 1} ® - -- ® H’; as

lvac) = b1 : 0) ® |2 : 0) @ --- @ |by : 0) (5.16)

according to Egs. (3.124) and (3.126). Then decompose ﬁ(b : 3) as

Db:B) =Dy :B)... Dby : By), D(bi, B) = exp (@i)j _ H.c.>, (5.17)
just like Eq. (5.3). The coherent state becomes
D(b:B)|vac) = Dby : B1)...D(by:Br)|br:0)@--- @ |bs: 0) (5.18)
=D(by: 1) [br:0) @~ @D(bys: By)|bs: 0) (5.19)
= by :B))@---®1|by:Bs), |bj:B;)=D(b:B)|bj:0), (5.20)

which is a tensor product of coherent states. This separable property is very special, since it says that the multimode
coherent state remains pure and a coherent state if we look at any set of modes, normal or not, or any subset of
the modes.
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5.1.3. Single-mode excitation. Given a vectoral complex amplitude o, suppose that we define a special set of
modes such that the first new mode has an annihilation operator given by

ZWla] Za ‘a;, (5.21)

O‘J

1= o’ (5.22)
where the norm of the vectoral amplitude « is defined by
la?=aa = Z |aj|%. (5.23)

In other words, we choose a unitary matrix W such that its ﬁrst column is equal to o/ ]a| The normalization
1/|cx| ensures that T can remain unitary and b, obeys the standard commutation relation [by, b] 1] = 1. (It can be
shown using linear algebra that it’s always possible to fill the remaining columns of W to make it unitary.) Then
the displacement operator can be rewritten as

D(a) = exp [|a\ (6} - 131)}, (5.24)

which is in terms of b; only. In other words, in terms of this new special set of modes, ﬁ(a) displaces only the first
mode, while leaving all the other modes alone. For this reason, the coherent state

la) = D(ax) [vac) = exp [\a\ (13{ . él)} Ivac) (5.25)

can also be considered as a state with excitation in one special mode only, while all the other modes remain in
vacuum. We call this special mode the excited mode of the coherent state.

If {G;} are operators for normal sinusoidal-wave modes in free space, recall from Sec. 3.5 that W}, is the
(k, s)-space amplitude that determines the mode function v () for the excited mode. This means that the excited
mode has a (k, s)-space amplitude W;; determined by c through Eq. (5.22). For example, if o is the (k, s)-space
amplitude of an optical pulse, as discussed in Sec. 3.5, then Wj; o «; is also the (k, s)-space amplitude of an
optical pulse, and the excited mode is the optical pulse mode.

Exercise 5.1. Prove the following:

(1)
ajla) = ajla) . (5.26)

)
(alal =] (af. (5.27)

3)
D(a) = Di(—a). (5.28)

“)
D(@)D(B) = exp|itm(B'a)| Dia + B), (5.29)

5)
(al8) = exp[-itm(Bla)] exp - 518 - a?). (530

(6)

D(a)=e ~Llal? X, aaf = 3 aay _ slal? = X, a5 aga) (5.31)
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Exercise 5.2. Find the probability distribution of multimode photon counting for a coherent state, i.e.,

[(n]a)]?, (5.32)
where
ni
n=|: |, n) =|n1,...,nJ). (5.33)
nJ
Define the multimode quadrature eignstates as
lg=z)=ln=2)@ - ®|gs=2;), pP=y)=lp=y)@--@p;=y1). (5.34)

where |¢; = ;) is an eigenstate of ¢; with eigenvalue x; and [p; = x;) is an eigenstate of p; with eigenvalue y; in
the usual way. Find the probability density functions

g ==l |(p=yla). (5.35)
5.2. Classical current source

We love the coherent state in quantum optics—its math is simple, and it’s easy to reproduce classical optics by
taking its averages. This section presents another reason: it has a very simple model for how it can be generated.

Suppose that, in addition to the free EM fields, there exists a current density J(r,t) due to charged particles
that can be approximated as a c-number function. The approximation of observables as c-numbers is common in
quantum mechanics and valid whenever some degrees of freedom are little perturbed by any coupling to quantum
systems and can be approximated as classical. The Hamiltonian can be taken as

H(t) = Heasy + (), I:[easy = Z hwj&}&j, n(t) = — ///J(’l“,t) . A(’I")dST, (5.36)
J

where

R 1/2
A(r)zZ( f ) [aju;(r) + Hc)] (5.37)

260Wj

is the vector-potential operator. Appendix E explains the origin of Eq. (5.37) and shows that the Hamiltonian is
consistent with Maxwell’s equations in the presence of the current density. Going to the interaction picture (see
Sec. D.4), we find

feasy (T) = — /// J(r,t) - A(r, t)d>r, (5.38)

. t t
U[(t) =T exp [—;/ ﬁeasy(T)dT:| =T exp Z/ [Bj(r)&} — H.C.:| dr y, (5.39)
0 7 Jo

50 =i(g) I et (540

The time-ordered exponential looks scary, but remember that it is simply a product of exponentials with tiny time
steps:

~

Ur(t) = AIPEO exp Z [6]-(25)&} - H.C.:| At 3 exp Z [ﬁj (t — At)&;[ - H.C.:| At

J J

exp Z [Bj(QAt)&; - H-C-} At ¢ exp Z [ﬁj(At)d;r- - H.C.} At b, (5.41)

J J
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Each exponential here is a displacement operator. Recall from Eq. (5.29) that the product of displacement operators
is just one displacement operator (with an unimportant phase factor), so U 7(t) is in fact a displacement operator,
and the EM state resulting from Uy (¢) applied to an initial EM vacuum state |vac) is a coherent state. According to
Eq. (5.29), the net displacement is the sum of all the tiny displacements, i.e.,

Ur(t) < D(a), (5.42)

t
0j =Y Bi(mAnAL /O 8,(r)dr (5.43)

1 \YE o
- Z(gmjﬁ()) /0 ///J(rﬂ') -u(r) exp(iw;T)d rdr (5.44)

1 1/2 ot
:<W> | ] 107 Eisesnici vt iy, (545)

This 4D integral can be regarded as an inner product of the current density with a mode function u;(7) exp(—iw;7)
with mode index j = (k, s). The integral also resembles an inverse Fourier transform of the current density, if
we take the limit £ — oo and L — oo. The resulting amplitude «; is the amplitude of the sinusoidal-wave mode
j = (k, s) generated by the current source.

Long story short, the Hamiltonian 7jeasy (¢) in the interaction picture is a linear function of {a;} and {d}}, SO

the interaction-picture unitary U;(t) is a displacement operator, and the interaction-picture state U;(t) [vac) is a
coherent state. If we wish, we can turn the interaction-picture state back to the Schrodinger picture by applying
Ueasy (1), since

U (t) [vac) = Usasy (£) Uiy (T (£) [Vac) = Ueasy (1)U (£) [vac) , (5.46)

but it is straightforward to show that Ueasy(t) applied to a coherent state is still a coherent state.

5.3. Thermal states

5.3.1. Definition. The quantum state at thermal equilibrium with a bath is given by Eq. (4.34) in general, i.e.,
p is an exponential of the Hamiltonian H. Recall that the Hamiltonian for many EM modes in free space is given
by Eq. (3.61). It follows that p can be expressed as

exp| =B hwjn; |, (5.47)

where 7; is the photon-number operator for the normal mode labeled by j. Assume, for simplicity, that there are J
normal modes. The number operators all commute with one another ([72, 7;] = 0), so we can break the exponential
into a product of exponentials:

1
p= 7 exp(—Bhwiny) exp(—Lhwang) . .. exp(—Lhw i y). (5.48)

It can be shown using linear algebra that the density operator can be expressed as the tensor product

p= % exp(—Bhwi i) ® exp(—Bhwsh) @ - - - ® exp(—Bhw i), (5.49)
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where each 7 is now the number operator on the individual #; for each mode. In other words, the normal modes
in a thermal state are independent. Another way of writing this expression is

((ny) +1), (5.51)

N| =

b

7 —

ke

1

.
Il

where the average photon number in each mode can be expressed as
1

tr(nip) =(n;) = ————, (5.52)
( J ) < .7> eXp(ﬁth)—l
just as before.
Glauber’s formula for a thermal state in J modes is now
J
Glauber’s formula: |j = / (o) |a) (o] d a, da= H(dRe a;)(dIm o), (5.53)
j=1

where the ® distribution is given by

A oy |
o(a)=]] 'exp<— ) (5.54)

® now coincides with the Gaussian probability density for J independent Gaussian complex random variables.
Exercise 5.3. Verify Eq. (5.51) from the fact that tr p = 1.

Exercise 5.4. Consider only modes with the same natural frequency w; = w. Define a new set of modes by
Eq. (3.89), where W is a unitary matrix.

(1) Prove
> ala; = blb. (5.55)
J l

(2) Let m; = I;Zr I;l. Show that the density operator of the thermal state can be expressed as

(b))

so any set of modes with the same frqeuency in the thermal state are independent.

Exercise 5.5. Repeat Exercise 5.2 for a thermal state, i.e., find
(nlpln), {g==|lplg==z), (p=ylplp=y) (5.57)
for a thermal state p.

5.4. Sudarshan representation

Our earlier discussion of the Sudarshan representation applies essentially unchanged to the case of multiple
modes. For any density operator p, we can in principle write

ﬁ:/fb(a)|a> (a] d¥ a. (5.58)

If ®(cx) is nonnegative for all & € C27 such that it is a probability density, the state can be called classical.
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Mandel’s formula in this case is

Mandel’s formula : | (n|p|n) :/<I>(a)|(n|a>|2d2‘]a, (5.59)
where
T o o™
[(n]a)® = [ exp(~loy[?) fzj! (5.60)
7j=1

is a product of Poisson distributions. If ® is nonnegative, we can think of the complex amplitudes o as classical
random variables with probability density ® in Mandel’s formula, and the photon-number distribution | (n|c) |?
conditioned on « is that of independent Poisson random variables.

Exercise 5.6. Show that

/<I>(a)d2‘]a =1. (5.61)

5.5. Optical equivalence theorem

The concept of normal ordering and optical equivalence theorem for multiple modes is essentially the same as
that discussed in Sec. 4.6. Suppose that we have a normally ordered operator

f@hg(a), (5.62)

where f(a') is a function of {d}} only and g(a) is a function of {G;} only. Some examples:

&;dl, &;&;&j&l, exp Zuja} exp Zvjaj ) (5.63)
J J

Then the optical equivalence theorem is

tr [£(ahg(@p] = [ @@ra)g(@da. (5.64)

where we replace each d;f» by o in the f function and each a; by «; in the g function on the right-hand side. The
theorem allows us to evaluate the expected value of a normally ordered operator by taking the average of a c-number
with respect to the ¢ function.

5.6. Fock representation

5.6.1. Discrete set of modes. When there are a discrete set of modes, a general state can be constructed from
the orthonormal number basis given by Eq. (3.51). If we assume a continuum of modes as per Sec. 3.4, on the other
hand, it’s trickier to construct the Hilbert space. The way forward is to use Fock’s method.

To introduce the method, we begin by considering a discrete set of J modes first, and we label the modes by
j=1,...,J. We will be building our Hilbert space from the so-called Fock states, defined as

|Fock : j1,...,JN) = ..&;1 |vac) . (5.65)

In other words, we construct this state by adding one photon to mode j; via d}l, and then adding another photon to

mode j2 via &}2, etc. There are NV photons in total in this state, and

J=01,---.Jn) (5.66)
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is a vector of mode labels for the N photons, with each j, € {1,...,J}. In mathematics, j is called a multi-
index (https://en.wikipedia.org/wiki/Multi-index_notation). There are J possible values for the
multi-index j:

je{l,..., ", (5.67)
A lot of the Fock states are equal to each other, since the creation operators in Eq. (5.65) all commute with one

another and we can interchange their order. The Fock state must therefore remain the same if we exchange any two
arguments, i.e.,

|[Fock:..., 4 ..., 4 ...y=|Fock:..., § ..., § ... (5.68)
~—~ ~—~ ~—~
nth photon mth photon nth photon mth photon

To study the Fock states, we can write each in terms of a number state |n,...,n), since both can be written as
some creation operators applied to |vac). Given the mode labels (j1,. .., jn) for the NV photons, let us count the
number of photons in a certain mode [ and call it n;(j1, ..., jn). This is done by counting the number of j,,’s that

are equal to the given mode index /. An explicit formula is
n(J1,...,Jn) = jll+5j2l+"'+5j1vl’ (5.69)

Then, recalling that a number state is given by

~fn1 ~ng
... ng) = 28 jyac), (5.70)
vnll .. .nJ!

we can rewrite Eq. (5.65) as

. . n g ()72 . .

Fock s ) = | ) 571

which can be abbreviated as

N —1/2
Fock:d) = (7)) In(i) (572
where
N N!

= 5.73

is the multinomial coeflicient.

Side note. In the literature, any state with a definite photon number in each mode is also called a Fock state, so |n)
would also be called a Fock state. To be precise in this section, however, I call only |Fock : j) a Fock state and I
call |n) a number state.

Using Eq. (5.72), we find that the inner product between two Fock states is given by

. : N\
<F0ck:]|Fock:g’>:<n(j)> On(s)m(i’)- (5.74)

This means that the Fock states are not exactly an orthonormal basis and a lot of the Fock states are actually the
same, as long as they lead to the same set of photon numbers n2(j). Conversely, for a given set of photon numbers

N . .
n, there are <n> Fock states that are all equal to one another (https://www.statisticshowto.com/multin

omial-coefficient/).
To express any state in terms of the Fock states, let’s first consider the projection operator

-1
S ok g Fock gl = 30 (%) Inl) (i)l (575)

Je{l,...J}N Je{l,...J}N


https://en.wikipedia.org/wiki/Multi-index_notation
https://www.statisticshowto.com/multinomial-coefficient/
https://www.statisticshowto.com/multinomial-coefficient/
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We can divide the set {1,...,J} into subsets, where each subset of mode labels j for the N photons lead to the
same set of photon numbers n(j) = m:
{_] : n(]) = m} = {(jl, e ,jN) : nj(jl, . ,jN) = mj for all ]} (576)
Then
N\
S ok g (Fock gl = 30 () In@) (nlo) 5.77)
je{l,...,J}N je{l,...J}N

- X X () w6

m:y_; m;=N jmn(j)=m

= Y myml. (5.79)

m:ys, mi=N

We know that the number states {|n) } form an orthonormal basis and thus obey the completeness condition

=Y nm =3 3 In)ml. (5.80)

n N=0n:}"n;=N
Hence
o
I=>" > [Fock: ) (Fock: j|. (5.81)
N=0je{1,..,J}N

This is a completeness condition in terms of the Fock states, so that an arbitrary |1)) € H can be expressed as

[e.e]
[y =Tlp)=>_ > [Fock: j) (Fock: j|¢), (5.82)
N=0je{1,...,.J N
which is a linear combination of the Fock states. Note, however, that we can’t just have any linear combination of
{|Fock : j)}; the wavefunction (Fock : j|¢) for NV photons must be symmetric with respect to any exchange of two
arguments because of Eq. (5.68):

(Fock: ..., 4 ..., 4§ ..J)y=(Fock:..., 4 ..., j ... (5.83)
~—~ ~—~—~ ~—~—~ ~—~
nth photon mth photon nth photon mth photon

This symmetry for the wavefunctions means that the particles are bosons, and we have managed to show that a set
of quantum oscillators are equivalent to bosons. In the particle picture, each mode label j is associated with the
properties of a boson. When the label is j = (k, s), k is regarded as the momentum of a boson, and s is regarded
as the spin of a boson; two possible polarizations of an EM wave correspond to two possible spins for a photon.

A few other formalities: the operators defined as

Iy= > |n){n|]= > [Fock: j)(Fock : j| (5.84)

n:y o ;nj=N Je{l,..,. J}N

are projection operators that satisfy

T f[Nﬂ N:M7 7 — -
NIy = I = IIy. 5.85
NIy {0’ N £ M, Nz::o N (5.85)

The total photon number operator can be expressed as

N=> a;=> Ny, (5.86)
j N
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and
Py = tr (fINﬁ> (5.87)

is the probability that there are /N photons in all modes. A normalized N-photon wavefunction can be defined as

N1 L 1 . .
N (g) = i (Fock : j|y) = v (vac|aj, ...ajy |¥), (5.88)
and
[N ()P = [N G, Gv) P (5.89)
can be regarded as the probability distribution of random variables (j1, . .., jn), where j; is the mode index for the

first photon, js is the mode index for the second photon, etc. The probability distribution also needs to stay the same
under any exchange of the arguments; we say that the random variables are exchangeable in probability theory when
the probability distribution has this permutation symmetry. In physics, we call such particles indistinguishable.

Side note. It turns out that the Hilbert space for any kind of bosons can be constructed in this manner, although
the number of possible spins and the Hamiltonian may differ from those of photons. For fermions, we need to use a
different kind of operators with a different algebra. The reverse strategy of constructing a quantum theory of fields
from a theory of particles is sometimes called the second quantization (https://en.wikipedia.org/wiki/
Second_quantization).

Exercise 5.7. Find Py and the wavefunctions {¢x } for the coherent state |cx).

Exercise 5.8. Let a; be the annihilation operator for the mode with wavevector k = kz and polarization vector

- T+ 1y
€ = . 5.90
1 NG (5.90)
Let ay be the annihilation operator for the mode with the same wavevector and polarization vector
- 1+ Yy
€y = . 591
2 73 (5.91)
Let
|Fock : 1) = d{ |vac) , |Fock : 2) = d; |vac) , (5.92)
where we’ve omitted the wavevector for brevity.
(1) Show that e; and e obey Eqs. (2.22)—(2.24).
(2) Show that {|Fock : 1), [Fock : 2)} are orthonormal if [a;, @;] = 0 and [, &lT] =0 1.
(3) A new one-photon state is defined as
bt 0 i gin !
|y = b |vac) = cos 3 |Fock : 1) + €'?sin 3 |Fock : 2), (5.93)

where 0 € [0,7] and ¢ € [0,2x). Find b in terms of é; and d and find the polarization vector of the
photon.
(4) A Bloch sphere is a representation of qubit states (https://en.wikipedia.org/wiki/Bloch_sphe
re). Each point on the sphere with spherical coordinates (6, ¢) represents a certain state |¢) ()| with the
0 and ¢ parameters.
Find the point on the Bloch sphere that represents a photon with each of the following polarizations:

1, 1 .. . - -
\ﬁ(m—kzy), ﬁ(zm—ky), z, 9, 7

Sketch your results by drawing a sphere and labeling each point with the polarization.

(5.94)


https://en.wikipedia.org/wiki/Second_quantization
https://en.wikipedia.org/wiki/Second_quantization
https://en.wikipedia.org/wiki/Bloch_sphere
https://en.wikipedia.org/wiki/Bloch_sphere
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Exercise 5.9. Suppose that there are just two modes labeled by j € {1,2} with annihilation operators a; and as,
respectively. Suppose that a certain quantum state is expressed in the photon-number basis {|n1,n2) : each n; =
0,1,2,...}as

[Y) = C2,012,0) + C1.111,1) + Cp210,2),

+|Coal* = 1. (5.95)

Find the two-photon wavefunction 5(j,1) in terms of the C' coefficients. Show explicitly that your result is
symmetric, i.e.,

Pa(4,1) = a(l,5) forall j,1, (5.96)

and normalized, i.e.,

> (i D = 1. (5.97)

Explain the physical meaning of |Ca|?, |C11]? and |Cp2|?>. Explain the physical meaning of [i9(1,1)]2,
[19(2,2) %, [12(1,2)[2, and |tp2(2, 1)]. You should find that

Cral? = [¥a(1,2)]% + [92(2, 1) (5.98)
Convince yourself that this is correct.

5.6.2. Continuum modes. Fock’s method seems unnecessarily complicated for a discrete set of modes, since
we could have just used the number states {|n)}, which form an orthonormal basis. When we have a continuum of
modes, however, Fock’s method is necessary if we want to write down an explicit construction of the Hilbert space.

We start by assuming that there is a vacuum state |vac) € H with (vac|vac) = 1. In terms of the creation
operators {a'(k, s)}, a Fock state is now defined as

1
Vv N!

The inner product between two of them becomes

[Fock : ji,...,jn) = al(k1,s1)...a (ky, sn)|vac) g = (Kn, $n). (5.99)

(Fock : ji,...,jn|Fock: ji,..., 5NM 25 J13py) - - 000 Tpn): (5.100)
05,4 = 53(k: - k:’)éssf, (5.101)
where
(P(1),...,P(N)) (5.102)
is a permutation of (1,...,N)and ), is the sum over all N'! permutations. For example, if N = 2, then there are

just N! = 2 permutations:

(P(1),P(2)) = (1,2), (P(1),P(2)) = (2,1), (5.103)
and
! ]- . i . ./ . ./ . ./
(Fock : ji, ja[Fock : 71, ja) = 5 [6(j1, 71)3(j2, j2) + 0(j1, j2)0 (G2, j1)] (5.104)
= %[5 (k1 — K1) 05,5 0% (ko — k)6, + 0% (k1 — k)6, 0% (kg — KY)0ssr |-

(5.105)
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The completeness condition is now

i=Y Ty, (5.106)
N=0
Il = |vac) (vac|, (5.107)
Iy = Z /\Fock g1y, gN) (Fock @ ji,. .., jn| dPky ... k. (5.108)
81,..,SN

In quantum optics, Fock’s method is useful when one needs to write down the quantum state for a continuum of
modes, or when there are few photons. For example, under spontaneous parametric down-conversion (SPDC) in
some crystal, the probability of generating N > 2 photons is negligible, and one can study the properties of the
entangled photons via the two-photon wavefunction.

Exercise 5.10. Let a one-photon state be IA)}t |vac), where b is given by Eq. (3.115). Find the one-photon wavefunction
1/)1 (k, S) .

Exercise 5.11. Let the continuum displacement operator be
Dla] = exp [Z / a(k,s)a' (k,s)d>k — H.c.| |vac) (5.109)
S

and the coherent state be |a) = D[a] |vac). Find { Py} and the wavefunctions {1y} defined as

(vac|a(ky,s1)...a(kn,sn) ). (5.110)

YN (1, -, JN) = T



CHAPTER 6

Passive Linear Optics

6.1. Hamiltonian

Now that we have an idea of what quantum optical states look like, let’s study dynamics. In optics, EM fields
typically interact with matter so weakly that the equations of motion for the complex amplitudes are linear; we call
such optical systems linear optics. Examples are many and include propagation in free space and in dielectric
media, beam splitters, mirrors, polarizers, interferometers, optical fibers, optical resonators, etc. We see nonlinear
optical effects only when the EM fields are very intense in matter that interacts strongly with them, e.g., with
high-power lasers or in high-quality optical resonators. Linear optics forms a major part of optics.

The word “passive” refers to the fact that, apart from an initial state that is generated by some sources, the optics
at zero temperature does not add photons to the EM fields. It will be easier to understanding what this means when
we look at the Hamiltonian later.

In quantum optics, passive linear optics can be modeled by assuming that both the EM fields and the interacting
matter consist of coupled harmonic oscillators. This is an approximation, as matter ultimately consists of atoms,
electrons, nuclei, ions, etc. that are not exactly harmonic oscillators, but when the interactions are weak, the matter
would behave effectively like harmonic oscillators when interacting with the EM fields. The best justification is
perhaps the fact that the resulting equations of motion agree with those in classical optics.

Let’s start with J EM modes. Assume that there are K other modes of harmonic oscillators in the matter that
interact with the EM fields. Let

(1) {a; : j=1,...,J} be the annihilation operators for the EM modes on Hilbert space Hgm,
(2) {bj : j =1,..., K} be the annihilation operators for the matter modes on Hilbert space Hmaer-

There are now J + K modes, and we label the annihilation operators for all the modes by {¢;}. Using matrix
notation, we can write

6.1

o
I1l
S Q>
=y
Il
N
(SRS
N——
Q>
Il
[wpbd
I1l
>

b
so ¢ is a column vector of annhilation operators for the J 4+ K modes, the first J entries are for the EM modes, and

the next K entries are for the matter modes. These modes don’t need to be normal modes, but we still require them
to satisfy the standard commutation relation

[, ¢l = ;. 6.2)

When these modes may exchange particles with each other, a general Hamiltonian can be expressed as

H=hY Fyele, (6.3)
7,0

where F' is a matrix with complex c-number entries called the coupling matrix. A derivation of this Hamiltonian
from more physical assumptions will be given in Sec. 6.1.1 later, but for now we assume that Eq. (6.3) is given.

53
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To see what the Hamiltonian does in the dynamics, let’s look at the unitary operator with a tiny time step:

U(At) =exp | =iy FpclaAt | m T —iAtY " Fyéle. (6.4)
Jl al
When this unitary is applied to a state |1), each ¢ operator subtracts a boson from mode [, and then é;f adds the
boson to mode j. When the mode is EM, the bosons are, of course, photons, but when the mode is a matter mode,
the bosons are stored physically as quanta of energy excitations in the matter; we just think of them as effective
particles behaving like bosons and don’t really care about them as much.

For longer times, remember that the unitary operator is just a product of the unitaries with tiny time steps
(U(t) = U(At) ... U(At)), so if we start with a definite total boson number, the total number of bosons in all the
modes will stay constant. This behavior agrees with the observation that, at zero temperature (corresponding to the
fact that the matter modes are in vacuum), many optical devices do not add photons to the EM fields (hence the
word “passive”).

Note that the optics may still take photons away and transfer them somewhere else to places we can’t access.
Thus, our model of passive linear optics can also model optical loss, which is physically the absorption of photons
by matter; see Chapter 7 later.

For the fundamental principles of quantum mechanics to hold, the Hamiltonian operator H must be Hermit-
ian. This means that the F' matrix in Eq. (6.3) cannot be any matrix. Convince yourself that

H=H' & F;=F. (6.5)

In other words, the F' matrix must be Hermitian.

Exercise 6.1. A fancier way of showing that the total photon number is conserved is to show that the total boson-
number operator

N=>Y"dg (6.6)
J
commutes with the unitary:
{U, N} —0. 6.7)
(1) Show that Eq. (6.7) holds if and only if
U'NU =N, (6.8)

i.e., N is constant in the Heisenberg picture.
(2) If |1 ) is an eigenstate of IV, i.e.,

Nln) = Nlyn), (6.9)
and Eq. (6.7) holds, show that U |1 is also an eigenstate of N with the same eigenvalue V.
B) IfU = exp(—%ﬁt), it turns out that Eq. (6.7) holds if
[H,N] =0. (6.10)
Show that Eq. (6.10) holds, given Egs. (6.3) and (6.6).

Exercise 6.2.

(1) Show that H can always be expressed as

H=1Y wdld 6.11)
l

for some real numbers {w; }, if ¢; = Y, Wj;d; for some unitary matrix ;.
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(2) Assume only two modes. Find {w;,ws} and the W matrix if

(2= A)2 K
F_< I Q+A/2>. (6.12)

(This exercise shows that, for passive linear optics, one can always define a set of normal modes, which oscillate
in time simply as

ch(t) =d, exp(—iw;t) (6.13)

in the Heisenberg picture. These normal modes are in general hybrid modes—each d;(t) = 3 s Wihei(t) is a
combination of EM modes and matter modes oscillating together. The quanta associated with these normal modes
are called polaritons [7]. The normal modes in dielectrics, optical fibers, dielectric resonators, etc., are polariton
modes, strictly speaking; it’s merely semantics whether we want to call them polaritons or photons.)

Side note. In case you have seen papers talking about non-Hermitian Hamiltonians, they may refer to a few different
things:

(1) Dynamics for open quantum systems interacting with an environment, in which case the evolution of a
density operator is not described by a unitary operator but something more general (completely positive
maps, master equations, etc.).

(2) Classical waves (e.g., classical optics) as mere analogs of quantum mechanics. Their “Hamiltonian”
is not the Hamiltonian in quantum mechanics, just an analogous quantity. Fundamentally, the classical
waves must still obey quantum mechanics, and a proper quantization of the classical theory is still needed.
The true Hamiltonian must still be Hermitian.

(3) Novel generalizations of quantum mechanics (even though we have zero experimental evidence so far that
such generalizations are needed.)

For closed quantum systems, you'd break quantum mechanics if your Hamiltonian is not Hermitian (see Exercise 3.5),
so you can’t do that. Learn proper open quantum system theory before you attempt such a stunt.

6.1.1. Side note: Light-matter interaction. Here we go a little deeper into how Eq. (6.3) arises from a model
of light-matter interactions by adopting an approach by Hopfield [8]. Suppose that the full Hamiltonian for light
and matter is given by

H = Hyaver + Hem + 1, (6.14)

where ﬁmatter is the matter Hamiltonian, ﬁEM is the Hamiltonian for the free EM fields, and

0= —///j(r) CA(r)dPr (6.15)

models their interaction through the current density J (r) and the vector potential A given by Eq. (5.37). Just like
how we quantize the EM fields, we may assume that the matter modes are a set of harmonic-oscillator modes with
the Hamiltonian

ﬁmatter = hzwﬂ;;i)l) (616)
l

where b; is the annihilation operator of each matter normal mode and wj is its natural frequency. The current density
created by the matter may be written as

J(r) = Z byw;(r) + He., (6.17)
l

where w;(7) is a mode function that expresses how each normal mode contributes to the current density, just like
how the EM normal modes contribute to the EM fields E, B, and A.

Physically, the matter modes may arise from some kind of energy excitations, the quanta of which are often
called quasiparticles. Examples include electron-hole pairs (excitons) and lattice vibrations (phonons). We would
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need to go even deeper into the rabbit hole of condensed-matter physics, such as solid-state physics, to derive
Egs. (6.16) and (6.17). We won’t do that here and take Eqgs. (6.16) and (6.17) as given.

Given Egs. (5.37) and (6.17), the interaction Hamiltonian given by Eq. (6.15) becomes a linear combination of
the following two types of terms:

§=— /// Jr) - Ar)dr =3 (cﬂa}l}l n H.c.) +3 (Dﬂajl}l + Hc) (6.18)
al gl
where C' and D are matrices of constants. The first type of terms in the form of d;f-l;l and a; lA)}L are what we want
and can be modeled by the passive-linear-optics Hamiltonian given by Eq. (6.3), while the second type in the form
of a; El and &; Bzr cannot be modeled by Eq. (6.3).
It turns out that the second type of terms can be thrown away if we make the so-called rotating-wave approxi-
mation (see Sec. D.5). We go to the interaction picture, where

feasy (8) = 3 [Crnalbne’ 5= e + 37 [ Daaghe @0 1 He. (6.19)

il il
In the rotating-wave approximation, we throw away terms that oscillate quickly in time in the Hamiltonian, because
those terms average to zero over time and their net effects are negligible. So the djl;l and &; I;ZT terms are thrown
away, because they oscillate as e(« et We may also throw away some of the &; b, and a; Bzr terms if [w; — wj]|
is large, keeping only the terms with w; — w; =~ 0. In any case, we are left with the first type of terms in the form

of &}l;l and a; BlT We may now go back to the Schrodinger picture, and the total Hamiltonian would be a linear
combination of only terms in the form of

ataj, bjbi, alb, a;b], (6.20)

so that the Hamiltonian can be written in the form of Eq. (6.3).

6.2. Heisenberg picture

With the Hamiltonian given by Eq. (6.3), the equations of motion for each ¢;(t) in the Heisenberg picture is
simple to derive. Let

&i(t) = UT ()& U(t). (6.21)
Then the Heisenberg equations become
dé;(t) . .
T = —1 ; Fjlcl(t). (6.22)

If we think of ¢(t) as a column vector of annihilation operators, then we can also rewrite Eq. (6.22) in matrix
notation:

de(t)
dt

= —iFe(t), (6.23)

where F'¢(t) is understood as the matrix F' applied to the column vector ¢&(t).

The Heisenberg-picture equations are linear and agree with what we know about passive linear optics in classical
optics. The b operators play the same role as the polarization field P(r,t) in classical EM; see Appendix F for a
quick review. The new restriction imposed by the quantum treatment is that the matrix F' must be Hermitian.

The general solution of Eq. (6.23) is simple to write down:

&(t) = exp(—iFt)e(0). (6.24)
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where exp(—iF't) is interpreted as the exponential of a matrix. We know from linear algebra that, since F' is
Hermitian, exp(—¢F't) must be a unitary matrix. Let’s call the unitary matrix V, so that we can write

e(t) = V(1)e(0),
V(1) = exp(—iFt).| (6.26)

(6.25)

This result agrees with the classical coupled-mode equations for passive linear optics. In practice, we can often
just take the matrix V'(¢) from classical optics and plug it in Eq. (6.25), without redoing the quantum derivation.
We should make sure that V'(¢) is a unitary matrix, however, so that we don’t break quantum mechanics.

With a unitary V, you can verify the general fact that the entries of ¢(t) still obey the fundamental commutation
relation

[6;(1), & ()] = o5, 6.27)

which must hold for any dynamics in general, not just passive linear optics, so we are assured that we haven’t made
any mistake.

The Heisenberg picture is convenient for computing expected values. For example, given Eq. (6.25), we know
¢;(t) = >, Viu(t)éy, so the average amplitude of mode j at time ¢ given an initial state [¢)) (which doesn’t change
in time in the Heisenberg picture) is

(wle;(t Z Viu(t) (@l & |4) (6.28)

while the expected boson number in mode j at time ¢ is

(W] e! Z (W] & em |0) (6.29)

where (1| ¢ [¢) and (1| é;ém |1) are determined by the initial state [1)).
Exercise 6.3. Verify Eq. (6.22).

Exercise 6.4. Derive Eq. (6.27) from Eq. (6.21) for any unitary U(t) Also derive Eq. (6.27) independently from
Eq. (6.25), to show that the V' matrix must be unitary.

Exercise 6.5. Find the V' (¢) matrix if there are only EM normal modes.

Exercise 6.6. Suppose that we redefine the J + K modes using a unitary W matrix:
&= Wy, dy =Y We;. (6.30)
! J
(1) Show that the Hamiltonian given by Eq. (6.3) becomes
H=n)"Fjdd, 6.31)

which has the same form as Eq. (6.3) but with a new coupling matrix F”. Find F’ in terms of the old F'
and prove that F’ remains Hermitian if F' is Hermitian and W is unitary.
(2) Given Eq. (6.25), show that the Heisenberg equations of motion for d;(t) can also be written as

t) =Y V(t)di(0), (6.32)
l

where V' is another matrix you should find in terms of F’. Find also V"’ in terms of V" and W. Show that
the V' in terms of V and W is also unitary.
(This exercise is important because it shows us that passive linear optics has the same form of Hamiltonian and
the same form of equations of motion regardless of how the modes are defined, as long as they are related to the
original ones by a unitary matrix W.)
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6.3. Example: pulse propagation in free space

With only EM fields in free space, we don’t have matter modes to worry about, and we know that normal
sinusoidal modes have annihilation operators that obey a;(t) = a; exp(—iw;t) in the Heisenberg picture. In
practice, we don’t often deal with sinusoidal modes directly, however, and sources and detectors may be more
conveniently modeled using some other set of modes, e.g., optical pulses, which will behave like the coupled
oscillators that we studied in Sec. 3.5.

Let the annihilation operator of a new mode labeled by [ be

fi=>_Whaj, (6.33)
j

where {a;} are the operators for the sinusoidal modes. Recall from Sec. 3.5.2 that such a new mode has an electric
field that is a superposition of sinusoidal waves, and W;; as a function of j = (k,s) is called the (k, s)-space
amplitude that determines the weight of each sinusoidal wave in the new mode. In the Heisenberg picture,
Al =UIWAU®) =Y WiTT(0a;U(t) = > Whe ™ ita; =Y (Wye™') (6.34)
J J

J

We see that f; (t) has the same form as Eq. (6.33), except that it is the annihilation operator for another mode, with
a (k, s)-space amplitude given by W;;ei’.
To be more specific, let’s follow the optical-pulse example in Sec. 3.5.2 and write

le = (Sslékzg(skygg(k‘z) eXp(—ik'ZZl), (635)

so that the pulse mode consists of sinusoidal waves with one polarization s = 1, k, = 0, and k, = 0 only. g(k)
governs the weight of each sinusoidal wave with a certain value of &, in the pulse mode. ¢ can be the rectangle
function assumed in Sec. 3.5.2, or any function in general, e.g., Gaussian, but keep in mind that we’ll often assume
that g(k,) is highly concentrated near some wavenumber k, = kg that is close to an optical value, as shown in
Fig. 6.1. Recall that, because of the phase factor exp(—ik,z;), this mode has an electric field that looks like a pulse
centered at z = z;. For clarity, I will rewrite f;(t) as

Aty = flat) =D (Wpe™") ay, (6.36)
J
to show explicitly the dependence of f;(t) on 2. For example, f(z;,0) is just
f(z1,0) = fi(0) = fi = > Whay. (6.37)
J
K
—>

g(k-)

Ficure 6.1. A sketch of a typical g(k,) function.

Suppose that g(k,) = 0 for k, < 0, so that we have a superposition of sinusoidal waves with positive k, only.
Then w; can be expressed as

w; = wk = clk.| = ck,. (6.38)
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The (k, s)-space amplitude of f(z;,t) in Eq. (6.36) becomes
leei‘*’jt = 0,00k,00519(k-) exp(—ik.z) exp(ick.t) (6.39)
= Ok, 00k,00s19(k-) exp[—ik. (2 — ct)]. (6.40)
This looks very much like the 1; given by Eq. (6.35) for the initial f (21,0) in Eq. (6.37), except that z; is replaced

by z; — ct. In other words, leei‘”ft is the (k, s)-space amplitude of a pulse centered at z = z; — ct. Hence, we
can write

~

fa,t) = f(z1 = et 0). (6.41)

You may have seen this sort of solution to 1D pulse propagation in classical optics, but the precise physical meaning
of the Heisenberg picture is rather obscure. For example, suppose we’d like to compute the average amplitude of
the pulse mode centered at z; at time ¢. This average amplitude is given by

W] f(z1,t) [) = (@] f(z1 — et, 0) 1) (6.42)

Recall that |¢)) is the state at ¢ = 0 and it doesn’t change in the Heisenberg picture. This expression means that the
average amplitude of the pulse mode centered at z; at time ¢ is equal to the average amplitude of the pulse mode
centered at z; — ct at time 0.

In general, Eq. (6.41) implies that, if we measure the pulse mode centered at z; at time ¢, it is as if we apply the
same measurement to the pulse mode centered at z; — ct at time 0; the probability distributions will be exactly the
same. See Fig. 6.2 for an illustration.

a measurement of
this mode at time t...

SN

P . T AA,
~NT T

is the same as a measurement of
this mode at time O.

P N N~
VV'VV

N
2
z1—ct

FiGure 6.2. An interpretation of the Heisenberg picture for pulse propagation.

This result agrees with the classical picture that a pulse propagates from position z; — ct to position z; after
time ¢, even though the precise physical interpretation of the Heisenberg picture is a bit hard to comprehend.
6.4. A sequence of pulses

Instead of thinking about one pulse mode at one time, imagine a detector that sits at one position, say, zg, and
just waits for the pulses to come to it. Then the detector can measure multiple pulse modes over time. For example,
at ¢t = 0, we have

£(20,0) = f(20,0), (6.43)
at t = At, we have
f(z0, At) = f(z0 — cAL,0), (6.44)
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which corresponds to a different pulse mode, and at t = 2A¢, we have

f (20, 2At) = f(z0 — 2¢At, 0), (6.45)
which is yet another pulse mode, and so on and so forth. Measurements at zg of the pulses that come to the
detector one by one over time is equivalent to a measurement of all the pulse modes at one time 0; Fig. 6.3 offers
an illustration. The former is how we measure pulses in practice, so it is more common in optics to write the
pulse-mode operators as

f(Z(Jv O)a f(207 At)a f(207 2At)7 s (646)
at one position zg and multiple times, rather than
f(2070)7f(z170)>f(2270)7"' (647)
at one time and multiple positions.
f(Zo, QAt)
t=2At=2Az/c
20 %2

At
same f (=0,

)
t=At=Az/c /\
”,

wne /)
\/ ‘/ 20

f(zO - QAZa 0) f(ZO — AZ,O)

f(20,0)

T T T T
20— 30z zp— 2Az 20 — Az 20 z

Ficure 6.3. Multiple pulse modes can be measured by sitting at one position zg and wait for the
pulses to come.

If the pulse modes satisfy the usual commutation relations

~ ~

[£(21,0), f (2m,0)] = 0, [£(21,0), FT(2m, 0)] = 1 (6.48)

for different positions at the same time, and we set

A
5 = 20+ 1Az, At =25 (6.49)
c
so that Az is the distance between adjacent pulses, then we can write
f(zo, tm) = f(zo — cty,0) = f(zo —mAz,0), t, =mAt, misan integer, (6.50)
and obtain the following commutation relations for the operators at different times:
[f(207tm)7f(207tn)] = O, [f(zmtm)afT(ZOytn)] = 5mn (651)

At the end of the day, this is just a different convention of writing the operators for a sequence of pulse modes, to
make them look more like the convention in optics, where pulses are described and measured in the time domain
instead of the space domain.
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For each pulse mode, it is also customary to describe its electric field in terms of time-domain quantities rather
than the space-domain quantities we assumed in Sec. 3.5.2. The translation is as follows:

(1) The rapid oscillation term exp(ikgz) for a pulse becomes expl|iko(z — ct)] if we sit at one place and
measure the electric field in time, so cky is the frequency (in radian/s) of the oscillation in time.

(2) The spectrum of the pulse as a function of w (frequency in radian/s) becomes g(w/c), where we replace
k. by w/c. For example, for the rectangle example in Sec. 3.5.2,

g(k) o< rect <kz — ko), g(w/c) = rect <w — Cko), (6.52)

KR CK

so the center frequency of the spectrum in w domain becomes
wo = Ck‘o, (653)

and the bandwidth of the spectrum becomes ck.

(3) The pulse width in time domain is now o 1/(ck).

(4) Instead of using Az to describe the distance between adjacent pulses in space, we use At = Az/c to
describe the spacing in time.

To give some typical numbers, if the center spatial frequency is kg = 2m/\g, where Ao = 1550 nm (typical
wavelength for optical fiber communications), then cky ~ 27 x 200 THz (1 THz (Tera-Hertz) is 10'2 Hz). If
At = 1 ns, then the pulse repetition rate would be 1/At = 1 GHz.

6.5. Schrodinger picture

Advantages of the Heisenberg picture:

(1) The equations of motion are simple, at least for passive linear optics.
(2) They look exactly like those in classical optics.

Disadvantages:

(1) The precise physical meaning is rather obscure.

(2) Many other subjects in quantum physics, such as quantum information and open quantum system theory,
use the Schrodinger picture almost exclusively, so it’s hard to relate any Heisenberg-picture result to those
subjects.

To adopt the Schrodinger picture, we need to compute U (t) |¢). This is often possible for passive linear optics and
special initial states, by leveraging the simple math from the Heisenberg picture.

6.5.1. Coherent states. For an initial coherent state, we can take advantage of its definition in terms of the
displacement operator to write

0(t) la) = U(t)D(@) [vac) = U(H) D(@) T (0)T(2) [vac) (6.54)

D(ex) is now expressed in terms of the ¢ operators, i.e.,

D(a) = exp Zajé; —He.|. (6.55)
J
(I could have written it as E(c : a) but I won’t, for brevity.) For passive linear optics, it can be shown that
U(t) |vac) = |vac) . (6.56)

Then we need to compute U (t) D(c)UT (t). Using Eq. (B.76), we find that

Ut)D(a)U(t) = exp Zaj t)elUt(t) — He.|. (6.57)
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We also know
Ut) = UT(—t), (6.58)

so U (t)éjf] fty =0 T(—t)éjf] (—t) is just the Heisenberg picture of é; with negative time. We can then take
advantage of the Heisenberg-picture result given by Eq. (6.25) to find

U)elUi(t) = Ul (—t)el U (- Z (6.59)

Notice that the matrix V' (¢) obeys VT (t) = exp(iFt) = V(—t), so

Vii(—=t) = V(=) = V()] = Vis (B). (6.60)
Hence
UWelvti) =" vit)e, (6.61)
!
U(t)D(@)U'(t) = exp | D oV (t)e] —He.|. (6.62)

This is still a displacement operator, but now the complex amplitude in front of each ézr becomes

Z V(). (6.63)

Hence
Ut)D(a)UT(t) = D(V(t)a), (6.64)
Ut)|a) = |V(H)a). (6.65)

This is a neat result, because it says that, in the Schrodinger picture, a coherent state remains a coherent state, and
its amplitude o evolves as V' (t)a, just like the equation of motion given by Eq. (6.25) and just like classical optics.
This result is a lot more intuitive than the Heisenberg picture, although it is specific to a coherent state.

Exercise 6.7. Verify Eq. (6.56).

Exercise 6.8. Assume that {G;} are annihilation operators of normal sinusoidal modes with j = (k,s). Let the
amplitude of a coherent state in the (k, s) space at time ¢t = 0 be

aj X 510k,00%,09 (k=) exp(—ik,z1). (6.66)

In other words, the excited mode of the coherent state is initially an optical pulse centered at z = z;. Assume that
g(k.) = 0 for k, < 0. Find U(t) |ox) and show that the excited mode of the coherent state at time ¢ is an optical
pulse centered at z = 21 + ct, as illustrated in Fig. 6.4.

6.5.2. Sudarshan representation. Now we can exploit the simple result for a coherent state to study the
Schrodinger picture of an arbitrary density operator in terms of the Sudarshan representation in Sec. 5.4. Suppose
that the initial state is p, with a Sudarshan representation given by ®(c). Then the Schrodinger-picture density
operator with passive linear optics becomes

() = D)0 (1) = / B(a)0 (1) |o) (| OF (1) ox = / (a) [V (t)a) (V(Ha| i a. (6.67)

If @ is nonnegative, we can again think of this state as a noisy coherent state, the amplitude o as a classical random
variable, and ® () as the probability density of the random variable at initial time. But bear in mind that Eq. (6.67)
works for any ® in general, and we shall see that the Sudarshan representation is quite handy in derivations involving
passive linear optics.
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A coherent state with
this excited mode at time O...

o~ paN . yaN o~ >
) g V M V )\ g P
becomes a coherent state with
this excited mode at time t.
S /\ I\ PN

Ficure 6.4. Schrodinger picture of a coherent state when the excited mode is a pulse.

Exercise 6.9. Show that Eq. (6.67) can also be expressed as

o) = [ 2(VI0)8)18) (8] B, (6.:68)
Hint: you can assume the fact
J
d*’'8 = [[(dRe B))(dIm 8;) = d*/ cx (6.69)
j=1

if 3 = Va and V is a unitary matrix.

6.5.3. Fock representation. For an arbitrary pure state, we can still make some progress if we use the Fock
representation. For a discrete set of modes, the Fock representation of any state is given by Eq. (5.82). The
Schrodinger picture of the state becomes

Z Z |Fock . §) (Fock : 5| U(t) [4) . (6.70)

N=0je{1,..

The N-boson wavefunction can be expressed as

o 1 .
(Fock : j|U(t) |v) = 7 (vac|¢j, ... ¢ U() |¥) . (6.71)
If we insert U (¢)UT(¢) in front of each ¢, » we find
P 1 S A
(Fock : §|U(1) [9) = —r (vacl U0 U1 (06, U(0) U1 (02U (0) .. UT@en U@ ). 672
(vac| &, (1) &, (1) Ein ()

It can be shown that (vac| U () = (vac|. We can also exploit the Heisenberg-picture result given by Eq. (6.25) once
again to find that UT(t)¢,;U(t) = ¢;(t) = X, Viu(t)é, leading to

1
(Fock : | U = Y Vi (). Vi (t)ﬁ (vac|éy, ... ¢ i) (6.73)

Iyl

=| S Vi (t)... Vi (¢) (Fock : 1[1) . (6.74)

Iyl
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Fock : I|1)) is the N-photon wavefunction at ¢ = 0 (unnormalized). We may think of V; ;. ...V, ;. as a Green’s
P y Jili Inly
function G(j,t|l,0), also called a propagator:
(Fock : 5| U(t) [v) = > G(4,/1,0) (Fock : 1)), (6.75)
l

G(3,t|1,0) = Vi, (1) ... Vigin (B). (6.76)

In particular, when there is only one boson (N = 1),
G(],t‘l,()) = ‘/jlll (t)a (677)

so we can call V' the one-particle propagator. For NV bosons in passive linear optics, the total propagator is simply
a product of one-particle propagators.
For example, suppose that the initial wavefunction is a product of one-particle functions:

(Fock : L[y)) & 6(11) ... p(In). (6.78)

We may interpret this as a wavefunction of independent bosons, since the probability density o< |(11) . .. ¢(In)|?
is that of independent random variables. In particular, a coherent state gives such wavefunctions for all N
(Exercise 5.7). Then

(Fock : 51 T(8) [¢) = | S Vity 0000 | - |32 Vi (D600 | - 6.79)
15 In

Each one-particle function ¢(l,,) simply evolves on its own, the wavefunction remains a product of one-particle
functions, and the bosons at any time remain independent from one another.

Passive linear optics in the Fock representation resembles a model of bosons that do not interact with one
another. But it is important that we do not confuse this particle picture with the oscillator picture, where the
oscillators are coupled by passive linear optics.

6.6. Example: lossless beam splitter

A beam splitter is a basic workhorse in passive linear optics (https://en.wikipedia.org/wiki/Beam_s
plitter). It is used typically with two input optical beams aligned carefully so that they meet at the beam splitter
and produce two output optical beams, as depicted in Fig. 6.5.

=

Ficure 6.5. An illustration of a beam splitter.


https://en.wikipedia.org/wiki/Beam_splitter
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6.6.1. Heisenberg picture. Suppose that we measure a pulse mode at time 7" in each of the two output beams.
Let the Heisenberg-picture annihilation operators be a3(7") and a4(7"), respectively. The interaction between all the
EM modes and the matter modes in the beam splitter is in general quite complicated, and the two operators would
depend on all the other modes:

a3(T) = Va1(T)a1(0) + Vaa(T)az(0) + ..., (6.80)
a4(T) = Va1 (T)a1(0) + Via(T)az(0) + ... (6.81)

Instead of deriving the V' matrix from first principles, we cheat a little bit by peeking at classical optics and ask how
we can make our equations of motion consistent with it.

Let a3(7T") and a4(T") be the c-number amplitudes of those output pulse modes in classical optics. For a beam
splitter, they can be expressed in terms of the c-number amplitudes for two input pulse modes, denoted as a1 (0)

and «a(0), like this:
(ZigD B (:’ :’) <228§> (6.82)
\W_J

=S
where 7, 7/ are the transmission coefficients of the beam splitter and r’, v’ are the reflection coefficients (all complex
numbers). This relation is called an input-output relation and the S matrix is called the scattering matrix. There
may be many modes in the problem, but at a certain time 7" and for the output pulse modes we are looking at, the
two output amplitudes a3 4(7") depend on only two input amplitudes a 2(0):

(1) a3(T) = 7a1(0) + ra2(0) means that the output is a superposition of two contributions: the first input
a1(0) multiplied by a transmission coefficient 7, and the second input «2(0) multiplied by a reflection
coeflicient r.

(2) a4(T) = r"a1(0) + 7'a2(0) means that the output is a superposition of the first input o1 (0) multiplied by
a reflection coefficient 7' and the second input c2(0) multiplied by a transmission coefficient 7’.

For our quantum equations to be consistent with the classical ones, they should obey

(| a;(T) [¢) = a;(T). (6.83)
Egs. (6.80) and (6.81) can be made to give the classical Eq. (6.82) if we set
Vai(T) VsoT)\ _o_ (7 7
<V211 (T) ‘/ZLQ(T) - S - 7"/ 7_/ 9 (684)
V3;(T) =0and V;(T) =0 forj =3,4,..., (6.85)

so that a3(7") and a4(T") depend only on @;(0) and G2(0) and not the other a;(0)’s. We obtain

<&3(T)) _g <&1(0))
asy(T)) — “\a2(0) )’
the averages of which agree with the classical Eq. (6.82).

This method seems quick and dirty, so we should double-check that everything remains legal in the quantum
case. Remember that, in the quantum case, the big V' matrix must be unitary. Then Eq. (6.85) holds and we have
only two inputs and two outputs if and only if the scattering matrix S is unitary (see Exercise 6.10). This is called

the lossless assumption. To reassure ourselves, we can double-check that, given a unitary S, the usual commutation
relations

a(0),a(0) =0, |aD).al(0)] = [a@ 0] =1 [am.&d@] =0 68

all hold.

The lossless assumption is an approximation because any optical component in practice is a little lossy, and S
is not exactly unitary. The approximation may be acceptable, however, if the material of the beam splitter has very
low loss (e.g., dielectrics, glasses, crystals) given the spectrum of the pulses, the bulk and the surfaces are very
uniform so that there’s little scattering into other modes, and your alignment of the optical beams is very good, etc.

(6.86)
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There are also stringent requirements on the electric fields of the pulse modes so that the two input modes
couple exactly into two output modes and not more. A detailed study of the requirements would require a deeper
dive into classical optics that we won’t attempt here; it suffices to say that the pulses should have identical pulse
shapes (e.g., identical center frequency wy = cky, identical spectrum g(w/c)), their spectrum should fall on the
transparent frequency band of the beam splitter where there is negligible loss and dispersion, and the pulses arrive
at beam splitter at the right time, at the right spots, and at the correct angles. The timing issue is less of a problem
if we have continuous-wave (CW) laser beams, which can be regarded as sequences of pulses.

At the end of the day, the main reason we make the assumption is simplicity: the input-output relation involves
only two inputs and two outputs. We can worry about more complicated models later.

Exercise 6.10. Assume that V' is unitary.

(1) Prove that Eq. (6.85) holds if and only if the scattering matrix .S given by Eq. (6.84) is unitary.
(2) Prove that the scattering matrix .S given by Eq. (6.84) is unitary if and only if

V;i1(T) = 0 and Vjo(T) = 0 for j # 3 and j # 4. (6.88)

(These exercises imply that, assuming that V' is unitary, .S is unitary if and only if V' looks like this:

0 0
0 0
Va1 Ve O ... O
V=|Va Vi 0 ... 0 (6.89)
0 0
0 0

so az(7T") and a4(T") depend on G1(0) and a2 (0) only (V3;(T") = V4;(T") = 0for j # 1 and j # 2) and also no other
output modes depend on a; (0) and a2(0) (V1 (1) = Vj2(T) = 0for j # 3and j # 4.)

Exercise 6.11. Show that, given a unitary .S, we have
las(T)]* + aa(T)* = |ea (0)]* + [az(0) [ (6.90)
in the classical case and
al(T)as(T) + al(T)aa(T) = al (0)a1(0) + ab(0)az(0) (6.91)

in the quantum case. Eq. (6.91) means that the total photon number is conserved (i.e., a measurement of the total
output photon number at time ¢ is equivalent to a measurement of the total input photon number at time 0).
(This is why we call a unitary S the lossless assumption.)

Exercise 6.12. A beam splitter is called 50-50 if
1

[T = Irl® = 1P = 1P =5, (6.92)
since
jas(T) = las(T) = 2o (0) (6.93)
if a(0) is zero and
as(T) = las(T)P = 2 Jaz(0) (694

if a1 (0) is zero. Find the relations among /7, Zr, Z7', and Zr’ if the scattering matrix is unitary.
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Exercise 6.13. Prove that, if V' is unitary and .S is given by Eq. (6.84) in terms of V31, V39, V41, Vya, then Eq. (6.82)
implies
las(T)* + Jaa(T)* < aa (0)] + |aa (0, (6.95)
so the beam splitter is in general lossy in the context of classical optics.

Exercise 6.14. If the initial state for a lossless beam splitter is a coherent state for mode 1 and 2 and vacuum for all
the other modes in a tensor product like this:

|) = ]a1(0)) ® |a2(0)) ® |vac) @ - - - ® |vac) . (6.96)
What is the state at time 7" in the Schrodinger picture?

6.6.2. Schrodinger picture. Here we would like to derive something like Eq. (6.67) for a lossless beam splitter,
which involves many modes in general, even though only four modes seem to matter in the Heisenberg picture.
From Exercise 6.9, we know that, for passive linear optics,

00t = / a(V1B)|8) (8| '3, WVig) = SV, ©697)
k

where the T dependence of U(T) and V (T') is not explicitly stated for brevity. From Exercise 6.10, we also know
that, for a lossless beam splitter,

Vi1 = Vg =0for k #£ 3 or 4, V3j = Vi; = 0forj # 1or2. (6.98)
Hence
O(VIB) = (V5185 + Vi Ba, Vi Bs + Vi, - ), (6.99)

where the . . . variables all do not depend on (35 or 54 and depend on 51, B2, 85, 56, - - . only. Now if the initial state
is separable like

p=p12® pPaa..J, (6.100)

where pi2 is the initial state for mode 1 and 2 and ps4.. s is the initial state for the rest of the modes, we can write
the initial ®(cx) as

®(a) = Pra(ar, 2)Paa.. . s(3,04,...), (6.101)

where @15 is the Sudarshan representation of p12 and ®3,4 . is that of p34.. ;. Then the Sudarshan representation of
UpUT at time T becomes

(V) = ®1a(V51 83 + Vi1 Ba, Vs s + VisBa) @34 (... ). (6.102)

This is separable as a product of ®12(V3) 83 + Vji b4, Vs P83 + Vi5B4), which is a function of (33, 54) only, and
®34. s(...), which does not depend on (33, 84) and is a function of 31, B2, 35, 56, - . . only. Hence

~

U(pra @ paa..s)UT

= / D12(V5 85 + Vi1 Bay Vs B3 + Vi Ba)®aa (- ) |81, Bas - - ) (Br, By - . .| d*Brd?Bs ... d*By  (6.103)

_ / Bya s(...) B Bo) (B, ol © [ / B1a (Vi Bs + Vi Bus ViBs + ViaBa) |83, Ba) (B, Bal 4285 By

—ps4(T)
® |Bs, Bss - - -) (B5, B, - - .| d>Brd* Bod? Bsd? Bs . . . d* . (6.104)

This expression is a bit hard to read but it means that the state is separable as a tensor product of a density operator
p34(T) for mode 3,4 and a density operator for the other modes, as p34(7") doesn’t depend on 31, B2, B35, B¢, - . . and
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is in some sense factorizable from the f (... )d2 Brd?Bad?B5d?Bs . . . integral. In particular, if we take the partial
trace with respect to mode 1,2,5,6,. . ., we obtain

tr1256... [U(ﬁu ® /334...J)UT] = p34(T). (6.105)

This final state p34(7") for mode 3 and 4 can be rewritten as

paa(T) = [ @1a(ViiB -+ Vi, Vi + Vi) |8, B1) B ol 0284 (6.106)
Vi Va2 (a1 Var Vae\(a1\| 2  » :
<V41 V42> <a2>> <<V41 V42> <0¢2> d“and®ay  (change of variables)
(6.107)
o1 ar\| 2 2 (Va1 V3
() ) (5 (0)| (s=(% )

(6.108)

= /@12(0417042)

= /q>12(041,042)

where the change of variables is given by

a1 = V3183 + Vi1 B, g = V35083 + Vo fu, <a1> =gt (gi) (gf) = s(il) (6.109)

a2

and we have written the coherent state for mode 3 and 4 as

B3, Ba) = <§i>> = !5(§§>> (6.110)

Eq. (6.108) looks like Eq. (6.67), except that it involves the scattering matrix S of the beam splitter and the final
state p34(7") is for mode 3 and 4. For example, if the initial state for mode 1 and 2 is a coherent state

P12 = |ag, az) (ar, azl, (6.111)
then

Doy, afy) = 6%(a) — a1)6%(aly — o), (changed dummy (o, ) in Eq. (6.108) to (o}, b)) (6.112)

p3a(T) = : (6.113)

which is still a coherent state, and its amplitudes are given by the classical input-output relations for the beam
splitter.

Exercise 6.15.

(1) Consider two modes 1 and 2 only. Show that a coherent state

S <a1> > for the two modes, where S is
@2) /12

a unitary matrix, can be expressed as

2 2
‘S(‘“>> =U <O‘1>> . U=exp | —iTY. Y Fpalar |, S=exp(~iFT),  (6.114)
@2/ /12 *2/ /12 it
where U is a unitaryA operator.
(2) Define an operator A as
o o
A= Z Z In,m)sy (N, mlyg, A In,m)y = |n,m)g,, (6.115)

n=0m=0
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i.e., it maps any number state in H; ® Hs to a number state in H3 ® H4 with the same numbers n, m.
Show that it also maps any coherent state for mode 1 and 2 to a coherent state for mode 3 and 4 with the
same amplitudes, i.e.,

A|Bs, Ba)1o = |83, Ba)sy - (6.116)

(3) Show that Aisa unitary operator from H; ® Ha to Hz ® Hy, i.e., AtA = 11 ® 12 and AAT = Ig, ® I4
Show that AU is also a unitary operator from H; ® Ha to Hs ® Ha.
(4) For a lossless beamsplitter, show that we can write

p34(T) = BpraBY, (6.117)

where B = AU is a unitary operator from H; ® Ha to Hs @ Hg, so that ps4(T) for mode 3 and 4 is
related to the initial p;2 for mode 1 and 2 through some unitary operator B.

(Our construction of the unitary operator B = AU is mathematical, aiming to show that a unitary
B exists mathematically to relate any input state to the output state for a beamsplitter with any unitary
scattering matrix S. Deriving B from real physics would be much harder.)



CHAPTER 7

Loss

7.1. Heisenberg picture

The standard way of modeling optical loss in a material is to assume passive linear optics, where some of
the modes are inaccessible to our experimenter. Those inaccessible modes can be matter modes, such as energy
excitations in electrons or vibrations of the crystal, or EM modes, such as scattered light in directions we can’t
collect. For simplicity, let’s consider loss in one optical mode, e.g., one pulse in an optical fiber. Let a1 (0) be the
annihilation operator for a pulse mode at the input end of the fiber and a3(7") be the operator for a pulse mode at
the output end. If we peek at the classical equation

a3(T) = 7a1(0), (7.1)
where 7 is the transmission coefficient with |7|? < 1, and just mindlessly write
a3(T) = Ta(0), (7.2)
then
[as(T), ay(T)] = |7[*[ar (0),a} (0)] = |7 < 1, (7.3)

and we would have committed a cardinal sin in quantum mechanics: violating the commutation relation for an
annihilation operator. Recall that [a3(7), &g (T))] = 1 must hold for any ¢ in the Heisenberg picture é3(7T) = UtazU
for any unitary U;if U is not unitary, all hell breaks loose in quantum mechanics (e.g., probability is not conserved,
Heisenberg uncertainty relations no longer hold.)

We are not so brave to break quantum mechanics in this book, so we correct our model. The minimal model
that works is the two-input-two-output relation given by Eq. (6.86), just like that for a beam splitter, with a unitary
S, as illustrated in Fig. 7.1. Now we have

|as(T) = ra1(0) + ras(0), | (7.4)

including G (0) for an inaccessible input mode. Since S is unitary, SSt = I, meaning that

(T e \(T ™\ _ (10
SS - <7"/ 7_/> <T* 7_/*) - (0 1 . (75)

In particular,

I7]? + |r]? = 1. (7.6)

Most importantly, this relation allows |7|? to go below 1, so we can use it to model loss. With [a;(0), dzr (0)] =dj
for the two input modes, we obtain

(a3(T), a{(T)] = |7 + | = 1, (1.7)

which restores the fundamental commutation relation.
Side note. |7|? must remain below 1 in this model. If you want to model an amplifier by making |7|?> > 1, you’ll
have to go beyond passive linear optics (another topic for another day).

70



7.1. HEISENBERG PICTURE 71

0a(T) &
>
a1 (0) N as(T)
a2(0)
inaccessible

Ficure 7.1. A beam-splitter model for optical loss.

Eq. (7.4) is the simplest example of a quantum dissipation-fluctuation relation: it says that, if there is
dissipation (i.e., loss, with |7|> < 1), we need to include an additional input a2 (0), the mode of which is inaccessible
and acts like a noise source.

Our output now depends on the initial state of the two input modes 1 and 2. Remember that mode 1 is something
we can control, and mode 2 is inaccessible. A common assumption of the initial state is that mode 1 and 2 are
initially independent, i.e., the density operator is given by

p=p1® p2, (7.8)
and ps is a thermal state. The output mean amplitude becomes
tr [dg (T)ﬁ] =T1tr [dl (O)ﬁl] + rtr [&2 (0)/32] (7.9)

We obtain the classical Eq. (7.1) if tr[a2(0)p2] = 0, which is indeed the case for a thermal p.
More interestingly, suppose we measure the quadrature

G3(T) = \2 [ag(T) + &Q(T)} (7.10)
_ \2 [Tal(o) + T*a}(o)} + \2 [mz(o) + r*ag(o)} (7.11)
then it can be shown that the variance is
(Ag3(T)) = |7 (AOF(0)) + [r[* (A03(0)) (7.12)
a 1 . .
01(0) = W [Tal(()) +7 aﬂi(O)}, (7.13)
02(0) = \/51!7’| [r&Q(O) + r*@;@] . (7.14)

where O (0) and O3(0) are quadrature operators of mode 1 and 2, (AO3%(0)) is in terms of p1, and (AO3(0)) is
in terms of po. We see that, in the quantum case, an additional variance <AO%(O)> due to mode 2 must contribute
to the output variance—this is why I said earlier that mode 2 acts like a noise source and why we call Eq. (7.4) a

dissipation-fluctuation relation. For a thermal p with mean number (ng) in particular,
1
(A03(0)) = (n2) + 5. (7.15)

Even if p9 is vacuum ((ng) = 0), this term is still nonzero.
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Exercise 7.1. Verify Eq. (7.12).

Exercise 7.2. An optical pulse passes through two lossy optical components. For the first component, the input-
output relation is

a3(T) = 11a1(0) + r1a2(0), |24 m)? =1, (7.16)
and for the second component, the input-output relation is
a5(T +T') = oa3(T) + r2a6(0), Ima|? + |ro? = 1, (7.17)
where mode 6 is another inaccessible mode. Show that the net input-output relation can be expressed as
as(T +T") = 7a1(0) + rb(0), (7.18)

where 7 and r also satisfy Eq. (7.6) and b(0) is the annihilation operator for a new mode in terms of d;(0) and
ag(0).

(The point of this exercise is to show that Egs. (7.4) and (7.6) can model cascaded losses, so they are quite
general.)

Exercise 7.3. Suppose that p; = |«a) (/| is a coherent state and ps is vacuum.

(1) Find (Ag3(T)).
(2) The signal-to-noise ratio (SNR) of the measurement is defined as

_ {as(1))?
SNR = ——~—, (7.19)
(Ag3(T))
(g3(T)) = tr[q5(T)pa)- (7.20)
Find the SNR in terms of
(01(0)) = tr[O1(0) 1] (7.21)
and call it SNR ).

(3) Suppose now that py is a “squeezed” state with the same initial mean (O1(0)) as that of the coherent state,
but its initial variance of O is given by

(AO2(0)) = g (7.22)

where s < 1 is a squeezing parameter. Find the SNR when |7|2 = 1. Find SNR/ SNR|q), i.e., how much
the SNR is enhanced relative to a coherent state when there is no loss. Find SNR/SNR |, for a given 7|
and s.

(4) Assume a fixed s < 1. If |7 is reduced, does SNR/SNR |, increase or decrease? What is SNR/SNR |,
as |72 — 0?

(5) If s = 0.1, plot SNR/SNR ) as a function of 0 < |72 < 1. Find the minimum |7|? so that SNR/SNR |,y >
2, i.e., find the minimum transmission so that there remains a 3dB enhancement.

(This exercise shows how loss affects the SNR in a simple sensing problem.)

7.2. Schrodinger picture

The way we model loss by passive linear optics is an example of a more general strategy of modeling an open
quantum system that interacts with an environment.

(1) Att = 0, there are some accessible degrees of freedom that we call system A and some inaccessible
degrees of freedom that we call system B or the initial bath. Let o4 be the density operator of system A
and pp be that of system B.

e In the beam-splitter model of loss, system A would be the input mode 1 and system B would be the
input mode 2 (and everything else).

(2) Over time, system A and B may interact. The dynamics is modeled by a unitary operator U.
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(3) Atfinal time 7', again only some degrees of freedom are accessible and some are not. We call the accessible
part at time I’ system C, which may not be the same as system A. We call the inaccessible part at time 1’
system D or the final bath.

e In the beam-splitter model, system C would be the output mode 3. System D would be the output
mode 4 and everything else.

The Schrodinger picture is more popular in open quantum system theory, and the main problem in the Schrodinger
picture is to compute the density operator of the accessible system C at time 7', which is given by

po(T) = trp [U(pa @ pp)0", (7.23)

where trp is the partial trace over the inaccessible system-D Hilbert space (see Sec. B.10.2). Decoherence of a
system, in particular, is modeled this way. Once we have p(7'), we can compute the probability distribution of
any measurement on system C at time 7" using Born’s rule.

Eq. (7.23) is usually difficult to solve, but we can use Sec. 6.6.2, and Eq. (6.108) in particular, for our beam-
splitter model of loss. Att = 0, p4 = p1 is the state of the first input mode, and pp = p2 ® p34...s is the state of
the initial bath. After the beam-splitter interaction, Eq. (6.108) gives the density operator p34(7") for output mode 3
(system C) and output mode 4 (part of system D). We can compute oo (") = p3(T") from ps4(T") simply by tracing

out mode 4:
p3(T) = tra [p3a(T)] = trg / P12(ar, o) S<3;>> <S<Z;> ‘ d*ard*as (7.24)

- /@12(a1,a2)tr4 HS(Z;>> <S<Z;> Hd2a1d2a2. (7.25)

®19(aq, a2), the Sudarshan representation of mode 1 and 2, is the product of the representation ®;(cv;) for mode 1
and @5 () = §2(az) for mode 2, assumed to be in vacuum state here. The partial trace of a coherent state is also
easy, since the coherent state is separable. Let

63 . o1\ TOq + o
(54 =5 az)  \rag+7as) (7.26)
Then the partial trace is simply

trs (|53, Ba) (B3, Ba]) = tra (|83) @ |Ba) (B3] @ (Ba|) = tra (|83) (B3| ® |Ba) (Bal) = |83) (B3] , (7.27)

where 53 = Taq + ras. Hence

p3(T) = /@1(041)52(@2) | + rag) (Tay + ras| d*aid?ay = /<I>1(a1) ITon) (T | day. (7.28)

For example, if the input mode 1 is in a coherent state,
p1 = la) (el @y (1) = 6*(a1 — a), (7.29)

then the state of output mode 3 is simply the coherent state

65(T) = |ra) (o (7.30)

with a reduced amplitude.
‘We can draw two conclusions from this calculation:

(1) A classical state with a nonnegative Sudarshan representation ®;(cv;) will remain a classical state after
loss, since p3(7T") also has a nonnegative Sudarshan representation (Exercise 7.4).
(2) A coherent state will remain a coherent state after loss, even though the amplitude is reduced.

A nonclassical input state, on the other hand, is less robust to loss and become less nonclassical, but it is outside the
scope of this course to study what happens there; you may go through Exercise 7.5 to get a taste of what’s going on.
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Exercise 7.4. Find the Sudarshan representation ®3(a3,T") of p3(7") from Eq. (7.28). Show that, if ®;(ay) > 0 for
all g, then ®3(av3, T') also stays nonnegative for all as3.

Exercise 7.5. (Numerical exercise). Assume that there are only two modes 1 and 2 for simplicity and a unitary
operator given by

2 2
U(T) =exp | =T Fydlay | (7.31)
j=1 k=1

(1) If the Heisenberg equations of motion are given by

ai (T) =T (O) + T&Q(O), dg(T) = T,dl (0) + T’dg(O), (7.32)
find F'T in terms of S = T, T, .
T

(2) Assume initial states p; = |n1) (n1| and py = |0) (0|. Compute the final density matrix (n| p1(T) |m) of
mode 1 in the Schrodinger picture

pi(T) = try |U(pr @ po)UTT]. (7.33)
(3) Compute the entropy of the state given by
= —tr [0 (T) Inpy ()], (7.34)

for various values of n; and |7|?. The operator logarithm In p;(7") can be computed by the matrix
logarithm https://en.wikipedia.org/wiki/Logarithm_of_a_matrix. Observe how the entropy
changes as a function of n; and |7|2.


https://en.wikipedia.org/wiki/Logarithm_of_a_matrix

CHAPTER 8

Measurements

8.1. Simple and generalized measurements

The simplest kind of quantum measurement can be modeled by assuming an orthonormal basis of the Hilbert
space {|e,) : m =1,2,...}, such that the probability of an outcome n € {1,2,...} is given by

P = (en| plen) - (8.1)

The jargons “von Neumann measurements” and “projective measurements” in the literature are all essentially this
simple kind. We’ve already encountered some examples in quantum optics, such as photon counting. If the outcome
is a continuous variable, we use Dirac’s trick to write down a probability density, as reviewed in Appendix D.

The most general model of quantum measurement assumes that we can enlist an ancilla system for help (ancilla
is a fancy word for an aid). The density operator of the system augmented by the ancilla would be p ® pp, and
then we model the measurement on the augmented system using an orthonormal basis {| f,,) } on the larger Hilbert
space:

Pn: <fn|/3®/38|fn> (8'2)

All quantum measurements can be modeled this way.

The variety of quantum measurements allowed by these rules is huge in theory, but in practice we can only
perform some of them in optics. This chapter discusses some basic types of measurements in quantum optics and
how they can be implemented experimentally.

The discussion will be simple and idealistic, even though real devices will have all sorts of technical imperfec-
tions. To model those technical imperfections mathematically, we would have to use a lot more probability theory,
so we won’t go there.

8.2. Photon counting

We use the usual number basis to model ideal photon counting. For one mode, the outcome would have a
probability distribution given by

P, = (n|pn). (8.3)
For J modes, the probability distribution is now a function of .J photon numbers:

Pnl,...,n‘]: (nl,...,nJ\,é]nl,...,nJ). (8.4)

These are ideal assumptions. In current technology, even the best photodetectors, e.g., avalanche photodiodes and
transition-edge detectors, have a lot of technical problems, such as

(1) Poor photon-number resolution: they can’t tell exactly the number of photons, e.g., they can only tell if
it’s zero or nonzero, or they can give only a rough range of the photon numbers, not the precise number.

(2) Inefficiency: only a fraction of the photons can be detected.

(3) Dark counts: Even when there is no photon, there are false-positive counts.

(4) Thermal noise: the electronics in the detector may add thermal noise to the signal. Similar to dark counts.
This is why a lot of photodetectors need to be cooled for optimal performance.

(5) Dead time: After a detection event, certain detectors would take some time to reset before it can detect
photons again.
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Because of these problems, one needs to make a lot of measurements and do a lot of calibration and data
processing in quantum optics experiments, or buy very expensive detectors that have better specs. If the detector is
bad, experimental results can still be consistent with quantum calculations for the expected values, such as tr(np),
since one can take many measurements and compute the sample average to reduce the noise, but we shouldn’t expect
the variance of the experimental outcome or the probability distribution to agree well with Born’s rule, unless the
experiment is amazingly good.

Technical problems notwithstanding, all photodetectors at optical frequencies (infrared, visible, etc.) perform
some version of photon counting, i.e., they measure the optical energy or power. Since energy and power are the
square of the EM fields, they are also called square-law detectors.

Side note. Sometimes people reserve the name “photon counting” for detectors that can have very good photon-
number resolution, but let’s not be pedantic here.

8.3. Homodyne detection

Since we only have square-law detectors in optics, we’d need a more complicated setup if we want to measure
other observables, e.g., the quadratures. A standard approach to measure a quadrature is homodyne detection:
Combine an optical beam with another much stronger beam called the local oscillator, typically a laser beam, using
a beam splitter, and then measure the photon numbers of the two output ports, as depicted in Fig. 8.1.

Side note. “Homo” in the word homodyne means “same” and refers to the fact that, in the limit of infinitely long
pulses (called continuous wave or CW in optics), the local oscillator and the signal have the same frequency
wo = ckg. For the pulses considered here, their electric fields need to match very well for the two-input-two-output
relation to hold, as discussed earlier, not just the center frequency. “Dyne” means “power” in Greek, presumably
it refers to the local oscillator.

photon
an(T) P counting
AN
7
a1(0) ™ as(T)
signal photon
counting
local oscillator

a2(0) ~ g

Ficure 8.1. Homodyne detection using a 50-50 beam splitter, a local oscillator, and photon
counting in the two output modes.

For simplicity, we follow Sec. 6.6 and assume for now that there is just one optical pulse we’d like to measure,
called the signal. Let input 1 be the signal pulse and input 2 be the strong local oscillator. We also assume that the
beam splitter is lossless and 50-50, i.e.,

1
[T = = 1P = 1 = 8.5)

Since the scattering matrix is unitary, ST = STS = I, we also have

™*r +r*r’ =0, *r + "7 = 0. (8.6)



8.3. HOMODYNE DETECTION 77

In the Heisenberg picture, the output photon numbers for the output pulse modes become (omitting the dependence
of the operators on time for brevity)

abag = (7*al + 17} ) (ra + ras) = |rl%afar + rrafas + rraiad + rfalas, 8.7)
alay = (r*&‘i +7a T) (r'ay + T'ag) = ' 2alay + r"*r'alay + ' aral + |7 2alas. (8.8)
For a 50-50 beam splitter, these can be rewritten as
afas = %(&{al + e?alay + e il + afas ), (8.9)
dhay = %(a{al — el ay — e a0 + agag), (8.10)
where
0=Z(t"r) (8.11)
is the phase of the complex number 7*r. Now let’s focus on the observable
O = alaz —alas = ¢’alag + e Pajal, (8.12)

which can be measured by measuring the two output photon numbers and then subtract one from the other. When
the local oscillator is much stronger than the signal, we can model it as classical. In quantum mechanics, we model
a classical degree of freedom by replacing its operators by their means as classical numbers. Here we replace ag by
the complex amplitude a of the local-oscillator pulse. Then

O ~ e Yok + eieag&i. (8.13)

This is now a quadrature operator (see Exercise 4.26), i.e., a Hermitian linear combination of G; and &I. We can
write

— o] (e*” iZe2q, 4 He, ) (8.14)

which shows that, by changing the phase Zay of the local-oscillator amplitude a2, one can measure a different
quadrature. For example, if we set

Lag = —0, (8.15)
then
0 = |as)| (&1 + a{), (8.16)
which is proportional to the q-quadrature operator ¢; = (a1 + @ ) /V/2. If we set
Laz=—0+7, 8.17)
then
~ (8% R R
0= ’;'(al ~al), (8.18)

which is proportional to the p-quadrature operator p; = (a; — al) /(+/2i). With a measurement of O, we can just
divide the outcome by some constant and it’d be equivalent to the usual measurement of a quadrature studied in
Exercise 4.26.

It is remarkable that homodyne detection with photodiodes in practice can be quite close to ideal (> 99%
efficiency, meaning that 99% of the noise variance comes from quantum) [9], unlike photon counting. It has
something to do with the fact that photodiodes work much better at high optical energy, and photon-number
resolution is not really required with homodyne.
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Side note. We have taken the classical approximation of the local oscillator as given and replaced as with g
without justification, but its validity can be studied more carefully by assuming that the local oscillator is in a
coherent state |c2), and then take the limit of |ca| — oo [10, 11]. The probability distribution of the exact O given
by Eq. (8.12) can be shown to approach that of the approximate O given by Eq. (8.13). Exercise 8.2 asks you to
check this approximation for the mean and the variance.

Exercise 8.1. Suppose that the g-quadrature operator §; = (a1 + &I) /+/2 has the diagonal form
[o¢]
ir= [ wlo =) (@ =alds, (8.19)
—00

where 1 |1 = z) = z|q1 = z) and (g1 = x| = 2') = &(x — 2’). Let the diagonal form of the O given by
Eq. (8.16) be

O:/ MO =X (0 = A d), (8.20)

where O[O = \) = A|O = A) and (O = A|O = X) = §(A — ).
(1) Find |O = \) in terms of |q; = ).
(2) Find the probability density of O if the state is

(a) anumber state |n),
(b) a coherent state |v).

Exercise 8.2. Let the exact O given by Eq. (8.12) be O and the approximation given by Eq. (8.13) be O’. Let the
second input mode be a coherent state |2), so that the total state for the two input modes is |¢) ® |az).

(1) Show that the means (O) and (O’) are equal.
(2) Show that the variances are related by

(A0%) = (AO®) + (y] afan [1). (8.21)

(3) If the first input is a coherent state 1)) = |a), show that the difference between the two variances in part
(2) is negligible if

|z > [ (8.22)

8.4. Dual-homodyne detection

What if we want to measure both quadratures of the same pulse mode? One way is to use a beam splitter to
split the signal beam into two, and then measure the two quadratures of the two outputs using two homodyne setups
discussed in Sec. 8.3, as illustrated in Fig. 8.2.

To compute the probability density of this dual-homodyne setup, we again have to bear in mind that there are
always two inputs and two outputs for a beam splitter in the quantum case. Assume that the second input is in
a vacuum state |0). Let’s study what happens when the signal is in a coherent state |«) first, and then use the
Sudarshan trick to generalize the result.

With mode 1 in a coherent state |«) and mode 2 in vacuum |0), the multimode state |a); ® |0),, is also a coherent
state. For simplicity, we’ll assume that the beam splitter has the scattering matrix

1
5= G _11> (8.23)

so it’s lossless and 50-50. At the output, the state in the Schrodinger picture is also a coherent state, but now the
amplitudes for mode 3 and 4 become a/ V2 and « / V2, respectively, i.e., the output state for mode 3 and 4 can be
expressed as

)a/\/§>3® ‘a/\/§> (8.24)

n
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homodyne:

measure py
a4 (T) N

N

7
homodyne:
measure g3

a1(0)
signal

>

a2(0) 110)

FiGure 8.2. Dual-homodyne detection.

Then we perform measurements of §3 = (a3 + d;g) /v/2 and py = (a4 — djl) /(v/2i) via two homodyne detectors.

The probability density becomes

Flala) = [(tas = 2l @ (ps = ) ([o/V2), @ Ja/va) )| (825)
= %exp [—(x —Rea)? - (y —Im a)Q], (8.26)

where I’ve used Egs. (4.7) and (4.8) back in Chapter 4 and I’ve inserted the symbol « into f(x, y|«) to emphasize
that the probability density is conditioned on the amplitude « of the coherent state.

There is actually a more elegant expression of this probability density. Recall that two coherent states |«) and
(8| have the inner product

[(Bla)[* = exp (=18 = af?) = exp [-(Re f — Rea)? — (Im 8 — Im a)?]. (8.27)
This looks like Eq. (8.26) if we take

2

Then Eq. (8.26) can be rewritten in terms of the complex [ as

1
m

f(e,yla) = F(Re B, 1mBla) = —| (Bla) > = — (Bla) (al5). (829)

In other words, instead of taking the two real numbers (z,y) as the outcomes of the dual-homodyne setup, we
can equally well assume that the outcome is one complex number 5 = x + iy, and the probability density has a
simple expression given by Eq. (8.29). It says that we can simply sandwich the density operator |«) («| between
the coherent-state bra (3| and ket |3) and then divide the result by 7.

Now if the initial state p of mode 1 is arbitrary, the probability density for dual-homodyne looks like

f(@,y) = (g3 = 2,ps = y| U(p ® |vac) (vac|)UT |g3 = z,ps = y) (8.30)

where |vac) denotes that all the other modes are in vacuum state, U models the dynamics due to the beam splitter,
and |g3 = z, p4 = y) models the homodyne measurements at the two outputs. The expression looks scary, but if
we write p in terms of the Sudarshan representation p = [ ®(«) o) («| d?c, then we obtain

flz,y) = /‘I’(a) (g3 = z,ps = y| U(|a) (a| @ |vac) (vac|)UT |g3 = 2, ps = y) d®cv. (8.31)
f(z,yla)
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Lo and behold, the underbraced expression is simply the probability density f(x,y|a) for dual-homodyne given an
initial coherent state |a) («r|. Hence

faw) = [ @@)f@yla)ia (8.32)
= % / ®(a) (Bla) (a|B) d®a (using Eq. (8.29)) (8.33)
= 21| [ @)l tal o] 19 = 215160, (834

This is the general expression for the probability density for the dual-homodyne detection—simply sandwich p
between the coherent-state bra (3| and ket |3), and then divide by w. The outcome is a complex number J3; one
homodyne detector gives its real part, and the other homodyne detector gives its imaginary part.

Dual-homodyne detection is an example of generalized measurements. The ancilla in this case is the second
input mode shown in Fig. 8.2. With this generalized measurement, we are able to measure both quadratures of an
optical mode, which would not be possible with one simple homodyne measurement.

There is a price to pay with this generalized measurement, however. Imagine a communication scenario: the
sender prepares a pulse in a coherent state |«) with one complex parameter . The receiver measures it by homodyne
or dual-homodyne, and the receiver’s goal is to estimate the unknown complex parameter « given its measurement
outcomes. First, let’s assume that the receiver uses simple homodyne to measure ¢. Recall from Chapter 4 that a
simple quadrature measurement has the statistics

(¢) = V2Rea, (Ag?) = % (8.35)

This homodyne detection is sensitive to Re o only, not Im «, as the probability density doesn’t depend on Im « at
all. The signal-to-noise ratio would be

(a)°

SNR(§) = 755 = 4(Rea)?. (8.36)
(Ag?)
With homodyne, the receiver could also have chosen to measure another quadrature, say, p, giving
SNR(p) = - >Z = 4(Ima)?, (8.37)
(Ap?)

but the homodyne detector must pick one quadrature to measure, never both in one measurement.
Dual homodyne, on the other hand, is sensitive to both Re a and Im «, since Eq. (8.26) implies that

1
(g3) = Rea, (p1) =Ima, (Ag3) = (Ap) = 5. (8.38)

The variances remain the same, because the outputs 3 and 4 are still in a coherent state, but the means are reduced

by a factor of /2, because of the beam splitter. The SNR’s become

SNR() = 22— 2(Rea? SNR () =22,

(Ad3) ’ (Api)

each of which is a factor of 2 lower than that of a simple homodyne measurement. This reduction in the SNR’s
is the penalty we have to pay for measuring both quadratures in one generalized measurement.

= 2(Im a)?, (8.39)

Exercise 8.3. Prove that [[ 1 (8| p|3) d>8 = 1, i.e., the probability density is normalized.

Exercise 8.4. Compute the probability density of the outcome from dual-homodyne detection if

(1) pis acoherent state |v).
(2) pis a number state |n) (n|.
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Exercise 8.5. If we care about the means and the variances only, it is easier to look at the Heisenberg picture:

. . . | . . . 1, .
43 =Tq +71d2 = %(% + G2), pa=T1'p1+1'py = E(pl — P2). (8.40)

Use these equations to verify Eqs. (8.38) for an initial coherent state |«); ® |0),, for mode 1 and 2.

8.5. A long pulse is a superposition of short pulses

Dual-homodyne is a complicated setup, requiring two homodyne detectors and one more beam splitter. There
is a simpler setup to achieve the same measurement called heterodyne detection, but its principle is a bit more
complicated to explain. It involves one long signal pulse and a sequence of quick measurements of the long
pulse, and we’ll have to go beyond the simple scenario of only two input pulses and two output pulses.

Forget about any beam splitter for now and just think about pulses in free space. Think of a long pulse, the
envelope of which is plotted in the top-left figure of Fig. 8.3. Let f be the annihilation operator for this long-pulse
mode. So far we’ve been studying one measurement of one mode, but what if we have a fast detector that can do
multiple measurements for the duration of this one long pulse?
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Ficure 8.3. Top-left: electric-field envelope of a long pulse. Think of the long pulse as a
superposition of short pulses at different locations (bottom-left). Right column: variation of the
same idea, except that the short pulses are sinc functions. Note that these are envelopes of the
pulses; the electric fields of optical pulses are obtained by multiplying the envelopes by the rapid
oscillations exp(ikoz) (not shown in these plots), or exp(—ickot) = exp(—iwpt) if we adopt the
time-domain formalism in Sec. 6.4.

The way forward is to think of the long pulse as a superposition of )M short pulses, and then we can assume
that the fast detector measures the short pulses one-by-one.

First define a set of M short-pulse modes with annihilation operators {l;l} in the way described in Sec. 3.5.2.
We assume the usual commutation relations

by, bym] = 0, CRISEY S (8.41)
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Each mode is assumed to have a (k, s)-space amplitude given by ;. Suppose that the electric field of each short
pulse (recall Eq. (3.91)) looks like

= Zw;/Qleuj(r) x rect (Z;ZZZ> exp(ikoz). (8.42)
J

This rectangle function for various centers z; is plotted in the bottom-left figure of Fig. 8.3, without the exp(ikoz)
factor. (We don’t have to use the rect function; it’s just clearer to assume something specific here; a variaton of the
same idea is shown on the right column.) In classical optics, if we excite these short-pulse modes with the same
amplitude, say, o./+/M, then we expect to see a long pulse with electric field

Z \ﬁ rexp (ikoz) Zrect( A_ZZZ) (8.43)

The envelope ﬁ > rect [(z — 2;)/Az] is plotted in the top-left figure of Fig. 8.3, confirming that it indeed looks

like a long pulse. In quantum optics, we can construct a coherent state with these properties by assuming the

displacement operator
= exp (Z f — He. ) (8.44)

which excites each short-pulse mode by the same amplitude «v/v/ M. We expect D |vac) to be the coherent state
with a long-pulse mode as its excited mode. To confirm this intuition, we stare at Eq. (8.44) and ask what the
excited-mode annihilation operator is. After staring for a while, you should see that it can be rewritten as

D= exp(afT _ H.c.), F= \/1M Zl: b (8.45)

We can check that f obeys the standard commutation relation | f , f T] = 1, so it is a bona-fide annihilation operator
for the excited mode of the coherent state D |vac). Eq. (8.45) also shows that the amplitude of the excited mode is
o.

We now work backwards to double-check the electric field of the mode defined by f . Write f in terms of the
original {é;} for the sinusoidal modes as

1 Y
le fzz naj = ;(mzl:wﬂ>a]. (8.46)

=W
J
This expression shows that the (k, s)-space amplitude of the excited mode is
~ 1
= ——> Wy (8.47)
VM 5

Recall from Eq. (3.91) that the electric field given a (k, s)-space amplitude Wj for a mode is proportional to
djw 1/ *W,u;(r). For our W;, the electric field becomes

Do Wius(r) o 3wy (f ZW”> WZZ“U Wi (r sz - (848)
J J
This is a sum of the electric fields v;(r) of the short-pulse modes given by Eq. (8.42). It is given by

1 . z— 2
— E v(r) < exp(ikpz) g rect < >, (8.49)
VM 4 l Az
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which is indeed the long pulse we want.
To summarize, a coherent state with a long-pulse mode as its excited mode and « as its amplitude can be
rewritten as

D |vac) = exp (aﬁ — H.c.) |vac) = exp (Z \/LMI;lT - H.c.) |vac) , (8.50)
!

where

(1) f is the annihilation operator of the long-pulse mode.

(2) ais the amplitude of the long-pulse mode.

3) {Bl} are the annihilation operators of the short-pulse modes.
(4) The amplitudes of the short-pulse modes are given by

a/ VM
: . (8.51)

a/ VM
The derivation is a bit long-winded but hopefully this end result makes sense to you. In classical optics, it is obvious

that a long pulse is a superposition of short pulses. In quantum optics, we need to be a bit more specific about the
mode operators and the state. It’s easier if we can assume a coherent state and work with the displacement operator.

Exercise 8.6. Suppose that we transform the M short-pulse modes to M new modes, and the long-pulse mode is
one of the latter, i.e., let

fn = Cuiby, Cni=Cip=-=Cy=— (8.52)
l

where fl is the f defined earlier and C'is a unitary matrix. Use the formalism in Sec. 5.1.2 to rederive Eq. (8.50).

8.6. Heterodyne detection

Now that we know how to rewrite a long-pulse coherent state as a coherent state with M short pulses, it becomes
clear how we can measure both quadratures of a: perform a sequence of homodyne measurements of the short-pulse
modes, with varying local-oscillator phases to measure different quadratures of the different short pulses in the
signal. This is precisely what heterodyne detection does; see Fig. 8.4 for the experimental setup.

photon

AN

N counting

W L

signal

photon

counting
local oscillator

Ficure 8.4. Setup of heterodyne detection. It’s the same as homodyne, except that the local
oscillator has a slightly different center frequency wgy + €2. (The difference in the frequencies is
greatly exaggerated in the figure.)
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We will adopt the time-domain convention for pulses in Sec. 6.4 from now on. In heterodyne detection, the
local oscillator is also a long optical pulse, but now its phase varies across the multiple short-pulse modes. Let

tm =mAt, m=0,...,M—1, (8.53)

be the center positions of the M short pulses in the local oscillator. Suppose that the electric field of the local
oscillator looks like

e ot Z e~ 8¥%m rect <t _A?I) , (8.54)
m

where o is a complex constant, so that the phases of the short-pulse modes vary as Zag — 2t,,. The amplitudes
of the short pulse modes for the local oscillator are then given by

ag(tm) o< o exp(—iQdty,). (8.55)

This time-varying phase is typically imposed by shifting the center frequency of the local oscillator slightly from
wop to wo + 2, so that the electric field would look like

. . t—1tm . 3 t—1tm
e_wot_’QtZrect< AL ) ~e Z‘”OtZe €2t rect< A ) (8.56)

) is usually a radio frequency (MHz to GHz) in practice.

Side note. “Hetero” in the word heterodyne means “different” and refers to the center frequency wg + €) of the
local oscillator being different from wq of the signal.

The short-pulse modes of the local oscillator interfere with the short-pulse modes of the signal one by one at
the beam splitter. The input-output relation should now be expressed as

(6672 2) = (et

o) =5 (e moien) = 5(iin) A,

as
Ut (tm)aa(T)U(

The meaning of this equation is that the input-output relation remains the same for sequences of pulses; a; (¢,,) and
a2(tm,) should now be regarded as the annihilation operators for short-pulse modes in the input arms in the sense
of Sec. 6.4. We measure the photon numbers &g(T + tm)as(T + t,,) and &Z(T + tm)aq(T + t,,) at each t,, and
subtract one from the other to obtain a quadrature operator in terms of a1 (¢,,,). For a signal in the coherent state, we
know the probability density of each outcome z,, from Sec. 8.3. With the outcome suitably scaled, the probability
density is the same as that for a quadrature measurement given by Eq. (4.7). Let the observable being measured be
Eq. (8.14) divided by some constant C|, so that it can be expressed as

Oltm) = & [T+ 1) (T + t10) — (T + )as(T + 1) (8.58)
_ \}i [0y (t) + He], (o =0+ Zag— Oy, (859)

coinciding with the usual definition of a quadrature operator in this book. The phase ¢, depends on the local-
oscillator phase Zag — Qt,, and also the 6 defined by Eq. (8.11), which comes from the optics. Since each
short-pulse mode of the signal has amplitude «r/+/ M, as we derived in Sec. 8.5, the mean of O(t,,) is given by

(O(tm)) = \2 <€_i¢m\/0;\7 + c.c.> - \/E Re (ae—wm). (8.60)

The M outcomes are independent random variables, since the coherent state is a tensor product of coherent states
in terms of the short-pulse modes and we are measuring those modes independently one by one. The probability
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density for all the outcomes is hence

2
1 2 ,
— —i$m
f(z1,...,zpm|a) = iz P E [ZL‘m— MRe (ae )] . (8.61)

m

The outcomes form a noisy time series:
(1) their averages x Re (ae‘i‘bm) oscillate at the frequency ) with respect to discrete time ¢, because
Om = Qo — Qs
(2) there’s also noise because each outcome is an independent Gaussian random variable with variance 1/2.
Let’s come back to the communication scenario discussed in Sec. 8.4. We have M real numbers (z1,...,zy)
coming out of the measurements, but there are, after all, only two real parameters Re o and Im « that we want to
estimate. Is there any way of simplifying the outcomes? A bit of statistics is necessary to derive the best procedure,
but I’ll skip the derivation and just tell you the end result: Given the measurement outcomes (1, ...,x), We

should compute
——\/—E cos ¢ ——\/—E in ¢ (8.62)
= x = Loy, SIN Py .

This procedure is called demodulation. With some benign assumptions (see Exercise 8.7), it can be shown that the
probability density of (y1,y2) is

1
(g1, y2]a) = = exp[—(yl —Rea)? - (y — Im a)Q]. (8.63)

This is exactly the same as Eq. (8.26) from dual-homodyne! At the end of the day, heterodyne together with
demodulation gives exactly the same probability density as that from dual-homodyne for a coherent state, and by
the Sudarshan trick, the probability densities from the two methods are also the same and given by Eq. (8.34) for an
arbitrary signal state.

The theory of heterodyne detection is complicated, but the experimental setup is significantly simpler than dual-
homodyne—it’s the same as one homodyne, except that the local oscillator has a slightly different center frequency.
Shifting the laser frequency is easy with an optical modulator (acousto-optic or electro-optic). In quantum optics,
it’s extremely important to minimize loss in your setup (because of quantum dissipation-fluctuation relations), so
it’s always good to use fewer optical components. Demodulation is trivial with an oscilloscope or a computer.

Another practical advantage of heterodyne is that the outcomes form a time series oscillating at the frequency
Q, typically a radio frequency. The time series is carried as an electric signal in the detector and the electronics
before it is recorded permanently in data storage, so additional electronic noise may still be added to it before it’s
recorded. Electronic noise often falls off like 1/ f in the frequency domain, so a high-frequency electric signal will
suffer less from the 1/ f noise.

One small shortcoming of heterodyne is that, for a signal pulse mode of the same duration, it requires a faster
detector to perform the sequence of quick measurements to capture information about both quadratures. A minimum
of M = 2 is necessary, so the detector is required to be at least twice as fast as the detectors for dual-homodyne.

Exercise 8.7. An alternative way of writing Eq. (8.61) is to assume that each outcome is a random variable given by

_ _ 9 A
X = Xom + Zom, X =1/ Re (ae_’¢m), (8.64)

where {Z,,,} are independent zero-mean Gaussian random variables, each with variance 1/2.
(1) Show that

Xm = \/E[(Re @) co8 ¢, + (Im o) sin ¢y, ). (8.65)
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(2) Assume

mL
Q= VAL (8.66)
where L is a nonzero integer and |L| < M. (This assumption simplifies the math a bit. It means that,
over the duration M At of the long pulse, the phase of the local oscillator covers the range from ¢g to
¢o — Qtyr = ¢o — wL (Fig. 8.5), while |L| < M ensures that |QAt| = 7w|L|/M # m, so that the
local-oscillator phase doesn’t vary in increments of 7 and the measurements don’t end up measuring one
quadrature only.)
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Ficure 8.5. Left: a plot of the local-oscillator phase ¢,,, versus t,, (normalized by the duration of
the short pulse At), assuming ¢g = 0, L. = 2, M = 20. The phase goes from 0 to —27 in this
example. Right: a plot of cos ¢,, and sin ¢,, versus t,,.

Show that
M—-1 M-—1 M-—1
M M
2 _ . 2 _ . _
Z_O cos” O, = - Z_O sin” ¢, = - Z_O(sm Om)(cos Pp) = 0. (8.67)
(3) Show that
Y; = ,/ Z X, COS Prm, Yy = ,/ Z X, Sin (8.68)
are Gaussian random Varlables, with statistics
E(Y1) = Rea, E(Y2) = Im«, V(Y1) =V(Ys) = = COV(Y1,Ys2) =0, (8.69)

so that their probability density is given by Eq. (8.63).

(4) Prove that the outcomes Y7, Ys from the demodulation are sufficient statistics about Re o and Im «
(https://en.wikipedia.org/wiki/Sufficient_statistic). (This means that we haven’t lost any
information about « through the demodulation.)

Side note. A ot of the concepts we use to study heterodyne detection, such as demodulation, noisy time series, and

sufficient statistics, come from electrical engineering and statistics. There is a long history of electrical engineers
and statisticians studying quantum optics, and they have brought those techniques to the field.

Exercise 8.8. We mentioned earlier that dual-homodyne is a generalized measurement and an ancilla is involved.
What is the ancilla in heterodyne detection?


https://en.wikipedia.org/wiki/Sufficient_statistic

CHAPTER 9

Michelson and Mach-Zehnder Interferometers

9.1. Introduction

The detection of gravitational waves by optical interferometers at LIGO (Laser Interferometer Gravitational-
Wave Observatory, https://www.youtube.com/watch?v=z7pKXVkcDzs, https://www.ligo.caltech.e
du/page/ligo-gw-interferometer) is the most useful application of quantum optics, and arguably the only
useful application of quantum optics so far. LIGO scientists have been able to remove so many other noise sources,
such as seismic noise and thermal vibrations of the mirrors, that the quantum shot noise has emerged as a significant
problem. A quantum treatment becomes necessary to study it and deal with it.

The type of interferometer they use is called a Michelson interferometer. Here we will study a simple version

of it. Its physics turns out to be the same as another type called the Mach-Zehnder interferometer so we will study
them together.

laser in i1 (0) a4 (t1)

bright port é— -
\ a7(t3) a5(t2) - (t) /
3\t1

as(ts) N 1az(0)
dark port az(0)

Ficure 9.1. Left: A Michelson interterometer. Right: A Mach-Zehnder interferometer.

Figure 9.1 shows the two types of interferometers. The input-output relations are the same for both, even though
the experimental setups differ. We will study them using the Heisenberg picture, since everything consists of
passive linear optics and we usually care about the expected values and variances of the outputs only, both of which
are pretty easy to compute with the Heisenberg picture.

9.2. Input-output relations

Assume that there are two pulse modes going into the first beam splitter and their annihilation operators are a1 (0)
and as(0), respectively. As we learned in Chapter 6, if the beam splitter is lossless, we can write the input-output

relation as
<Zi§§3> - S@Eg;) ©.1)
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where S is the scattering matrix.

The two output pulses then go their separate ways in the two arms of the interferometer. The important feature
of an interferometer is that the two pulses may experience two different phase shifts in the two arms. For example,
the arm lengths may be different, or there may be phase modulators in the two arms. In a gravitational-wave detector,
a gravitational wave acts as a classical force that moves the mirrors in the Michelson interferometer, so that the arm
lengths differ slightly, on the order of 1019 m.

First, let us assume that there is no phase shift in either arm, the arm lengths are identical and given by L. Let

to —t; = L/c (9.2)

be the time it takes for the pulses to propagate through the arms. Let a5(t2) be the annihilation operator for the
pulse mode at the end of the first arm, and Gg(t2) be the annihilation operator for the pulse mode at the end of the
second arm. From Sec. 6.3, we learned that the input-output relation for pulse propagation looks like

A~ A~

flasta) = f(zr — eta — t1),t1) = f(z1 — L, t1) (9.3)
for a propagation distance of L = c(tz — ¢1). If we assume that f(z — L,t1) is ag(t1) at the entrance of the first
arm and f(z;, t2) is as(t2) at the exit of the first arm, then we’d have

as(te) = as(ty). 9.4)
Similarly, in the second arm, we’d have
ag(t2) = aa(t1). 9.5

There are mirrors in the arms in practice and the pulses don’t travel in only one direction, but it turns out that the
relations above still hold as long as we treat L as the total distance each pulse has to propagate from the entrance to
the exit.

Suppose now that there is a change AL to the length of the first arm. Let’s assume that input operator

as(t1) = f(z — L,t1) (9.6)
is the same as before, but the output operator, because of the length change, should be set as
a5(tz) = f(z + ALy, 1), 9.7)

so that the difference between the two positions is (z; + ALy) — (2 — L) = L + ALq, which is the new length of
the arm. When AL is much shorter than the length of the pulse, it turns out that the input-output relation can be
approximated as

i5(t) ~ ORI f( 2 1y) = 0B ga(ty). 9.8)

This phase shift due to length change is a well known result in classical optics, but in case you are not familiar with
it, Sec. 9.2.1 offers a derivation using our formalism. By the same argument, if there is a change A L5 to the length
of the second arm, we have

ag(te) ~ e*0Al2q, (1)), (9.9)

In matrix form,

as(ta)\ _ (et 0\ [as(t1) — —
(sae) = (0 o) (o) 010

where ¢ and ¢ are the phase shifts in the first and second arms, respectively.
Finally, the pulses go through a beam splitter again. Assume that the second beam splitter has a scattering

matrix .S, such that
ar(ts)\ _ afas(t2)
<5L8(t3)> B S(&G(tg)) (9.11)
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Putting Egs. (9.1), (9.10) and (9.11) together, the final result is
d7(t3) & eid)l 0 &1 (0)
(dS(t:%)) N S( 0 i) \ax0) ) ©-12)

9.2.1. Side note: Derivation of Eq. (9.8). Recall from Sec. 6.3 that f (z1,0) for a pulse mode depends on z;
through the phase exp(—ik.z;) in the (k, s)-space amplitude:

ky — ko

f(21,0) = Z Whaj, Wj; o< rect <

> exp(—ik,zp). (9.13)
J

If z; is displaced to z; + AL, we have a new (k, s)-space amplitude given by

A ~ ) ky —k , .
f(zi+AL,0) = Z W;‘ldj, Wji o< rect < - 0> exp[—ik;(z + AL)] = Wjexp(—ik,AL).  (9.14)
J

Now we make the assumption

019

Recall that the pulse width is o< 1/k, so this assumption means that the displacement AL is much smaller than the
pulse width. The function rect[(k, — ko)/k] implies that we care about k, € [ko — K/2, ko + /2] only. Write

exp(—ik,AL) = exp(—ikoAL) exp[—i(k, — ko)AL], (9.16)

and notice that the phase (k. — ko)AL in the second exponential changes from —xkAL/2 to kAL/2. When
RAL < 1, |(k, — ko)AL| < kAL/2 is close to zero for the whole range of k., so exp[—i(k, — ko)AL] ~ 1, and
we can assume

rect < - 0> exp(—ik,AL) = rect < - O> exp(—ikoAL). 9.17)

In other words, the rectangle function rect[(k, — k¢)/k] is so sharp around k, = ko and exp(—ik,AL) varies so
slowly that the rectangle behaves like a Dirac delta function and we can assume k, = kg in the exponential; see
Fig. 9.2 for an illustration. For example, if a pulse is around 1 us long in time, then it’d be around 27 /x = 300 m
long in space. The displacement AL, on the other hand, is typically much shorter than the wavelength, which is
around 1 pm usually, so our approximation is excellent.

rect(kz—gko)

N

TV
N

exp(—ik,AL)

Ficure 9.2. If kAL < 1, then the rectangle function is so sharp relative to exp(—ik,AL) that the
latter can be approximated as exp(—ikgAL).
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Putting this approximation in Eq. (9.14), we obtain
W ~ W exp(—ikoAL), (9.18)
fla+ AL0) & > Wekotla; = AL f(z,0). (9.19)
J
Now we apply this approximation on Egs. (9.6) and (9.7) to obtain
d5(t2) = f(zl + ALl, tg) ~ eikDAL1 f(zl, tQ) = eikoALl f(zl L tl) = elkoALl (tl) (9.20)

As before, we don’t have to use the rectangle function; any function that has a center at kg and a width of x can
work.

9.3. Output dependence on phase shift

To be concrete, let’s assume

L /71 1 - 1 /1 -1

The input-output relation becomes
—¢2
) isin(®

(d7(t3)> — ¢i¢ iCSOii((d) 2¢2) COS(Qs 5¢2>

a7(t3) = €%, (0), as(t3) = €%y 0), (9.23)

meaning that the first input goes to the first output, and the second input goes to the second output.

Now assume that a laser beam in a coherent state |a)) goes into the first input and nothing (i.e., vacuum state
|0)) goes into the second input. If ¢; = ¢9, the laser beam will come out of the first output, and nothing (vacuum)
comes out of the second output. This is why the first input and output (with operators a;(0) and a7(t3)) are called
the bright ports, while the second input and output (with operators a2 (0) and ag(t3)) are called the dark ports. To
put it another way, the laser beam is split evenly into the two arms, and when the two beams come back to a beam
splitter, they constructively interfere at the bright output port, and destructively interfere at the dark output port.

@1 # @2 is, of course, the interesting case. We have

ar(ts) = €' [al(o) cos<¢1 ; ¢2> +ias(0) sin(¢1 5 ¢2)], (9.24)

&8(t3):eiq§{id1(0)sin<¢l ¢2> Q(O)Cos<¢1 (’52)] (9.25)

Notice that the dark port now has a nonzero mean field given by
(as(ts)) = i sin<¢1 ; 02 > )

Because of the relative phase shift in the two arms, there is incomplete destructive interference at the dark port,
and some light leaks out. By measuring the dark port, one can estimate the relative phase shift ¢; — ¢o. This is the
basic principle of optical interferometry for phase estimation.

The relative phase shift is typically miniscule, so we can assume

P11 — o] < 1, (9.27)

which allows us to make the first-order Taylor approximation

co (¢1 5 ¢2> ~ 1, sin<¢l _¢2> P2 9.28)

-

‘ [\

(61 + ¢2). 9.22)

ﬁ
ﬁ
V)
N——
N
Q> >
[ SR
N TN
oS O
S— N
N—
-
Il
N =

If g1 = ¢o,

(9.26)

2 2
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If we also make the classical approximation a;(0) =~ « for the first input, we obtain

ar(ts) ~ €% [a + i&2(0)¢1 5 d’?] , (9.29)
ag(ts) ~ €' [za¢1 g o2, @(0)] . (9.30)

Notice that the mean outputs are given by
(ar(ts)) = ea, (as(ts)) ~ €%ia 2 5 ¢2 9.31)

so the bright port isn’t sensitive to the relative phase shift in the first order and it doesn’t hurt if we don’t measure
it. Eq. (9.30) for the dark-port output, on the other hand, is the key result of this chapter. We should interpret it as a
quantum dissipation-fluctuation relation and a2 (0) as a quantum noise term. This dependence on a2 (0) shows
that the noise ultimately comes from the dark input port, as first discovered by Caves [12].

Beware that we’ve ignored any loss in the input-output relation. A more careful analysis including loss can be
performed using the model in Chapter 7. There will be an attenuation of the signal as well as additional noise terms.

Exercise 9.1. Verify Eq. (9.22).

Exercise 9.2.

(1) Show that Eq. (9.30) obeys [as(t3), &;(t:;)] = 1. (Despite all the approximations, Eq. (9.30) remains a
legal Heisenberg equation of motion.)
(2) Without the approximations, we should write

ag(ts) = €' [z sm<¢’1 5 ¢2) 1(0) + cos<¢l g ¢2>a2(0)]. (9.32)

(a) Show that [as(tg),ag(tg)} ~1

(b) Given the Oin Eq. (9.33), find its variance if the first input is a coherent state and the second input is
a vacuum state. .
(c) If |1 — 2| < 1, show that the variance of O is determined mostly by the second input.

Exercise 9.3. Another use of a Mach-Zehnder interferometer is as an optical switch. Suppose that ¢; and ¢- can
be controlled by optical phase modulators in the two arms. Find the minimum |¢; — ¢2| such that the laser beam
comes out completely in the second output, rather than the first output.

9.4. Homodyne detection

Suppose that we measure the dark port by homodyne detection, which measures the observable

A 1 —i0 ~
o= \/5[ ag(tg)JrH.C.}, (9.33)

where 6 is the local-oscillator phase. Given Eq. (9.30), the mean of the output becomes

L[ 045 01— b2 1 —i0 i
0) = — |e ?e®in +cc.| = —=(¢1 — ¢o) Re(e ?eia). 9.34
0= 7 . 561 = ) Re( ) ©0.34)
To maximize the sensitivity of the mean to ¢; — ¢2, we should set the local-oscillator phase ¢ such that
| Re(e™%e?ic)| is maximized. This can be accomplished if

0=¢+ g + Za+ 2mm, m is any integer. (9.35)
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Then
_ lof

V2

On the other hand, Eq. (9.30) shows that the variance of O is equal to the variance of a quadrature of a5(0). Use
Eq. (9.30) to write

Re(e*wei‘z’ia) = o], (0) (1 — @2). (9.36)

A . . 1 a7
0= ‘\%(9251 — ¢2) + Oq, 02 = V2 [e_wewdz(o) +Hec.|. ©.37)
Then
(AO?) = (AO3) = % (9.38)

because the dark-port input is in a vacuum state, which has a variance equal to 1/2 for a quadrature operator O, for
any 6 (see Exercise 4.26). This variance is called the shot-noise limit in interferometry. The SNR becomes

2

We can increase the SNR if we increase the average photon number |«|? of the laser in each pulse mode, but there
would be other issues when the laser power is too high. For example, the mirrors are not perfect in practice and
may absorb a tiny fraction of the light. When the laser power is too high, the absorbed energy can turn into random
mechanical fluctuations on the mirror surface.

LIGO has the problem that they cannot increase the laser power any higher without running into those issues.
The solution, first conceived by Caves in 1981 [12] and eventually implemented in LIGO in the 2010s, is to inject
into the dark port a different quantum state called a squeezed state, which we will study in Chapter 10.

Side note. In practice, the relative phase shift ¢1 — ¢o varies in time, so one should perform a sequence of
measurements to measure the phase shift as a function of time. The properties of the detectors determine the pulse
modes being measured, and the rate R of the measurements is related to the duration At between two pulse modes
via R = 1/At, which is in the range of MHz—-GHz in practice. The average photon number |c|? of the laser is
related to the average power P through the relation

1
—PAt 4
FMOP , (9.40)

where PAt is the average energy in each pulse mode and the 1/hwy factor converts the energy to the average
photon number. The input-output relation can now be expressed in terms of the discrete time t,, = mAt as
o]

O(tm) /311 (tm) = Ga(tm)] + O (tm), (9.41)

where Og(tm) is the quadrature operator of an input pulse mode at t,, in the sense of Sec. 6.4. The outputs
(xo,x1,...,2pr) hence form a noisy time series. A standard approach to noise analysis is to perform a Fourier
transform of the time series and look at the spectrum in the frequency domain. [ won’t go into details as it'd require
too much background knowledge for an undergraduate course; this is simply a disclaimer that the analysis in this
book is elementary, and one must be proficient with more advanced time-series and frequency-domain analysis to
study statistics seriously for real interferometers.

af? =

Exercise 9.4. Prove that Eq. (9.35) maximizes Re(e~?¢*iq).

Exercise 9.5. Assume Eq. (9.30) and the vacuum state for the dark-port input. Find the probability distribution of
KPR

ag (tg)ag (td)

Exercise 9.6. Let O be the outcome from a von Neumann measurement of O given by Egs. (9.37). Assume that the
dark-port input is a vacuum state.
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(1) Show that O is a Gaussian random variable. Find its mean and its variance.

(2) Let
Y =mO+b (9.42)
be an unbiased estimator of ¢; — ¢2, meaning that its expected value E(Y") is
E(Y) = ¢1 — ¢2. (9.43)

Find the real constants m and b.
(3) The SNR is more properly defined in terms of an unbiased estimator as
[E(Y)]?
v(y) -
where V(Y') is the variance of Y. Show that it agrees with Eq. (9.39).

(4) Repeat the above exercises if the dark-port input is a coherent state with amplitude 3. Does the SNR
improve?

SNR = (9.44)

Exercise 9.7. Suppose that the relative arm-length change |AL; — ALs|is 107!? m. Assume a wavelength of 1 ym
for the input laser beam and At = 1 ms (millisecond). Find the average optical power needed to achieve an SNR
of 1.

Exercise 9.8. Assume a classical single-mode state
p= / () |a) (o] d*a, (9.45)

where the Sudarshan representation ® is a nonnegative probability density. Prove that the variance <AO2> of a
quadrature operator

) 1 .
0=—=(e"a+He.) 9.46
NG (9.46)
cannot go below 1/2.

(This exercise shows that all classical states must obey the shot-noise limit for the variance of a quadrature.)



CHAPTER 10
Squeezing

We learned in Chapter 9 that, to overcome the shot-noise limit in interferometry, we need to lower the variance
of a quadrature below 1/2. Exercise 9.8 shows that such a sub-shot-noise variance is impossible for classical states
(those with a nonnegative Sudarshan representation). This chapter shows how a nonclassical state called a squeezed
state can achieve this goal. For simplicity, we focus on one mode, and we study the Heisenberg picture first.

10.1. Heisenberg picture

Assume the Hamiltonian

= g(ié’éﬁ? - ig*aﬁ) - %(5&” - Hc) (10.1)

where ¢ is a complex number. Notice that it contains a!? and a2 terms, so it is no longer the passive linear optics we
studied in Chapter 6. Physically, this Hamiltonian can occur in some nonlinear optical material, but we will defer a
study of its physical origin until Sec. 10.2. Let’s look at the Heisenberg equation of motion for a:

da(t)  ir, o I N DO e
- = —ﬁ[a(t),H} = 20" [a, H}U(t) = eal(1). (10.2)
We can solve it if we also consider the adjoint
dat(t)
=¢&*a 10.
gt £*a(t), (10.3)
so that
d*a(t) daf(t) 5.
- =& = lePa). (104)
We know the solution to this differential equation is
a(t) = Cexp(|€|t) + D exp(—[¢|t). (10.5)
Matching the initial conditions
i(0)=C+D D] gat(0) = j€(C - D), (10.6)
dt |,
we find
., 1. £, A L £ .
C = =la(0 —I—aTO}, D—[aO—aTO}, (10.7)
3|20+ a0 3|20 - a0
SO
a(t) = a(0) cosh(|€|t) + é’&T(O) sinh([¢]¢), (10.8)
cosh X = %[exp(X) +exp(—X)], sinhX = %[exp(X) — exp(—X)]. (10.9)

Since cosh and sinh grow rapidly for increasing ¢ (and exponentially for €|t > 1; see Fig. 10.1 for plots), the
average amplitude (G(t)) (under the right initial conditions) can grow as the pulse propagates inside the material.

94
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This suggests that the process can amplify the light, and indeed it turns out to happen in a device called an
parametric amplifier (OPA).

0 0.5 1 1.5 2

Ficure 10.1. Plots of hyperbolic functions. eX /2 in-between the two graphs is for comparison.

95

optical

For our purpose of reducing the shot noise, a more illuminating way of writing the solution is to define two

quadrature operators as

Q(t) = \;5 [e_id)&(t) - ewdT(t)} ,
6= 3Lt
P(t) = \/152 [e%a(r) — eal1)],

so that

Q(t) = Q0)ell,
P(t) = P(0)e” €,

One quadrature grows exponentially, and the other quadrature decays exponentially. The variances become
(AQA(1)) = (AQ%(0)) €,
(AP?(t)) = (AP%(0)) e 2L,

(10.10)

(10.11)

(10.12)

(10.13)

(10.14)

(10.15)

(10.16)

Equation (10.16), in particular, is precisely what we want for interferometry. If a pulse in a vacuum state goes into
a nonlinear material with the Hamiltonian given by Eq. (10.1), then the variance of P when the pulse comes out

would be reduced below the shot-noise limit (A P?(0)) = 1/2. This procedure is called optical squeezing.

On the

other hand, (AQ?(t)) for the other quadrature would grow, and this variance growth is called anti-squeezing. The
quadrature to be squeezed can be chosen by picking the right phase for the £ parameter in the Hamiltonian through

Eq. (10.11).

Side note. For a historical account of the application of optical squeezing to gravitational-wave detectors, see

Ref. [9].
Exercise 10.1. Verify Egs. (10.2), (10.13), and (10.14).
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Exercise 10.2. Check that Eq. (10.8) obeys the commutation relation [a(t), ' ()] = 1.

Exercise 10.3. Find [Q(t), P(t)] from Egs. (10.13) and (10.14). Show that Eqgs. (10.15) and (10.16) still obey the
Heisenberg uncertainty relation as long as (AQ?(0)) and (AP?(0)) obey the relation initially.

Exercise 10.4. Compute the average output photon number (af(¢)a(t)) if the initial state is vacuum.

(Because of this nonzero photon number, the output light is sometimes called spontaneous parametric down
conversion (SPDC) or parametric fluorescence. People used to think of it as just amplified spontaneous emission
from an amplifier, before realizing in the 1970s that it also leads to squeezing of a quadrature [13, 14].)

Exercise 10.5. If the initial state is vacuum, show that the output state in the Schrodinger picture [¢(t)) =
exp(—%ﬁt) |0) = >, ¥n(t) |n) contains only number states with even n, i.e., ¢, (t) = 0 if n is odd.

Exercise 10.6. Let <AP2(O)> = 1/2. Suppose that, after squeezing, the optical mode experiences loss according
to Chapter 7, so that the annihilation operator of the optical mode to be measured is given by

as(T) = ra(t) + rag, (10.17)
where a(t) is given by Eq. (10.8) and |7|? + |r|? = 1. Assume that 7 is real and the bath (the inaccessible mode 2
in Chapter 7) is in the vacuum state.
(1) Find the variance <AP32> if one measures the squeezed quadrature

Py = [ ~i95(T) — H.c.] 10.18
T5i 3(T) ( )
after the loss.
(2) The squeezing level in decibel (dB) is defined as

AP?
R = —10logy, <A1<32>Shm>m = —10logyg (2(AP5)). (10.19)
If |7]? = 1, find R as a function of |¢|t. If |7]? < 1, find an upper bound on R for any squeezing in terms

of |72

(This exercise shows that loss reduces and limits the amount of squeezing.)

10.2. Optical parametric amplification (OPA)

The Hamiltonian given by Eq. (10.1) is what we need to squeeze a quadrature, but to learn how we can implement
it in practice, first we have to discuss a little bit of nonlinear optics here.

10.2.1. Origin of nonlinearity. To model passive linear optics, Chapter 6 assumes that the matter modes are
harmonic oscillators coupled to the EM modes, while Exercise 6.2 says that the resulting normal modes are hybrid
EM-matter modes called polaritons. Optical nonlinearity comes from the fact that, if we have some special material,
e.g., lithium niobate (LiNbOs3) or potassium titanyl phosphate (KTP), and the mode amplitudes are strong, e.g.,
when strong laser beams are used, the matter modes no longer behave as harmonic oscillators exactly and are more
accurately modeled as anharmonic oscillators.

To correct for the anharmonicity, we add to the Hamiltonian a term f(f)) that is cubic with respect to the
matter-mode operators {Ej}, ie.,

H= hz cter + f(b), (10.20)
= Z C'jimbjbibm + Dijimblbibm + He., (10.21)
Jlm

where {Cji,,} and {Dj;,, } are constants, the specific values of which are unimportant to our discussion. (We
could add higher-than-cubic terms as well, but it’s sufficient to stick with cubic here to model an OPA.) Rewrite
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the Hamiltonian in terms of the polariton-mode operators {ci]} as per Exercise 6.2 by assuming ¢; = ), lecil.

Then {b;} can be expressed as linear functions of {d;}, and f(b) would become cubic with respect to {d;}, i.e.,
the Hamiltonian would look like

H="hY " wjdld;+g(d), (10.22)
J

g(d) =" Clydididm + Dy, didydy, + He., (10.23)
7, lm

where g(d) is cubic with respect to the d operators and {C%,n} and {D7, } are some other constants. In other
words, the polariton modes no longer behave exactly as harmonic oscillators; they become anharmonic because
they are partly matter modes.

For the sake of discussion, suppose that there are only two polariton modes: the first mode has a natural
frequency w; = w and the second mode has a natural frequency we = 2w that is twice the frequency of the first

N

mode (called second harmonic). The cubic term g(d) becomes

g(d) = Oy d3 + Cfypdidy + - - + + Dby dydi + Hec.. (10.24)
Now go to the interaction picture, assuming
Heasy = 1Y wydldj, i = g(d). (10.25)

J

Then we can replace ch by a?j exp(—iw;t) in g(d) to compute the interaction-picture Hamiltonian Teasy ().
Eq. (10.24) becomes

Reasy () = Cl11die™ 4 O yd3dae™ ! 4 .. + Dlydbd? + Hec.. (10.26)

Of all the terms in g(&), notice that the last term o< dzd% and its Hermitian conjugate o dgd? in Eq. (10.26)
are special—they stay constant in time while everything else oscillates at multiples of w. In the rotating-wave
approximation (see Sec. D.5), we throw away all the terms in the Hamiltonian that oscillate quickly in time, because
they average to zero over time and their net effect is negligible. We are left with

Aeasy (1) & Dby dbd? + Hee.. (10.27)

If we assume that the second mode has a strong amplitude and can be approximated as classical, then we can replace
ds by the complex amplitude ca, and we are left with

fleasy (t) ~ Diyyqa3d; + Hee, (10.28)

which explains the physical origin of the a2 and a2 terms in Eq. (10.1).
It’s helpful to think about what a Hamiltonian given by Eq. (10.27) does to a state for a tiny time step:

exp <;ﬁeasym> ) ~ (f - ;ﬁeaSyAt> ) . (10.29)

The term o cZQ cﬂ? in 7)easy cOnverts one second-harmonic polariton at 2w to two polaritons at w, while the term d;d%
converts two polaritons at w to one second-harmonic polariton at 2w.

When light goes from free space into a crystal, the photons are converted to polaritons as they enter and polaritons
are converted back to photons as they leave. The net effect of the crystal is to convert one second-harmonic photon
to two lower-frequency photons (down conversion) or convert two photons into a second-harmonic photon (second-
harmonic generation). The efficiency of each process depends on the experimental setup; please consult nonlinear
optics textbooks, such as Refs. [15, 16, 17], for further details.

In practice, it’d be too tedious to go any further with this quantum approach. There are many other ways of
deriving a quantum model of OPA and there’s a lot more physics in OPA and nonlinear optics in general, but the
most common approach, similar to how we dealt with passive linear optics in Chapter 6, is this:

(1) Derive the classical equations of motion using classical optics.
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(2) Replace the c-number amplitudes by operators of some modes.

(3) Guess a Hermitian Hamiltonian such that the quantum equations of motion can be shown to arise from the
Heisenberg picture. The Hermitian Hamiltonian ensures that we don’t violate any fundamental principle
of quantum mechanics.

(4) If we can’t find a Hermitian Hamiltonian or something is wrong with the quantum equations of motion
(e.g., it doesn’t preserve the commutation relations), we’ll have to fix it somehow; Chapter 7 is an example
regarding loss.

10.2.2. Nonlinear optics. We now consult classical nonlinear optics to see how an OPA works in practice.
Recall the usual model of EM fields in matter reviewed in Appendix F. When the polarization field P(r,t) is a
function of the electric field E(r, t), the matter is called a dielectric. In most dielectrics we use in optics (crystals,
glasses, plastics, semiconductors, etc.), the polarization field P(r,t) at each position 7 reacts only to the electric
field E(r,t) at the same position 7 (we call this a local response). The time-domain behavior is slightly more
complicated, but for our purpose in this section we can also assume that P(r,t) at each time reacts to the electric
field at the same time ¢ (we call this an instantaneous response). The precise dependence of P on E may still be
complicated, but it is often sufficient to consider the Taylor expansion

Pitrt)=co . XWE(rt)+e Y xinEilr ) En(rt)+..., j=2y.z (10.30)

l=z,y,z Im

(1) (2)
P, P,

and keep the first few orders. y(1) and x(?) are called optical susceptibility tensors: y(!) is a tensor that maps a
vector to a vector, while x(?) is a higher-order tensor that maps two vectors to one vector. The nice thing about this
expression is that we no longer need to care about the matter degrees of freedom, as everything depends only on the
electric field, and the role of the matter is modeled simply by the susceptibility tensors x(), x(2), etc., that one can
measure experimentally. For reasons that come from solid-state physics, x?) is nonzero only for special crystals,
such as lithium niobate (LiNbQO3) and potassium titanyl phosphate (KTP).

It can be shown that this classical picture is consistent with a quantum approach if we add a new term to the
EM Hamiltonian [18]:

L 1 PRy
H = Hpm + € /// 5 STV E( Z XD B (r)Bi(r) Ep(r) + ... | dPr, (10.31)
75l

jlm

where E is expressed in terms of annihilation {d,} and creation operators {d}} just as before.

Unlike the discussion in Sec. 10.2.1 based on the true physical origin of nonlinearity, Eq. (10.31) is derived by
peeking at classical optics and guessing a Hamiltonian that is consistent with it [18]. To my knowledge, no one has
bothered to explicitly derive Eq. (10.31) from first principles, although we can see that both approaches produce the
same form of Hamiltonian, with quadratic and cubic terms with respect to the annihilation and creation operators.

If we keep only the (1) term, the model is called a linear dielectric. We need the x(?) term as well to model

an OPA. Suppose
2 2 €0 1) £ -
Heasy = Hem + ) ///ng-l)Ej(T)El(T)d?”l’, (10.32)

i = 260///2 o B (1) Ey(r) B (r)dPr (10.33)

Jlm

Then we can regard ﬁeasy as the simple Hamiltonian for the polaritons discussed in Chapter 6. We know from
classical optics that the polaritons in a crystal are also sinusoidal plane waves, although the frequency w(k, s) and
the polarization é(k, s) of each mode is a bit different from the free-space case.

Let’s go to the interaction picture. 7jeasy (t) would become a linear combination of many cubic terms with respect

to {a;} and { &;r-}, although many of them can be thrown away through the rotating-wave approximation. More terms
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can be thrown away if they turn out to be negligible after the [[] (... )d3r integral is performed. To understand how,
recall that the electric field is a linear combination of exp(%ik - r) terms for the sinusoidal plane-wave modes. If

we expand Xg?r)nE j (r)E; () E,(r), we find a lot of terms that oscillate in space, and they would become relatively
small after the integration, while terms that stay constant in space become relatively large. For example, consider one
“fundamental” mode with frequency w and polarization €; = y and one “second-harmonic” mode with frequency
2w and polarization e2 = 2. Assume that both propagate in the & direction, as depicted in Fig. 10.2. The term in

Tleasy (t) that is relevant to the two modes looks like

/// X2 asal” expli(ks — 2k1)a]dr + He., (10.34)

where k is the wavenumber of the fundamental mode and ks is the wavenumber of the second-harmonic mode.
The integration along the length L of the crystal would yield
/L/2 L, ko — 2k = 0,
expli(ka — 2k1)x]dx = < sin[(ky — 2k1)L/2] (10.35)
—L/2 by —2k1)/2 ko — 2k1 # 0.

If ko — 2k; = 0, then we say that the phase-matching condition is satisfied and the integral would grow with L,
but if k3 — 2k # 0, then the integral does not grow with L and is inversely proportional to the mismatch ko — 2k;.

Pump laser beam

at 2wy >
>
Signal at
wo x® crystal

Ficure 10.2. An optical parametric amplifier. (The pump beam and the signal beam are actually
overlapping optical beams in practice, and a dichroic mirror (https://www.rp-photonics.com
/dichroic_mirrors.html) is used to combine or separate the two beams.)

Side note. I have assumed a Cartesian coordinate system that is aligned with the principal axes of a KTP crystal, the
most commonly used crystal in optical squeezing. Xé?;)z happens to be nonzero in a KTP crystal, so the propagation

direction is chosen to be the T axis.

In a crystal, usually ko — 2k1 # 0, but a technique called quasi-phase matching can be used to compensate for
the mismatch (https://en.wikipedia.org/wiki/Quasi-phase-matching). The idea is to apply “periodic
polling” to the crystal through high voltages, so that the domains of the crystal are periodically switched and @ ()
switches sign periodically along . Now we can write x?) as the Fourier series

2
X(Q) () = Cexp (zfx) +ce+..., (10.36)
where C'is the Fourier coefficient and A is the period of the polling. If
27
— = |ko — 2k 10.37
A | 2 1|7 ( )
the exp(£i272/A) terms in x(?) can cancel the exp[+i (ko — 2k )z] terms, x(?) () expl[i(ko — 2k )z] then contains

a constant term, and after the | 552( .. )dz integration, the constant term becomes o< L that grows with the crystal

length L.
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With phase matching and a strong “pump” laser beam at 2w with g ~ s, it is possible to simplify feasy (t) to
Aeasy () o andl”® + Hee., (10.38)

where all other terms are thrown away because of either the rotating-wave approximation or phase mismatch. This
result now agrees with Eq. (10.1) that we assumed earlier.

Notice that the ¢ parameter in Eq. (10.1) is proportional to the amplitude as of the pump, so we can choose the
squeezed and antisqueezed quadratures by changing the phase of the pump.

Side note. To enhance the squeezing, the crystal is often put inside an optical cavity so that the signal optical beam
passes through the crystal many times [9]. While a more complicated model is needed [19] to model the setup and
the multimode squeezing that comes out of it, the single-mode model here captures the essential physics and is good
enough for an undergraduate corse.

Side note. The word “parametric” comes from the fact that, when there is a strong laser pump beam at frequency
2w, we can also model the OPA by assuming that the “parameter” of the system xV) oscillates at frequency 2uwy.
Historically, parametric interactions have been studied since Faraday and Rayleigh (https://en.wikiped
ia.org/wiki/Parametric_oscillator). A textbook example is a child “pumping” a swing at twice the
natural frequency of the swing, where the moment of inertia is the “parameter” to be modulated in time. With
radio/microwave circuits, it’s also possible to see the same parametric amplification behavior by modulating the
capacitance or inductance at twice the frequency of a signal to be amplified.

10.3. Squeezed vacuum state

Let’s return to the formalism in Sec. 10.1 and study more general properties of squeezing. Define a squeeze
operator as

A 1
S(z) = exp<2zeﬁ2 - Hc) z €C. (10.39)

Convince yourself that this is the unitary operator resulting from the Hamiltonian given by Eq. (10.1), with
z =&t (10.40)

It follows from Sec. 10.1 that the Heisenberg picture of @ under this unitary is given by

ST(2)aS(z) = acosh |z| + e*“%a' sinh |z|. (10.41)

Now imagine that we measure a quadrature
1 . .
i(6) = —=(e"a+ el 10.42
q(0) 7 (10.42)
after squeezing the vacuum (see Exercise 4.26 for basic properties of ¢(#)). The probability density of the outcome
is given by
(@) = |(a(0) = 2 S(2) 0) |* = (0] 57(2) |4(0) = =) (a(6) = x| S(=)|0), (10.43)

where S(z) |0) is called a squeezed vacuum state. To compute this, we take the following steps:
(1) Define the Heisenberg picture of G(f) as

0 = 5(2)4(6)S(2). (10.44)

It allows us to write the diagonal form of O in two ways:

o0

o= /_OO 2|0 = 2) (0 = ] dz = $'(2)4(0)8(2) = / 287(2) |q(0) = o) (q(6) = 2| §(=)dz.  (10.45)

—0o0
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A nontrivial theorem in Hilbert-space theory [20, Theorem VIII.6] says that the diagonal form is unique,
so that we can write

S57(2) la(6) = ) (a(6) = 2[ 5(2) = |0 = 2) (O = a] . (10.46)

Now we need to find |O = x).
(2) Use Eq. (10.41) to obtain

A 1 ; .
O = 7 (g*d + ng), g = e cosh |z| + e ?e“* sinh |z|. (10.47)

(3) Rewrite O in terms of another quadrature operator:

4 L ivgs o izgs .
= \g\ﬁ(e “a+ “at) = |gla(2g), (10.48)
1 —i4g 4 gt
4(Zg) = 7 ( a+eva ) (10.49)

|g| determines how much the quadrature is amplified or squeezed. Exercise D.6 shows that, given

Eq. (10.48), the orthonormal eigenstates of O can be expressed in terms of the orthonormal eigenstates of
q(£g) as

0 — 10.50
0==) = \f‘ !g!> (1059

(4) Now we can rewrite Eq. (10.43) as

f(x) = (01 57(2) lg(0) = =) (4(0) = x| 5(2) |0) (10.51)
= (0|0 = z) (O = z|0) (using Eq. (10.46)) (10.52)
= (0 = z|0)” (10.53)
2
| | '< | | ‘ > (using Eq. (10.50)) (10.54)
= flgl < g\2> (using Exercise 4.20) (10.55)

This is a new result, showing that any quadrature of a squeezed vacuum state is Gaussian with zero mean and
a variance given by |g|2 /2, where the g parameter is given by Eq. (10.47). The variance depends on the quadrature
being measured through the 6 parameter and the phase of the pump through the /z parameter. For example, if we
set

2
0 = 142 g= ei(£2)/2 2] ﬂ — 162|2| (10.56)

) ) 2 2 ) M
then the variance of G(6) is |g|?/2 = €2#1/2, which agrees with Eq. (10.15) that we derived earlier for the
antisqueezed quadrature using the Heisenberg picture. On the other hand, if we set

2
g — g n %Az, g= iez(zz)/Qe—\zl’ ’5;’ — %e—2|2\’ (10.57)
then the variance agrees with Eq. (10.16) for the squeezed quadrature.

We have found so far that both the coherent states and the squeezed vacuum states have Gaussian probability
densities for any of their quadratures. It turns out that they are special examples of a general class of states called
Gaussian states, defined by the property that any quadrature of such a state has a Gaussian probability density.
Gaussian states are important states for quantum optics and quantum information, because Gaussian states are
relatively easy to generate, it can be shown that they remain Gaussian states after going through passive linear optics
and squeezing, and they give Gaussian probability densities for homodyne and heterodyne detection. Chapter 11
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will introduce a theoretical concept called the Wigner representation that will be very handy for studying and
visualizing Gaussian states.

Exercise 10.7. Derive the probability density

((8) = 2] 5(2) o) (10.58)

of a quadrature for a squeezed coherent state S(z) |c).



CHAPTER 11

Wigner Representation

11.1. Definition

The Wigner representation of a quantum state is similar to the Sudarshan representation and useful for a lot of
calculations, as well as visualization of a quantum state. To introduce it, we first focus on just one optical mode and
introduce a preliminary concept called the quantum characteristic function. It is defined as

X(&m) = tr [pexp(i€d + inp)), | (&) € R, (11.1)

where (&, 7) are two real variables. This is a generalization of the characteristic function in probability theory
(https://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)). If fxy(z,y)
is the joint probability density for two real random variables X and Y, the classical characteristic function is defined
as

Xclassical (57 77) = / / fXY (55, y) exp(i{z + iﬁy)dﬂly =E [exp(iéX + iny)]v (1 1-2)

except that the quantum version replaces the random variables X and Y by the quadrature operators ¢ and p. In the
classical case, the probability density fxy (x, y) can be obtained from X jassical (€, ) because of the Fourier-transform
relations:

Pirlen) = gz [ [ Nl exp(—igo — im)dsar. (113)

In the quantum case, the Wigner representation is defined similarly in terms of the quantum x:

W(z,y) 2n)? / / X (&,n) exp(—ix — iny)dEdn. (11.4)

The Wigner representation is a function of two real variables (z,y) called the phase-space variables and it often
behaves like a joint probability density of the two quadratures ¢ and p, but do note that it can go negative for some
(x,y) for certain states. Since it may go negative, the Wigner representation is also sometimes called the Wigner
quasiprobability distribution.

Exercise 11.1. An alternative definition of the Wigner representation is

1 [ . A
Wia = & [~ (gms )

Show that this definition is equivalent to Eq. (11.4).

P4 5

:x+)\>d)\. (11.5)

11.2. Probability densities of quadratures

The Wigner representation is useful mainly because it is easy to compute the probability density of any
quadrature from it. In particular, it can be shown that, for any state,

(g==z[plg=x) =/ W (z,y)dy, (p=ylplp=1y) =/ W(z,y)dz, (11.6)

so the marginal densities computed from the Wigner representation are the probability densities of the ¢ and p
quadratures. In this way W (x, y) behaves like the joint probability density of the two quadratures.
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More generally, if we define rotated quadratures

1
j(0) = Gcosf + psinf = — ( ’0&+629AT>, 11.7
q(0) =q p ﬁ (11.7)
p(0) = —Gsinf + pcosf = (e*wd — ewdT>, (11.8)
V2i
then the Wigner representation can also give their probability distributions as follows:
(1) Define
u(x,y) = xcosf + ysinb, v(z,y) = —xsinf + ycos b, (11.9)
which are the phase-space coordinates for the new quadratures given by Egs. (11.7) and (11.8). The new
phase-space coordinate system is shown in Fig. 11.1. The inverse relations are
x(u,v) = ucosf —vsinb, y(u,v) = usinf + v cos f. (11.10)
(2) Define a new Wigner representation W/ (u, v) as
W' (u,v) = W(z(u,v),y(u,v)). (11.11)
(3) The marginal distributions with respect to the new W turn out to be the probability distributions of G(6)
and p(6):
(q(0) = ulplq(0) / W' (u,v) (p(0) = v| p[p(0) / W' (u,v)d (11.12)

(This property for any quadrature is why the Wigner representation is much more useful than just multiplying
(¢=2|plg=z)and (p=y|p[p=y) together)
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Ficure 11.1. The new phase-space coordinate system defined by Egs. (11.9).

This procedure of computing the new Wigner representation is exactly the same as the procedure of computing
a new probability density fyy (u,v) from fxy (z,y) if the new random variables are related to the old ones by

U= Xcosf+ Y sinb, V =—-Xsinf+Y cosb. (11.13)

The Wigner representation behaves like a joint probability density of quadratures in this way. Do note, however,
the following key caveats:

(1) For certain states, W (z, y) may go negative for some phase-space coordinates (z,y), so it cannot always
be regarded as a probability density.
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(2) W (z,y) by itself is not the probability density of any measurement. It gives the probability density of a
quadrature measurement only after we compute the marginal as per Eqs. (11.6) or Egs. (11.12).

(3) It is not so easy to compute from W (x,y) the probability distributions for measurements other than
quadrature measurements, so it’s not nearly as useful for other measurements.

Exercise 11.2. Derive Egs. (11.6).

Exercise 11.3. Prove that the Wigner representation is normalized as

/OO /OO W(z,y)dzdy = 1. (11.14)

Exercise 11.4. Derive Eqs. (11.12).

Exercise 11.5. Let W (x,y) be the Wigner representation of p. Find the Wigner representations of the following
density operators in terms of W (z, y):

(1) D(e)pD(a), where D() is the displacement operator.
(2) R(0)pRT(0), where R() is the “rotation” operator defined by Eq. (4.53).
(3) S(2)pST(z), where S(z) is the squeeze operator defined by Eq. (10.39).

(This exercise shows that, if the unitary operator for the dynamics can be decomposed into a product of these
three operators, then the Wigner representation in the Schrodinger picture is easy to find.)

11.3. Examples

11.3.1. Coherent state. It is easy to show that, for a coherent state,

p=la){al: W(x,y) = %exp [—(w—\/ﬁRea)Q - (y— \/ﬁlma)z].

(11.15)

A plot of this Wigner representation in phase space is shown in Fig. 11.2. It coincides with a Gaussian probability
density for two independent Gaussian random variables, each with variance 1/2. This result agrees with the
distributions | (g = z|a) |? and | (p = y|a) |? given by Eqs. (4.7) and (4.8). It also agrees with the distribution
| (q(0) = ula) |? that we computed in Exercise 4.26.

(p) =vV2Ima

Ficure 11.2. The Wigner representation of a coherent state in phase space.

Exercise 11.6. Derive Eq. (11.15).
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11.3.2. Squeezed vacuum. For a squeezed vacuum state discussed in Chapter 10, it is easier to write the
Wigner representation in terms of the new variables

Z Z Z £
u(x,y) :xcos—z—i—ysin—z, v(z,y) = —:Esin—z—l—ycos—z, (11.16)
2 2 2 2
so that
~ o &t Y 1 u2 1}2
p=25(2)10) (0] ST(2): W(x,y) =W'(u,v)=—exp| ——= — —5— |- (11.17)
e 62|z| 3_2‘Z|

This result coincides with the probability density of two independent zero-mean Gaussian random variables U and
V, where U has a variance e2/*! /2 and V has a variance e~ 2l /2, as depicted in Fig. 11.3. The new quadratures
(j(%) and f)(%) coincide with the antisqueezed quadrature and squeezed quadrature, respectively, and it can be
shown that this Wigner representation leads to a Gaussian probability density for any quadrature, in agreement with
Sec. 10.3.

Ficure 11.3. The Wigner representation of a squeezed vacuum state in phase space. This picture
shows why we call it a squeezed state.

Notice that the Wigner representation remains nonnegative for the squeezed vacuum. The Sudarshan represen-
tation, on the other hand, cannot stay nonnegative for this state, as implied by Exercise 9.8.

Exercise 11.7. Derive Eq. (11.17).

11.3.3. Gaussian states. The coherent state and the squeezed vacuum state are examples of a larger class of
states called the Gaussian states, which are defined as states with Gaussian Wigner representations:

W(z,y) ! L (x—m) S Hax—m)|, = <;> (11.18)

21/ det ¥ 2
While the mean vector m can be arbitrary, the covariance matrix > must satisfy the Heisenberg uncertainty relations
for any two quadratures for W (x, y) to be the Wigner representation of a legal quantum state.

The general theory of Gaussian states for multiple modes goes very deep; it is an active research topic in
quantum information theory [21].
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11.3.4. Number states. For p = |n) (n|, it’s easier to use Eq. (11.5). Using also Eq. (4.1), we obtain

W(z,y) = L /00 ﬂH (x — \/2)exp {—@_W] Hy(z+ \/2)exp {—WW] d\ (11.19)

2 J_oo 2nnlmt/2" 2 2

- IAY o N

= 9ol /2 /_006 Hy(x — A2)Hy(z + A/2) exp( 1 >dA (11.20)
—1)"

! W) Lo[2(” 4+ ¢?)Je ™7V, (1121)

where L, (u) is the nth Laguerre polynomial (https://en.wikipedia.org/wiki/Laguerre_polynomials).
(I have to admit that I just copied the result from https://en.wikipedia.org/wiki/Wigner_quasiprobabil
ity_distribution#Examples.) For n = 1 in particular,

Hy(z —A\/2) =2z — A, (11.22)
7I2 (o]
W(r,y) = — Y (42 — A2) AV (11.23)
T,y Gron2 | e T exp 1 .
— 1(2x2 4+ 22— 1)e " (11.24)
T

This function is plotted in Fig. 11.4. Notice that it goes negative in the middle of phase space, so we can’t treat the
Wigner representation here as a probability density. In general, W (z, y) always goes negative somewhere in phase
space for a number state with n > 1.

3
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Ficure 11.4. Wigner representation of the number state [n) ,n = 1.

The negativity of the Wigner representation is often regarded as another signature of nonclassicality for a
quantum state. This criterion is a bit more stringent than the negativity of the Sudarshan representation, since
there exist states with positive W (x,y) for all (z,y), such as the squeezed vacuum state, but their Sudarshan
representations can go negative.

11.4. Relations with other phase-space distributions

We have encountered three phase-space distributions so far:
(1) The Sudarshan representation ®(«) (Sec. 4.5).
(2) The Wigner representation W (z, y).
(3) The so-called Husimi representation, also called the @) function:

Qa) = ! (o] pla), (11.25)

s
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which is precisely the probability density from dual-homodyne detection or heterodyne detection, as we
found in Chapter 8.

It turns out that the three representations have a cute relationship. To show it, we first rewrite W (x, y) in terms of
a complex variable a:

W(a) = 2W(V2Rea, V2Ima), W(z,y) = ;W(xj/_gy> (11.26)

The factor of 2 ensures that T () is normalized as

//W(a)d2a =1, (11.27)

just like ®(«) and Q(«). The relations among the three are

// %exp —2|a — B|?)d*B, (11.28)

// 7eXp (—la = BI*)d*8 = //W *eXp( 2o — BI7)d*B. (11.29)

Another way of writing these relations is in terms of the convolution * between two functions (https://en.wik
ipedia.org/wiki/Convolution):

f*g—//f B)d*B, (11.30)

5 p

W =% <e—2|al2), (11.31)
™
1

Q= x <e|a2> =W * (262lal2>. (11.32)
™ Vs

The effect of convolution with a Gaussian function is like diffusion: it blurs the function in phase space. The
simplest example is a coherent state |3):

®(a) = 6*(a — B) = §(Rear — Re B)6(Im o — Im 3), (11.33)
W(a) = %exp (—2la — B[%), (11.34)
Qo) = %exp (—la = B[%). (11.35)

The first column of Figure 11.5 plots T (a) and Q(c) for a coherent state, the second column plots those of a
squeezed vacuum state, while the third column plots 1/ (cv) and Q(«) for a number state |n = 1). It’s a lot more
difficult to plot the Sudarshan representations for these common states, and the Wigner representation is the default
phase-space distribution for plotting.

Exercise 11.8. Derive Egs. (11.28) and (11.29).

Exercise 11.9. Consider a squeezed vacuum state with Zz = 0. Compute the Husimi representation Q(«). Find
the variances of the two quadratures in dual-homodyne detection. Using this result, explain why dual-homodyne
detection is not used in interferometry with a squeezed state.
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FiGure 11.5. First column: Wigner W (c) and Husimi Q(«) for a coherent state |1 + 7). Second
column: W and @ for a squeezed vacuum state. Third column: W and ) for a number state
|n = 1).
11.5. Multimode Wigner representation
Assume J modes. The quantum characteristic function and the Wigner representation are now defined as
(X(&m) = tr[pexp(i€ - g +in - P)], | (11.36)
E-q+m-p=> (&d;+npy), (11.37)
J
1 . .
W(z,y) = W/x(ﬁ,n) exp(—i& - @ — in - y)d’&d’n, (11.38)
Extmn-y=> (§z;+my) (11.39)
J

Exercise 11.10. Find W (x, y) for a multimode coherent state |cx).



CHAPTER 12

Spontaneous Parametric Down Conversion (SPDC)

12.1. Entangled photons

We now discuss another application of optical parametric amplifiers (OPA): generation of entangled photons.
Entangled photons are useful for experiments in quantum foundations and quantum information.

I will give a quick overview of the optics involved, focusing on the experimental setup reported in Ref. [22];
see Fig. 12.1. This setup has been adopted in many other experiments; see, e.g., Refs. [23, 24].

PPKTP

Peltier

HWP2

L
405nm .'_ﬁ

Ficure 12.1. Experimental setup for generating entangled photons reported in Ref. [22] (Figure
copied from Fig. 3 of the paper). PPKTP means “periodically poled KTP.”

In the setup depicted in Fig. 12.1, there are two pump beams going into the crystal in counter-propagating
directions, but let’s focus on the physics with just one pump beam for now. Recall our discussion in Sec. 10.2.2, but
now assume that there are three modes all propagating in the +a direction, with annihilation operators a1, ag, as,
respectively. Suppose that

(1) ay is the annihilation operator of a signal mode with center frequency wg and polarization vector €; = y.

(2) aq is the annihilation operator of a so-called idler mode, which has the same properties as the signal mode
except that the polarization vector is es = 2.

(3) as is the second-harmonic mode with frequency 2wy and polarization vector €3 = .

Then the term in ﬁeasy(t) relevant to the three modes would look like

/// X2, ()asalal expli(ks — ki — ko)a]d®r + Hee, (12.1)

where k; is the wavenumber for mode j. If the crystal is periodically poled such that @ (z) compensates for
the phase mismatch k3 — k; — ko, then this term would be enhanced over all other terms. Further, assume that
the second-harmonic mode comes from a strong pump laser beam, such that a3 ~ as. The interaction-picture

110
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Hamiltonian becomes

Aeasy (1) ~ gazalal + Hee., (12.2)

where g is a constant depending on x(?) and the length of the crystal.

Unlike the squeezing setup in Chapter 10, where we have just one signal mode at the fundamental frequency wq
and the Hamiltonian is proportional to a2 and G2, here we have two modes at wy called the signal and the idler with
two different polarizations. The former case is called degenerate OPA and the latter case, with two different modes
at the fundamental frequency, is called nondegenerate OPA. Since k1 # ko, k3 — k1 — ko is different from ks — 2k1,
and the efficiency of each process can be controlled by choosing the period of the poling to achieve quasi-phase
matching for the desired process.

We now proceed with the first-order perturbation theory to obtain the interaction-picture quantum state:

[r(t)) = Texp H / ﬁeasymdf} ~ fvac) = 5 [ ey (r)dr ) = fvac) - 0alal jvae) (123
0 0

= |vac) — % IFock : s = 1,5 = 2), (12.4)
where
|[Fock : s =1,5s =2) = d{&; |vac) (12.5)

is a two-photon Fock state that we discussed in Sec. 5.6, with one é;-polarized photon, denoted by s = 1 in the
notation, and one és-polarized photon, denoted by s = 2 (we omit the mention of the wavevectors for brevity). We
see that the process creates two photons at half the frequency of the pump, hence the name spontaneous parametric
down conversion (SPDC).

In the setup depicted by Fig. 12.1, there is another pump beam propagating in the —& direction. Let aze’ be
its amplitude, by be the annihilation operator for another signal mode with polarization vector gy, and by be another
idler mode with polarization vector z. These three modes have the same properties as the three modes discussed
earlier, except that they propagate in the opposite direction. The total Hamiltonian becomes

feasy (£) = gous (@l + 5[0} ) + He. (12.6)
and the quantum state becomes
or(t)) =~ |vac) — Zgg‘?’ (a{&@ + ei%}l};) Ivac) . (12.7)

Let’s focus on the two-photon component:
‘zﬂ?) (t)> x (di&; + ei%{z};) |vac) = |Fock : s, = 1,8, = 2) + € [Fock : 5, = 1,5, = 2). (12.8)

This equation says that the two-photon state is a superposition of two possibilities:

(1) Two photons, one é;-polarized (denoted by s, = 1) and one es-polarized (denoted by s, = 2), are
propagating in the 4+ direction.
(2) Two photons, one e;-polarized (denoted by s, = 1) and one es-polarized (denoted by s, = 2), are
propagating in the —& direction.
The two counter-propagating beams then meet at a polarizing beam splitter (PBS). Let’s say the optical beam
propagating in the +& direction is directed to the first input of the PBS, and the other beam is direct to the second
input of the PBS. A PBS fully transmits one polarization, say, e;, and fully reflects the other polarization és, as
depicted in Fig. 12.2. Consider the following two cases:

(1) If two photons come into the first input:
(a) The e; photon is transmitted into the first output.
(b) The e, photon is reflected into the second output.
(2) If two photons come into the second input:
(a) The e; photon is transmitted into the second output.
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(b) The e, photon is reflected into the first output.

In either case, there is always one photon in the first output and one photon in the second output. The polarization of
each photon is unknown because we don’t know whether the photon comes from the first input or the second input,
but we know that, if the polarization of the first output is €7, then the polarization of the second output must be e,
and vice versa, because the photons, regardless of their origin, are created in a pair with orthogonal polarizations.

A
A

2@ &1 +—

- o
1 IR o—>

Ficure 12.2. A polarizing beam splitter (PBS) fully transmits one polarization and fully reflects
the other polarization.

We say that the polarizations of the two photons are entangled.
To model the physics mathematically, define the following:

(1) For the first output, let ¢; and ¢ be the operators for two polarization modes é; and €2, respectively.
(2) For the second output, let d; and ds be the operators for two polarization modes €; and ey, respectively.

Let U be the unitary operator for the PBS, which obeys passive linear optics. The input-output relation for the PBS
in the Heisenberg picture can be taken as

a(T)=Ute\U=ay, é&(T)=UteU =by, d(T)=UTdU =0b1, do(T)=UdolU = ap. (12.9)

In the Schrodinger picture, the two-photon component of the state hence becomes

U i) o O (alah + b0} ) [vac) (12.10)
- (UaIUTUaQUT + ewmwmz;m)f] |vac) (12.11)
= (é}d; + ewcﬂé;) lvac)  (using Egs. (12.9) and U |vac) = |vac)) (12.12)
= |Fock : s, = 1,55 = 2) + €% [Fock : s, = 2,59 = 1) . (12.13)

As advertised, this result shows that, given that there are two photons, there is always one photon in the ¢; > modes in
the first output and one photon in the dALQ modes in the second output. Moreover, their polarizations are entangled:
If the first photon has polarization vector €; (denoted by s. = 1), then the second photon has polarization vector é-
(denoted by sq = 2), and vice versa. The relative phase 6 between the two possibilities can be controlled by optical
components.

There are a variety of other methods and configurations to produce entangled photons, although most of them
are based on SPDC in a x(?) crystal.
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12.2. Bell’s theorem and the CHSH game

A lot of people, including Einstein, are not happy with quantum mechanics and they suggest that there
may be a deeper classical “hidden-variable” theory underlying quantum mechanics. Inspired by Einstein, Bell
and others proposed experiments that can test those classical theories. They showed that, according to those
classical theories, the experimental result must obey certain inequalities, while quantum mechanics can violate
them. An experiment violating any of those inequalities can rule out a large class of classical hidden-variable
theories in one go. Those inequalities are now commonly called Bell’s theorem. See, for example, https:
//www.nobelprize.org/prizes/physics/2022/summary/ and Refs. [25, 26] for an introduction.

We will focus on one popular version of the inequalities called the CHSH inequality (named after its inventors
Clauser, Horne, Shimony, and Holt) and treat the experiment as a game called the CHSH game. A nice video about
the game can be found at https://www.youtube.com/watch?v=v7jctgKsUMA. Our description of the game
below is slightly different from the video in order to make our description closer to the academic literature, although
the essential idea is the same.

12.2.1. Rules of the CHSH game.

(1) The game involves two cooperating players, commonly called Alice and Bob, and a referee.

(2) After the game starts, Alice and Bob are separated and forbidden to communicate with each other. The
referee can communicate with both.

(3) In each round of the game, the referee sends one random instruction v to Alice and another random
instruction v to Bob. There are only two possible instructions “1” or “2” for each player, so in total there
are 4 possible sets of instructions (u,v) = (1,1),(1,2),(2,1), or (2,2) sent to Alice and Bob, as shown
in Table 1.

(4) After receiving the instruction, Alice should send an answer A = +1 or — 1 to the referee.

(5) Similarly, Bob should also send an answer B = +1 or — 1 to the referee.

(6) The reward is computed as follows:

(a) If Alice and Bob receive the instructions (1, 1), (2, 1), or (2, 2), they win a dollar if their answers are
the same (A = B), or lose a dollar if their answers are different (A # B). The reward given such
instructions is hence AB.

(b) However, if they receive the instructions (1, 2), they win a dollar if their answers are different (A # B),
or lose a dollar if their answers are the same (A = B). The reward given such instructions is hence
—AB.

Table 1 summarizes the rules of the game.

(7) Many rounds of the game are played, and the instructions are random each time, i.e., the four sets of

instructions (1, 1), (1,2), (2, 1), (2, 2) have equal probability 1/4.

Instruction to Alice | Instruction to Bob | Win condition Reward Expected Reward

(u) (v)

1 1 A=BRB AB C11 =E(AB|1,1)

1 2 A#B —AB —C12 = —E(AB|1,2)
2 2 A=BRB AB Cy =E(AB|1,2)

TaBLE 1. CHSH game rules.

We allow Alice and Bob to communicate before the game starts. We also allow Alice and Bob to adopt any
deterministic or randomized strategy, i.e., A and B may be random variables, so that the expected reward given
each set of instructions is listed in the last column of Table 1. The overall expected reward is hence

1
expected reward per round = 18 , (12.14)



https://www.nobelprize.org/prizes/physics/2022/summary/
https://www.nobelprize.org/prizes/physics/2022/summary/
https://www.youtube.com/watch?v=v7jctqKsUMA
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where

]S =41 — Ciy + Cy1 + Coy \ (12.15)

is called the CHSH number and

| Cup = E(ABu,v)] (12.16)

is the correlation of the players’ answers given instructions (u, v). In other words, the players’ answers should be as
correlated as possible to maximize C11, Ca1, and Cag, except the (1, 2) case, when they should be as anti-correlated
as possible to minimize C'o.

By playing many rounds, the average reward should converge to the expected reward.

12.2.2. Classical: hidden-variable model. We first pretend that we don’t know quantum mechanics and
assume that Alice and Bob follow the laws of classical probability theory. We use one random variable A, called
the hidden variable, to denote any pre-shared information between them and also any random-number generator,
e.g., dices, they use in determining their answers. We do not otherwise impose any restriction on \; we allow its
sample space to be arbitrary (e.g., A can be a number or a vector of any dimension) and its probability distribution
can also be arbitrary.

We also allow Alice and Bob to adopt any strategy, with the important restriction that they cannot know the
instruction to the other player. Let A, ()\) be Alice’s answer given instruction © = 1 or 2, and likewise B, () be
Bob’s answer given instruction v = 1 or 2. Then we allow A,,(\) and B, () to be arbitrary functions of the hidden
variable A. The correlation in Eq. (12.16) becomes

[ Cup = E[4u(V) B, (V)] | (12.17)

As proved in Sec. 12.2.3, the assumption of Eq. (12.17) under the hidden-variable model leads to an inequality for

the CHSH number given by
|S] < 2. (12.18)

This inequality is called the CHSH inequality after its inventors (https://en.wikipedia.org/wiki/CHSH
_inequality). In the context of the game, the inequality means that the expected reward per round S/4 cannot
exceed 2/4 = 0.5. (It also means that the expected reward cannot go below —2/4 = —0.5.)

We have assumed very little about the hidden-variable model for the proof of the CHSH inequality—the model
allows Alice and Bob to pre-share any classical data and use any strategy. The hidden-variable model is sometimes
called local realism,; it encapsulates many physicists’ belief about the fundamental properties of all physical objects,
including our Alice and Bob. I won’t go into the philosophical details and simply refer you to Refs. [25, 26] for
more information.

12.2.3. Side note: Proof of CHSH inequality (12.18). I follow Wikipedia https://en.wikipedia.org/w

iki/CHSH_inequality#Bell’s_1971_derivation. First consider
Ci—Ci2a=E(A1By —A1By) =E(A1By — A1By + A1B1 A3 By F A1 B1 A2 By) (12.19)
=E[A1Bi(1+ A2By)] — E[A1Bo(1 + Ay By)]. (12.20)

Take absolute values of both sides, and use triangle inequality |z + y| < |z| + |y| and Jensen’s inequality
E(|X]|) < |E(X)| (https://en.wikipedia.org/wiki/Jensen%27s_inequality):

|CH — 012| < |E [AlBl(l + AQBQ)” + ’E [AlBQ(l + AQBl)” (triangle ineq.) (12.21)
<E[|A1Bi(1+ A2Bs)|| + E[|A1Ba2(1 + A2By)|] (Jensen) (12.22)
=E (JA1B1]|1 £+ A2Bs|) + E (|41 By |1 + A2 By]) (12.23)
<E(]1+ A3Bs|) + E(|1 + A2 By)) (|4;B] < 1) (12.24)
—E(1+ AyBs) + E(1+ AyBy) (1+A;B, > 0) (12.25)

=24+ Cop+Cy =2+ (021 + CQQ). (12.26)


https://en.wikipedia.org/wiki/CHSH_inequality
https://en.wikipedia.org/wiki/CHSH_inequality
https://en.wikipedia.org/wiki/CHSH_inequality#Bell's_1971_derivation
https://en.wikipedia.org/wiki/CHSH_inequality#Bell's_1971_derivation
https://en.wikipedia.org/wiki/Jensen%27s_inequality
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It follows that

|C11 — Ch2] <2 —|Ca1 + Caa, (12.27)
|C11 — Cia| + |Ca1 + Caa] < 2, (12.28)
|C11 — C19 4+ Coy + 022’ < |011 — 012’ + |021 + CQQ| < 2. (triangle ineq.) (12.29)

12.2.4. Quantum: better strategy using entanglement. The hidden-variable model sounds general and
reasonable, but it turns out that Alice and Bob can do better in the game and violate the CHSH inequality if they
share entanglement.

(1) For eachround, Alice has a photon and Bob has a photon. The photons are entangled in their polarizations.
(2) After receiving an instruction, Alice measures the polarization of her photon with respect to the two
possible polarization vectors

é4(a) = (cosa)y + (sina)z, é_(a) = (—sina)y + (cosa)z, (12.30)

where Alice’s measurement setting a = a,, depends on the instruction w she receives.
(3) Her answer A depends on the measurement outcome:
(a) if the photon is found to have polarization é; (a), A = +1,
(b) if the photon is found to have polarization é_(a), A = —1.
(4) Similarly, Bob measures the polarization with respect to the polarization vectors

e+ (b) = (cosb)y + (sind)z, e_(b) = (—sinb)y + (cosb)z, (12.31)

where Bob’s measurement setting b = b,, depends on the instruction v he receives.
(5) His answer B depends on the measurement outcome in the same way as Alice’s:
(a) if the photon is found to have polarization e (b), B = +1,
(b) if the photon is found to have polarization e_(b), B = —1.
(6) Many rounds of the game are played, and the average reward should converge to the expected reward.

With entangled photons, it turns out to be possible for S to violate the CHSH inequality |S| < 2 given by Eq. (12.18)
and for the players to obtain a higher (S > 2, §/4 > 0.5) or lower (S < —2, §/4 < —0.5) expected reward for the
game.

A and B are still random variables in quantum mechanics, although their joint probability distribution, condi-
tioned on the settings (a, b), should be computed from
2

P(A, Bla,b) = |(Fock : A, a; B, b|yp)|> = |(vac| éa(a)dp(b) [1) (12.32)

where

(1) |[4) is the quantum state of the entangled photons,

(2) |Fock : A, a; B,b) = é;(a)cﬁB(b) |vac) is a two-photon state where Alice’s photon has polarization é 4 (a)
and Bob’s photon has polarization ép(b),

(3) the new polarization-mode operators, according to Sec. 3.5.1, should be defined as

¢t (a) = (cosa)éy + (sina)és, dy(b) = (cosb)dy + (sinb)ds, (12.33)
¢_(a) = —(sina)éy + (cosa)éa, d_(b) = —(sinb)d; + (cosb)ds. (12.34)
The correlation in Eq. (12.16) becomes
Cw =E(ABlu,v) = > ABP(A,Blay,b,). (12.35)
A=+1,B=+1

We can no longer assume Eq. (12.17) under the hidden-variable model, where A is a function of Alice’s instruction
w only and B is a function of Bob’s instruction v only. Here we must take both instructions (u, v) into account
when computing each correlation.
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We now study a specific quantum scenario that can violate the CHSH inequality (12.18). Let the quantum state
be

T a5 .
¥ = 7 (eldh - ébd}) vac), (12.36)
where I’ve assumed e’ = —1, so that the state is the so-called singlet state (https://en.wikipedia.org/wik

i/Singlet_state). (I also ignore the events when no photon comes in so that the post-selected quantum state is
the two-photon state without the |vac) component.) The probabilities of detecting the two photons in certain pairs
of polarizations become

S -1 ?
P(1,1|a,b) = ‘(vac| érdy |¢>‘ = |(vac| é+d+7§<é§d§ - e;d”{) Ivac) (12.37)
_ %[(cos a)(sinb) — (sin a)(cos b)]2 = %Sin2(a ), (12.38)

\ G 2 NS ’
P(1,~1|a,b) = ‘(Vac|c+d_ w - <Vac|c+d_7§<c1d2 —czdl) Ivac) (12.39)
:1 cosa)(cosb) — (sina)(—sinbd 2:1(:os2a—b, (12.40)

2 2

S 21 ?
P(~1,1]a,b) = ’(Vac|é_d+ w)\ - <vac|e_d+7§(é§d3 —a;d“{) Ivac) (12.41)
= %[—(sin a)(sinb) — (cos a)(cos b)]* = %COSQ(G - ), (12.42)

. 2 .1 . 2
P(—1,—1|a,b) = b_d_ )| = bd_—(éeldl — éldl) |vac (12.43)

1,~1la vac| ¢ vac| ¢ 3\t — &dy
= %[(— sina)(cos b) — (cos a)(—sinb)])? = %sinQ(a —b). (12.44)
The correlation C'(a, b) given settings (a, b) becomes
C(a,b) = ABP(A, Bla,b) (12.45)
AB

= P(1,1|a,b) — P(1,—-1|a,b) — P(—1,1]a,b) + P(—1,—1|a, b) (12.46)
= sin?(a — b) — cos?(a — b) = — cos[2(a — b)]. (12.47)

Notice the following special cases:
(1) Whena = b, P(1,1]a,a) = P(—-1,-1|a,a) = 0, P(1,—-1|a,a) = P(—1,1|a,a) = 1/2,and C(a,a) =
—1, indicating that the polarizations of the photon pair are always orthogonal to each other, regardless of
a. This is a special property of the singlet state.
(2) When a — b = /4, Bob’s polarization vectors are rotated by 45° with respect to Alice’s, and C'(a,b) = 0.
(3) When a — b = /2, Bob’s polarization vectors are rotated by 90° with respect to Alice’s, and C'(a, b) = 1.
To compute the CHSH number given by Eq. (12.15), we combine Eqgs. (12.35) and (12.45) to write Cy,, = C(ay, by)
and choose the settings

3w

s i
ayp = O, ag = Z, bl = g, b2 = ? (1248)
Then

Chy = Clar, by) = ——— Cio = Clar, by) = —— (12.49)

1= 1,01) = ok 12 = 1ba) = =5, .

1 1

Co1 = Clag, b)) = ———, Cy = Clag, by) = ———, 12.50
21 (ag,b1) NG 22 (az,b2) NG ( )
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leading to

S =-2V2. (12.51)

Hence |S| > 2, which violates the CHSH inequality (12.18). In the context of the game, S < —2 means that the
expected reward goes below the minimum allowed by the hidden-variable model.

To demonstrate the violation of the CHSH inequality experimentally, many entangled photon pairs are measured
(many rounds of the game are played) so that the reward, based on the measurement outcomes and averaged over
the many rounds, should violate the CHSH inequality for the expected reward |S|/4 < 0.5 significantly. There are
many other entangled states and settings that allow one to violate the CHSH inequality, but the key ingredient of
the experiment is the entangled photons.

People often borrow Einstein’s phrase “spooky action at a distance” to describe the violation of local realism.
For a lot of people, a conclusive experiment that violates local realism is a big deal [25, 26], so much so that they
managed to convince the Nobel committee to award the key experimentalists Clauser, Aspect, and Zeilinger a Nobel
Prize in Physics (https://www.nobelprize.org/prizes/physics/2022/summary/).

Exercise 12.1. Verify Eqs. (12.37)—(12.44).
Exercise 12.2. Show that C,,, can also be expressed as

Cuv = (| Ay @ By |9), (12.52)

where Au and Bv are observables you should find.
(The expression now looks closer to Eq. (12.17) under the hidden-variable model, although still not the same,
because the probability distribution of (A, B,) still depends on (u, v) afterall.)

Exercise 12.3. Using quantum theory, compute the marginal probability distribution of Alice’s outcome:

>~ P(A, Bla,b) (12.53)

and show that it does not depend on b. Do the same for Bob’s outcome.

(This exercise shows that Bob’s setting b cannot influence the statistics of A and Alice cannot learn anything
about b if she’s alone; same for Bob, so the entangled photons do not allow them to communicate via their settings.
The violation of Bell’s theorem can be revealed only after the referee has combined their results or Alice and Bob
have come together to combine their results.)

Exercise 12.4. Let

) = \2 (a{dT + ewe;aq) Ivac) , (12.54)
éy = (cos a,)cl + (e sina)éy, (12.55)
¢ = (—e "sina)é; + (cosa)és, (12.56)
dy = (cos b)d1 + (e sinb)ds, (12.57)
d_ = (—e""sinb)d; + (cosb)ds. (12.58)

Suppose that experimentalists tell you 6 and ¢ are some real constants that they cannot change. Compute C'(a, b)
and give them a set of settings (a1, b1), (a1, b2), (az,b1), (az, bz) such that |S| = 21/2.

Exercise 12.5. To measure a photon in a certain polarization basis, one way is to use a quarter-wave plate (QWP),
an electro-optic modulator (EOM), and a PBS shown in Fig. 12.3.

(1) The QWP applies a phase shift ¢ to the é;-polarization mode and a phase shift ¢y + 7/2 to the é-
polarization mode.


https://www.nobelprize.org/prizes/physics/2022/summary/
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FiGure 12.3.

(2) The EOM applies a phase shift ¢; to the e-polarization mode and a different phase shift ¢o to the
€_-polarization mode, where

1
&y = — (& + &), e_=——(& — &) (12.59)

V2

Let a1 2 be the operator for the €; o-polarized mode at the input and 131,2 (T)
mode at the output.

g Sl

e the operator for the € 2-polarized

Ut U

(1) Find the input-output relation between <l31 (T)> = <(7 U7

aq A ,
bo(T) ) and <&2> , where U is the unitary operator

that models the QWP + EOM setup.
(2) Let a one-photon state be

) = (vra] +zab) vac). (12.60)
N 2 ~
Find the probability P(+) = ’(Fock LU W)‘ of detecting the photon in the b; mode, where |[Fock : 1) =

~ ~ 2 ~
bI |vac), and the probability P(+) = ’(Fock :2|U ]1/1>’ of detecting the photon in the b2 mode, where

[Fock : 2) = bl |vac).
(3) We would like to implement a measurement with respect to the basis {|Fock : +) , [Fock, —) }, where

|[Fock : +) = di |vac) , |Fock : —) = al |vac) , (12.61)
a4+ = (cosa)a) + (sina)ag, a_ = —(sina)a; + (cosa)as, (12.62)

and a is a given real number, so that the probabilities are given by P(+) = | (+[)|? and P(—) =
| (—|4) |2, respectively. Find a set of ¢g, ¢1, @2 that implement the measurement.



CHAPTER 13

Incoherent Imaging*

Our goal in this chapter is to model the quantum state of light in an imaging system with incoherent sources
for astronomy and fluorescence microscopy. The general idea is sketched in Fig. 13.1, which generalizes the
two-input-two-output relations we studied earlier in Chapter 6. Multiple optical pulse modes on an input plane at
z = z; propagate through passive linear optics. They are transformed to optical pulse modes on an output plane
at z = 2y > z some time later. Let {f;} be the annihilation operators for the input pulse modes and {§;} be
the annihilation operators for the output pulse modes. If the optics is lossless, the input-output relations in the
Heisenberg picture are given by

= Vimfm, (13.1)

where V' is a unitary matrix, as we learned in Chapter 6. If there is loss, we assume that some modes are inaccessible
and trace them out, following Chapter 7.

assive
/f\ pIine.;lvr /’\
/}\—> optics —/35\

Ficure 13.1. An imaging system as a multi-input-multi-output system. Multiple spatiotemporal
modes with annihilation operators { f} are prepared at an input plane z = z;, which are transformed
to multiple spatiotemporal modes with operators {g; } in the Heisenberg picture.

13.1. Spatiotemporal modes

13.1.1. Change of variables. The simple pulse modes we studied earlier assume (k,, k) = (0,0) and s = 1.
The electric fields of the modes look like pulses moving along z but are otherwise uniform along (z, y). To model
imaging, we need to consider modes with more complicated spatial behavior. To define the modes in a way relatable
to classical optics, we perform a change of variables from (k,, ky, k.) to (kg, ky,w), similar to what we did in
Sec. 6.4.

Assume that the (k, s)-space amplitude of a mode is nonzero only for k, > 0, so that the mode propagates in
the positive z direction. k. can then be expressed as a function of (k,, ky, w):

w 2

s (g, By ) = \/(C) — k2 k2. (13.2)

119
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Recall the annihilation operator a(k, s) in the continuum case in Sec. 3.4. It satisfies the standard commutation
relation [a(k, s),af(K',s)] = 6%(k — k")d,s . In terms of the new variables, we define a new annihilation operator
as

7 kz kx7 k ) A~
b(kg, by, 8) = Wa(km,ky,kz(kw,ky,w),s), (13.3)
w
so that it satisfies a similar commutation relation
[l;(l-e, s), bl (K, s’)} = 53(k — K04y, (13.4)

where we have defined the shorthands
K = (kg, ky,w), Bk — k) = 0(ky — k)0 (ky — ky)o(w —w'). (13.5)

We can now define an optical mode with mode label [ by the annihilation operator

fi= Z// Wi (k,s)a(k,s)d®k = Z// Wi (K, )b(k, s)d>k, (13.6)

&k = dkydkydw, ///(...)d%z/oo /OO /Oo (...)dkydkydw, (13.7)
0 —00 J —00

Wi(k, s) is the continuum limit (L — oc) of W;;Ak~3/2 with Ak = 27/ L, and

where

Ok,

Wik, s) = oy

Wik, s) (13.8)

is the (k,s)-space amplitude of the mode, obtained by substituting k, with the function k,(k,, k,,w) on the
right-hand side.
For a set of modes, their operators should satisfy the usual commutation relation

[ £h] = dom, (139)

so the amplitudes should satisfy the orthonormal condition

Z// Wi (k, s)Wp(k, s)d°k = Z// Wi (K, 8)Win(K, s)d3K = 01, (13.10)

We can study the physical meaning of the (&, s)-space amplitude W, by considering the Heisenberg-picture electric
field E(r,t) of the mode. It will be convenient to write the electric field as a sum of two parts:

B t)=E 7 tr,6) + B (r,1), (13.11)
where E(+) is called the positive-frequency part, given by
1/2
() _ 1 hw; Ao iker—iwjt
E " (rt) = T3 ZJ: <2€0 Qe et (13.12)
and B (r,t) = [E(+) (r,t)]T, the negative-frequency part, is simply the Hermitian conjugate of the former. With

. 2 e+
a; = >, Wi fi, we can write E° ” as

BVt =3 foilr,t), (13.13)
l
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where the mode function v;(7, t) is given by

1/2
l ) - L3/2 4 260 ]l k,S .
J

1/2
— (27{1)3/2 Z /// [h;jf(f)} I/Vl(k, S)ékVSeik.r_iw(k)tdgk (L N OO) (1315)

1 hw Ok, 2 ~ ik-r—iwt 33
:WZ///<260 8w> Wik, 5)ék ™" d k. (13.16)

Thus, (k, ky,w) are frequencies of a plane wave that determine the oscillations of the electric field along (x, y, t),
and the integral represents a superposition of the plane waves over a range of (k, ky,w). It is customary in optics
to specify a spatiotemporal mode by its mode function v;(x,y,z = 0,t) as a function of (z,y,t) at a fixed z.
Given such a mode function, we can retrieve the (k, s)-space amplitude by Fourier transform:

1
Vi(k,s) = Wék,s . ///’Ul(:c,y, z=0,t) exp(—ikyx — ikyy + iwt)drdydt (13.17)
hw Ok \
_ <260 8w> Wik, s), (13.18)
hw Ok, \ /2
Wl(fi, S) = <2€0 O > Vl(l‘&, 8). (1319)

13.1.2. Narrowband approximations. To proceed further, it will be convenient to make a couple of simpli-
fying approximations that are common in optics:

(1) Quasimonochromatic: Wj(k, s) is highly concentrated near a carrier frequency w = €2, and the band-
width of W, along w is much smaller than €.

(2) Paraxial: W,(k, s) is highly concentrated near (k,,k,) = (0,0), so that the mode consists mostly of
plane waves with wavevectors that have small angles with the z axis. In other words, we assume

0
VE2+E2 < —. (13.20)

We call these the narrowband approximations. They mean that Wj(k, s) is highly concentrated near
(kg by, w) = (0,0,9) (13.21)
and W;(k, s) in k space is highly concentrated near (k, ky, k.) = (0,0,€/c); see Fig. 13.2. We can then assume

hw Ok, WS
260 ow - 2600’

€k,1 X €pz,1, €k N €kz 2, (13.22)

so that the cumbersome prefactor in Eq. (13.19) is a constant, we can treat W;(k, s) as the Fourier transform of the
mode function v;(r, t), and the polarization vectors do not depend on the wavevector and we can write €z s = €
in the following. One possible choice is

& =7, & =17, (13.23)

but any pair of orthonormal vectors perpendicular to z will do.

13.1.3. Mode amplitude in real space and time. It is often more intuitive to work in real space and time.
Abbreviate the coordinates (x,y,t) as

€= (z,y,t) (13.24)
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Ficure 13.2. The narrowband approximations mean that the (k, s)-space amplitude W;(k, s) is
highly concentrated near (k, ky, k.) = (0,0, £/c) in k space.

and define the (&, s)-space amplitude of the mode as the inverse Fourier transform

1 Rl e - . . . -
wi(€,s) = (27T)3/2/oo /OO /Oo Wi(ky, ky, Q4+ @, s) exp(ikyx + ikyy — iwt)dk,dk,do, (13.25)

where we have defined
w=w— 9, (13.26)

as the frequency relative to the carrier. We can take the integration limits with respect to @ to be (—o0, 00) because
W) = 0 outside a narrow band centered at the carrier €2. This definition means that w;(&, s) is the inverse Fourier
transform of a function W;(k,, k,, 2+, s) that is concentrated near (k,, ky,©) = (0, 0, 0) with a small bandwidth,
so wy is slowly varying in (z, y, t) relative to the frequencies €2/c in space and €2 in time.

Side note. In optics, another name for wi (€, s) is the envelope function of the mode, and the narrowband approxi-
mation is also called the slowly-varying-envelope approximation.

By Fourier duality,
1
Wi(ky, by, Q4+ @,s) = W /// wy (€, s) exp(—ikyx — ikyy + idt)d>E, (13.27)

so the annihilation operator for the mode given by Eq. (13.6) can also be expressed as

fi= 3 [[f witeete e (13.28)
where
A 1 7 ~ ikpx+ikyy—id ~
é(€,s) = W///b(kx,ky,9+w,s)ekz Fikyy =St gl dk, di, (13.29)

é(sv S)a éT(£,7 8/)i| = 53(5 - 6/)588/' (1330)

By virtue of Parseval’s theorem, the (£, s)-space amplitudes for a set of modes are orthonormal in the sense of

Z///wT(S,S)wm(«S?S)d?’ﬁ = Ot (13.31)
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Using Eqgs. (13.16) and (13.25) and making the narrowband approximations, the electric field of the mode can now
be expressed as

2600

BQ 1/2
Ul(x)yaz = 07t) ~ <> Zéswl(Sas)e_tha (13.32)

so that the w; (&, s) amplitude is more directly related to the electric field in real space and time. Examples:

(1) A monochromatic point source at position (z,y,2) = (u,v,0) would excite a mode with an amplitude
wy (&, s) that is highly concentrated near (x,y) = (u, v) at z = 0 and oscillates as exp(—i{2¢) in time.

(2) The transverse-electromagnetic (TEM) modes can be obtained by assuming {w;(&,s)} to be a set of
Hermite-Gaussian functions of (z,y).

(3) The diffraction of an optical mode is modeled by the change of the mode function v;(x,y, z,t) along z
according to Eq. (13.16). Fresnel diffraction [27], for example, is obtained if we make the Taylor-series
approximation

€

k§+k§
20

e (ko by ) ~ =~ (13.33)

inside the exp(ik,z) factor in Eq. (13.16).

13.2. Incoherent light

To model incoherent light, such as the radiation from thermal or fluorescent sources, we assume a quantum
state in the form

p= /<I>(a) la) (a] d* a, d(a) = th(lm exp (—aTFfla),

(13.34)

where the Sudarshan representation ® is a zero-mean symmetric Gaussian distribution with a covariance matrix
given by

/@(a)ala’:ndwa = Ty (13.35)
The word “symmetric” refers to the fact
/(I)(a)alamdwa =0 Vi,m. (13.36)

We call any state in this form a Glauber state. This model is motivated by the following facts:

(1) The thermal state discussed in Sec. 5.3 is a Glauber state.
(2) Under passive linear optics, an initial Glauber state would evolve to

p= [ @@ Va) (Valda— [6(vi8)|) (885 (13.37)
for some unitary matrix V, as we learned in Sec. 6.5.2. The Sudarshan representation in terms of 3
becomes
1
D(V18) = < exp| - (VTVH) ! 13.38
(V'8) = qeie 22 VTV 8], (13.38)

which is still zero-mean symmetric Gaussian, except that the covariance matrix has been transformed to
VI'VT. The output state hence remains a Glauber state.

(3) To model loss, we should assume that some modes are inaccessible and trace them out, as we learned in
Chapter 7. If the bath is also in a Glauber state initially, then it can be shown that the state after passive
linear optics and partial trace is still a Glauber state; see Exercise 13.1.

(4) The evolution of the covariance matrix in passive linear optics is consistent with the basic principles of
statistical optics [28].
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(5) With a Glauber state, the quadrature observables of each mode are zero-mean Gaussian random variables
with the same variance. This agrees with the common assumption in statistical optics that the fields of
incoherent light are zero-mean Gaussian random processes with the same variance for the quadratures of
each mode.

(6) The photon-counting statistics with a Glauber state follows Mandel’s formula given by Eq. (5.59), which
has been verified by experiments for many common light sources.

In addition to being a decent model, Glauber states are also mathematically convenient because each is completely
specified by the covariance matrix I', which is a J x J matrix for J modes, a much simpler mathematical object
than the infinite-dimensional p.

A classical-quantum correspondence can now be established by assuming that the mutual coherence function
in statistical optics is given by

~

v(&,s,€,58) = <E§_)(x’,y 2 =0t )E(+)($ Y,z =0 t)> E, *.E, (13.39)

Il
o

which is the covariance between the complex electric fields at two different points &€ = (z,y,t) and & = (2, y/, ')
on a plane at z = 0. The mutual coherence can be related to the covariance matrix I' in a Glauber state through the
following recipe:

(1) Assuming the spatiotemporal modes in Sec. 13.1 and a coherent state that satisfies
fila) = aila), (13.40)
the covariance matrix for a Glauber state becomes
Ty = / o(a)yat,d a = /q»(a)ala;;dﬂa — tr / o(a)f)|a) (o] ff i a = tr (ﬁﬁﬁn). (13.41)
(2) Under the narrowband approximations, the mutual coherence can be related to I' by

7(5,3,5’,3’):Z[é;‘-vl(r,t)}tr(flﬁf;lﬂé:,-'um(r’,t’)]* (using Eqs. (13.13) and (13.39))  (13.42)

Im
KO

~ et Zwl £, 8)Dpw, (&, 8). (using Egs. (13.32) and (13.41))  (13.43)
2600 T

(3) Using the orthonormal condition given by Eq. (13.31), we can also express the covariance matrix I' in
terms of the mutual coherence ~y as

_ 26002 /// /// W (&, $)Y(E, 5, € 8 Ywm (€, ) Bedde (13.44)

This recipe allows us to translate any result in statistical optics in terms of the mutual coherence to the quantum
regime by relating it to the covariance matrix of a Glauber state, provided that the problem at hand satisfies all the
assumptions made in this chapter.

Exercise 13.1.

(1) Let H 4 be a Hilbert space for J system modes and H p be a Hilbert space for K bath modes. Let p be a
Glauber state on H 4 with covariance matrix I" and pp be a Glauber state on H g with covariance matrix
'B), Show that p ® pp is a Glauber state on H 4 ® H g and find its covariance matrix in terms of I" and
I'®). You may assume that |o) = ‘a(A)> ® |a(B)> is a coherent state on H 4 ® Hp, where }a(A)> isa
coherent state in H 4,

a(B)> is a coherent state in H g, and

(4)
o= o g al® = (Z(B)), (13.45)

where @ is the direct sum (see Sec. B.11).
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(2) To model loss, suppose that the system and the bath go through some passive linear optics together,
modeled by a unitary U operator on H4 ® Hp and a V' matrix, such that

) VA4 AB) /)
Ula) =V, Vo= (V(BA) V(BB)) <a(B)>’ (13.46)

where VA4 is a J x J matrix, V(4B) is a J x K matrix, V(B4 is a K x J matrix, and VFB) is a
K x K matrix. Then we trace out the bath degree of freedom. Show that the resulting system state

&= trp [U(ﬁ ® ﬁB)fﬁ} (13.47)

on 7 4 remains a Glauber state and find its covariance matrix in terms of I, I'®)_ and the V matrix given
above.

(3) If pp is the vacuum state, find its covariance matrix I'
Glauber state ¢ in terms of I and the V' matrix given above.

(B) and find the covariance matrix of the final

13.3. Spectral modes
Suppose that each (&, s)-space amplitude w; (€, s) is separable as follows:
wi(§,s) = wgm(§,5) = dg(2,y, 5)om(t), (13.48)
where the mode label [ is now defined as
I = (q,m) (13.49)

in terms of the label ¢ for the spatial/polarization mode and the label m for the temporal mode. Let the temporal
amplitude ¢, (t) over a time interval 7" be

1 N T
or(t) = exp(=iBnt), 11l < 5, (13.50)
where
2(m — 1
wm:@ﬁw(”;), m=1,..., M. (13.51)

The electric field of each mode then oscillates with frequency € + @,,. The temporal amplitudes {;(t)} are
orthonormal in the sense of

T/2
/ O ()P (B)dt = S (13.52)
—T/2

T is assumed to be finite to make the math more tractable, but we also assume that it is very long relative to €2 and
often take the limit 7" — oo if appropriate.
With incoherent light, it is often reasonable to assume

Ly = T(gm),(¢m) =0 ifm # m', (13.53)

meaning that there is no correlation between two modes if they do not have the same frequency. The thermal
state, for example, obeys this condition. Moreover, most linear-optics components are time-invariant systems that
do not couple modes with different frequencies, so the covariance remains zero after the light passes through such
components. Another motivation is that incoherent light is often a stationary process in the sense that the mutual
coherence is a function of ¢ — ¢’ only in terms of its time dependence, so Eq. (13.44) would also imply I';;y = 0 in
the limit of 7" — oo if the two modes do not have the same frequency.
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With no covariance between modes with different frequencies, we can partition I' as the direct sum

@
(2
(M)
where
L) = T (gm), (om) (13.55)

is the covariance matrix for J,, modes with the same frequency w,,. We also partition the complex amplitudes
accordingly:

a=aVaa®@a...ga®=|" | (13.56)

where (™ is a column vector of amplitudes for the .J,,, modes with the same frequency @,,, so that the Sudarshan
representation becomes

M
1
— _ (m)tp(m)—1, (m)
P(a) =[] det (7T07) eXp( a™IrMm e ) (13.57)

m=1

and the Glauber state becomes

M
0 " o\ = 1 m m)— m m m m (1T
ngp( ), )_/det(ﬂf‘”“)e}{p (_a< JI(m)=14,( ))‘a( )> <a< )‘dw o™ (13.58)

Long story short, the zero covariance between modes with different frequencies allows us to factorize the Glauber

state into a tensor product of states, where each state is a Glauber state for modes with the same frequency.

13.4. Poisson approximation
We now focus on p(™) for the spatial/polarization modes with a specific frequency w,,. For brevity, we write
fo = Fom- (13.59)

For weak sources at optical frequencies, such as astronomical sources or fluorescent particles, it is often the case
that the average photon number in one spectral mode received by an imaging system is much smaller than 1.
Mathematically, this means that

e= D =3t (f1f,0) < 1. (13.60)
q
We can then make the approximation that 5™ is a linear combination of [vac) (vac|, {|vac) (14|}, {|14) (vac|}, and
{I14) (15|} only, where
14) = f] |vac) (13.61)
is the state with one photon in spatial/polarization mode q. It can be shown that, for a Glauber state,

(n|p™ |ny =0 if Y ng# Y n, (13.62)
q q
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SO W€ can assume

P = (vac| 5™ [vac) |vac) (vac| + 3 (14] 5™ [1,) |14) (1, (13.63)

q,p
(vac| 5™ |vac) — / B (@)ool 2Iney = 1 — ¢ + O(e), (13.64)
(14 "™ 1,) = / <1><m>(a)e—”°‘”2aqa;d”m =T +0(), (13.65)

where O(€?) denotes terms on the order of €2 or smaller, which we assume to be negligible. All other matrix entries
are O(€?) and can be neglected. Hence,

p™ ~ (1 - €) |vac) (vac| + ™), D =3 "1 1) (1], e =tr M), (13.66)
q,p

This approximation of the density operator is extremely useful in quantum information calculations [29, 30, 31].

An important consequence of Eq. (13.66) is that it gives rise to Poisson statistics for photon counting. To see
this, first consider photon counting in one spectral mode. Let the photon count in mode (g, m) be ng . The
probability of finding no photon in one spectral mode is

Plngm = 0forall g] = (vac| 5™ |vac) = 1 — ¢, (13.67)
the probability of finding one photon is

> ngm = 1] = (L]p™ 1g) =€, (13.68)
q q

and given that there is one photon, the probability of finding the photon in spatial/polarization mode g is

P

P

Ngm = 1

. L
> o = 1] = — (1o P [1g) = T3, (13.69)
p

If we now assume that all the covariance matrices {F(m)} for different frequencies are identical and, for each
spatial/polarization mode g, we integrate the photon counts n, , over all the frequencies to obtain an integrated
photon count

M
ng= Y Ngm, (13.70)
m=1

the integrated photon counts {n,} in the spatial/polarization modes become Poisson in the limit of
e — 0, M — o, M e held fixed, 13.71)

according to Sec. C.7. This result is consistent with the Poisson model commonly assumed in optical astronomy
[32, 33] and fluorescence microscopy [34], offering another justification of the approximation in Eq. (13.66).

Note that our derivation of the Poisson model works for photon counting with respect to any set of spa-
tial/polarization modes, since we haven’t assumed anything specific about the modes.

Side note. The photon-counting distribution for thermal, fluorescent, or atomic sources is often not exactly Pois-
son, and any deviation from the Poisson model is called bunching or antibunching [35]. To model bunch-
ing or antibunching, one needs to include the multi-photon components of ﬁ(m), i.e., the higher-order terms
Yonm (7 P /) In) (n| with > Mg = D_yMq = 2. Calculations have shown, however, that such terms are
insigificant if € < 1:

(1) In astronomy, Hanbury-Brown-Twiss interferometry, also called intensity interferometry, postselects the
two-photon events in each temporal mode, and one must consider at least the two-photon components
of p(m) to model it. Unfortunately, it turns out to have a terrible signal-to-noise ratio compared with
ordinary stellar interferometry that relies on one-photon events [32].
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(2) Calculations in quantum information theory [36, 37, 38] also find that, when € < 1, the effect of the
higher-order terms on the total amount of information in the light is negligible.

The reason is simple: the probability of having two or more photons in each spectral mode is O(e?), which is much
smaller than the one-photon probability €; such rare events cannot contribute significant information on average.
13.5. Imaging
13.5.1. Randomly polarized light. First let us be more specific about the polarizations. Assume
wi(§,5) = wgom(§,5) = Pq(,Y)dsopm (), (13.72)
where the mode label now consists of
l=(q,0,m), (13.73)

q is the label for the spatial part, o = 1, 2 is the label for the polarization part, and m is the label for the spectral
part. If the light is randomly polarized, then

Ly = F(Qmm)v(Q’,U’,m’) =0 ifo# o' (13.74)
for any two modes with orthogonal polarizations, and we can once again partition the covariance matrix as
r=grem, T&5™ = Tgom),pom): (13.75)

I'(@™) is now a covariance matrix for spatial modes with a given polarization o and frequency ws,.
With all these assumptions and using Eq. (13.44), I'(?™) can be expressed as

m _ // // 6 (2, 1) (@, g, 7', ol o Y dwdyda'dy (13.76)

where
m 26 C 7
YO (@, y,a'y) = o / / PO (E)7(€, 0,€, ) drar’ (13.77)

is the spatial part of the mutual coherence. Usmg the same Poisson approximation in Sec. 13.4, we can write

p=0Qp ™, plo™ = (1—rT@™)|vac) (vac| + T@™, T =N rlomin )1, (13.78)

Our remaining task is to find T'(7™),

13.5.2. Statistical optics. Let us now review the key results in statistical optics [32] with criminal brevity. A
point source excites a spatially localized mode near (u, v) on the object plane. The mode turns into a spherical wave
as it propagates away from the source. A diffraction-limited optical system collects part of it through an aperture
and passes the light to a detection plane. The mutual coherence on the detection plane becomes [32]

YO @y, y') o (e, ylu, )" (@ Y |u,v), (13.79)
where [ is the intensity of the source and ¢ is the point-spread function of the system for the optical field. For
example,

(1) if the detection plane is right at the aperture (called the pupil plane) before any lenses, then v (z, y|u, v)
is simply the spherical-wave solution,
(2) if the detection plane is an image plane, then v (z, y|u, v) can be modeled as a function of (x — u,y — v).

With multiple incoherent point sources at object-plane positions {(u,, v,)} and with intensities {1, }, there is no
correlation between the fields due to different sources, and the mutual coherence is the sum

’Y(a’m) (z,y,2",y) Z L (, ylup, vp) ™ (2, 4 [up, vp). (13.80)
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More generally, we can regard an arbitrary number of incoherent point sources as one spatially incoherent extended
object with intensity function I(u,v) on the object plane, so that the mutual coherence on the detection plane
becomes

Ao (2 y, 2 ) o // I(u, v) (2, ylu, v)¢* (2, ' [u, v)dudo. (13.81)

The setup is illustrated in Fig. 13.3. The famous Van Cittert-Zernike theorem in statistical optics (https:
//en.wikipedia.org/wiki/Van_Cittert%E2%80%93Zernike_theorem) is an example of Eq. (13.81) if we
take the detection plane to be the pupil plane and v to be the spherical wave.

spatially
incoherent ;

. point-spread
object function
I(u,v) Y(z, ylu, v)

object imaging  detection
plane system plane

Ficure 13.3. A diffraction-limited imaging system.

13.5.3. Classical-quantum correspondence. To relate the mutual coherence (%) to the covariance matrix
I'(@™) in a Glauber state, use Eq. (13.28) to write the spatial-mode annihilation operator as

fo= [ eiwnd. sy, (13.8)
where d(x, ) is related to the ¢ operator in Eq. (13.29) by
d(z,y) = / P (1)e(€, o) dt, [ci<x, y),dl (2, y’)} = (x — )5y — ). (13.83)

Define also
) = [ /I w<x,y|u,v>ci*<x,y>dxdy] vac) (13.84)

as the state of a detection-plane photon emitted by a point source at object-plane position (u, v), assuming that the
point-spread function is normalized as

(unlthun) = / (s ylu, o) Pdady = 1. (13.85)
Then

(Lg[tbun) = / &% (2, ) (x, ylu, v)dedy, (13.86)


https://en.wikipedia.org/wiki/Van_Cittert%E2%80%93Zernike_theorem
https://en.wikipedia.org/wiki/Van_Cittert%E2%80%93Zernike_theorem

and this inner product can now be combined with Eqgs. (13.76) and (13.81) to give
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g o [ 100 Quliua) el duce,

flom) o // T(1,0) [t 0) (] dudo.
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(13.87)

(13.88)

Egs. (13.78) and (13.88) are the starting point of many calculations regarding incoherent imaging in quantum

information theory [29, 30, 31].



APPENDIX A

Blackbody Radiation*

A.1. Rayleigh-Jeans

Consider a box with some matter that can both absorb and emit EM radiation, such as the wall of an oven or
atoms inside a star. We call the matter blackbody because it can absorb light at all frequencies, but in practice
anything can absorb and emit light. We focus on the EM fields and assume that the blackbody is the “heat bath.”
According to Gibbs, when the fields and the blackbody are in a thermal equilibrium, each degree of freedom of the
fields should have a probability density of energy given by

exp(—pFE 1
F(B) = o 2(PE) =,
Jo exp(—BE")dE kT
where kg is called the Boltzmann constant (even though it was first proposed by Planck) and 7' is the temperature.
Each degree of freedom is a mode of the EM fields inside the box. The average energy of each mode is then

E = /Oo Ef(E)dE = ; = kgT. (A.2)
0

This result is consistent with the equipartition theorem for harmonic oscillators. Now we define a spectral density
function S(w) as a function of the angular frequency w as follows:

(A.1)

@ energy in all modes with frequencies up to 2
S(w)dw = .
0

A3
volume of box (A.3)

In other words, |, OQ S(w)dw is the EM energy density if we include only modes with frequencies up to €2.
For EM fields, that means we need to sum up the energies of all the modes with frequencies up to {2 to compute
this integral.
Since E here is the same for all modes, we just need to count the number of modes and multiply that by £.
Recall
2N, 2mny
ky = T ky:T, k, = 7 Ng,Ny, N, =0,£1,£2, ..., (A4)
and if we mark each possible value of (k,, ky, k) by a dot in k space, we’d get something like Fig. A.1.

2mn,

(1) Each dot is separated from an adjacent dot by 27/ L, and we have a lattice of dots in general.

(2) Remember also that, for each value of k, we have two polarizations, so each dot denotes two polarization
modes.

(3) Recall that each mode has frequency

w(k) = c|k|, (A.5)
so the modes with w(k) = c|k| < Q would be the modes inside a sphere in k space with radius |k| < Q/c.
To simplify the counting, we introduce the concept of mode density p(k):

/// p(k)d3k = number of modes inside a k-space region V. (A.6)
%

Let’s assume that L is very large, so that the dots are very close to each other and there are a large number of
dots inside the sphere. Then we may approximate the density of the dots as a constant, i.e., assume that p(k) is a
constant.
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Ficure A.1. Possible values of wavevector k for sinusoidal modes in a box. Each dot denotes two
polarization modes.

There is one dot per k-space volume (27/L)3, and there are two modes per dot, so the mode density is
2
kY~ ———. A7

Now the number of modes with w(k) < € is simply an integration of p(k) over the sphere with radius ©2/c in k
space. Since p(k) is a constant, the integral is simple:

47(92/c)3
(2r/L)3 3
Side note. The concept of mode density and the formalism here are closely related to the important concept of
density of states in solid-state physics.

number of modes with w(k) < Q ~ p(k) x volume of sphere = (A.8)

Putting everything together,

/Q S () = average energy per mode X number of modes with frequencies up to €2 (A.9)
0 volume of box

E 2 An(Q/c)?

= — . A.10

3" /L3 3 &.10)
Differentiating both sides with respect to {2, we obtain

_ w2
S(w) = Eﬂ263. (A.11)

We could do more physics to derive the power spectral density of the light that comes out if we poke a hole on
the wall, but we wouldn’t bother for now. (It has the same dependence on w as S(w); see Sec. A.3.) Plugging the
classical prediction £ = kpT into the formula, we obtain the Rayleigh-Jeans law

o‘)2

SRayleigh-Jeans (W) = WkBT- (A.12)

This fits the experimental result for low w only. The discrepancy between Rayleigh-Jeans and experiments at high
frequencies is called the ultraviolet catastrophe.
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A.2. Planck

Planck assumes that the energy in each mode is discrete. According to Gibbs, if the energy is discrete, the
probability mass function of the energy in mode j = (k, s) should be

exp (—BE/hw;) E
Pi(F) = ) —=0,1,2,... (A.13)
) = S o (BB ) =
The average energy is then
_ Fieos
o EP:(E) = J ) (A.14
J XE: 5(F) exp(hw;/kpT) — 1 )

When hw; < kpT, we have Ej ~ kpT', which agrees with the classical case, but when the frequency wj is high
E; becomes very different. Since the energy of each mode depends on w;, which depends on k, we have to modify

the formula for fOQ S(w)dw a bit:
Q 1 B
/ S(w)dw = & /// E;p(k)dk. (A15)
0 L2 JJ)y

In other words, we think of p(k)d®k as the number of modes in a tiny region near k in k space, E; as the energy
of those modes, and the integration in k space is just a sum over all the energies in the modes inside the k-space
region V. Since Ej depends only on the magnitude & of k and p(k) is constant, it is convenient to rewrite the 3D
k-space integral in spherical coordinates:

Q 1 3 5 Q/c pr 27 2 5 .
/0 S(w)dw = E,}///]}Ejp(k)d k:/o /0 /0 ijk sin OdkdOd¢ (A.16)
2

Q/c
=4 Ek%dk. A17
ﬂ(27r)3 0 ’ ( )
2 1 [92_
=dr— Eiwldw. A.18
W(27r)3c3/0 jw”dw ( )

Differentiating both sides with respect to {2, we obtain

B w? hw
-~ 7m2c3 exp(hw/kpT) — 1

S(w) (A.19)

This is the law Planck derived in 1900. If iw < kg7, the Rayleigh-Jeans law given by Eq. (A.12) is a good
approximation, but otherwise Planck’s law is much more accurate for high w. Moreover, the total energy |, OOO S(w)dw
is now finite:

00 2
_ 7 4 4
/0 S(w)dw = 15(hc)? (kpT)* o< T". (A.20)

This T* dependence is called the Stefan-Boltzmann law.

A.3. Spectral radiance

To convert S(w), which is the energy spectral density inside the box, to the power spectral density you observe
outside the box, imagine that there is a hole on the wall of the box where the light leaks out, or consider the light
that leaks out from the surface of a star. This leakage is usually very weak relative to the total energy of the EM
fields and the matter (e.g., the light leaking out an oven or light from a star is very weak relative to all the energy
inside them), so it does little harm to our assumption of a thermal equilibrium between the EM fields and the matter.

Suppose that the area of the leakage is A (e.g., area of the hole or surface area of the star), and we look at
the energy leaking out in one small time interval A¢. With many modes inside the box and the EM waves having
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random phases, it is a good assumption that the EM energy density is going to be quite constant inside the box. The
speed at which the EM energy leaks out is c. Then we can define a power spectral density R(w) by

/ R(w)dw = power density — energy density x volume oft EM energy that leaks out (A21)
A X cA
[/ S(w dw] Xt / S(w (A22)
R(w) = AcS(w). (A.23)
We could also define an intensity spectral density I(w) by dividing both sides by the leakage area A:
R(w
I(w) = L = cS(w). (A.24)

If we look at the leaked radiation from very far away, it’s going to spread evenly in all angular directions. If my
detector can only detect a certain solid angle, then the detected intensity spectral density normalized by the solid
angle is
_Iw) _ ¢
nw) === 5w, (A25)

so that, given a certain solid angle that my detector can cover, the intensity spectral density is (w) x solid angle,
and if I can detect the whole 47 solid angle, then I get back n(w)4r = I(w).

To obtain the exact Planck’s law on Wikipedia, we need to do one final thing: convert this spectral density
in terms of angular frequency w to a spectral density 7(v) in terms of frequency v = w/(27) in Hertz. The two
densities are related by

v 2y
/ (V) dy' = / n(w)dw. (A.26)
0 0
Differentiating with respect to v and writing h = 27h, we finally obtain

W
? exp(hv/kgT)—1

(A.27)

n(v) = 2mn(27v) = gS(Qﬂ'V) =

7i(v) is called the spectral radiance (power (Watt) per frequency (Hertz) per area (m?) per solid angle) on Wikipedia
and we’ve finally arrived at the exact formula.



APPENDIX B

Hilbert Spaces and the Bra-Ket Notation

B.1. Motivation for an abstract formalism

Modern physics has found it simpler and more elegant to describe objects in the physical world using abstract
mathematical concepts beyond numbers, matrices, and functions. The most common example in classical physics
is the use of abstract vectors to describe positions, velocities, forces, fields, etc. A vector in three dimensions is
written as

V=0T + vy Y + U2, (B.1)

{&,y, z} are unit vectors that point in three orthogonal directions, called an orthonormal basis of the vector space.
Vg, Uy, and v, are the components of the vectors along those directions in a Cartesian coordinate system. x, ¥, 2,
and v are abstract objects that we call vectors to represent physical concepts; they are not numbers but something
more abstract. We deal with these abstract objects by mathematically defining an algebra on the vectors, such as
addition of two vectors v + w, multiplication of a vector by a scalar cv, the dot product v - w, the cross product
v X w, and some tensors to map one vector to another vector. The algebra is a set of rules about how to manipulate
these abstract objects and it turns out that each operation is useful and meaningful in physics.

One simple example is the work done by a constant force F' on an object moving along a straight path from
initial position 7 to final position 72:

WZF-(’I“Q—Tl). (B.Z)

F, ry, 1 are all abstract vectors. Writing a physical law this way is obviously simpler; otherwise we’d have to write
out all the components of F', 1, and r5. There’s also a deeper message contained in the abstract formalism: It tells
us that the work done is the same regardless of how we align the basis vectors {&, ¥, 2} in our physical problem, or
where we define the origin of the Cartesian coordinate system for our position vectors 1 and 2. In other words,
some symmetry of the physics is built into the abstract formalism.

For another example, consider the vector fields, the divergence V-, and the curl V x in vector calculus. They
allow us to simplify Maxwell’s equations from the original 20-plus equations written down by Maxwell to just four,
and the equations work regardless of how we align the Cartesian coordinate system in our problem.

We have an even higher level of abstraction in advanced quantum mechanics: instead of writing the fundamental
equations in terms of differential equations or matrix algebra, we write them in terms of abstract Hilbert-space
vectors and operators on those abstract vectors. We treat the wavefunctions, the matrices, and the derivatives
in kindergarten quantum mechanics as mere representations of the abstract quantities. The main reason for the
abstract formalism is simplicity: the notation would be a lot more cumbersome if we used anything else. The
inherent symmetry built into the abstract Hilbert-space formalism is a deeper concept that we won’t touch here.

B.2. Vectors

Quantum mechanics is modeled by vectors in complex Hilbert spaces. A complex Hilbert space, commonly
denoted by the caligraphic H, is a set of elements that we call vectors. In the bra-ket notation, we denote each
vector by a ket written as |¢)). The most important example is the state of a quantum system: we use a vector |1))
to model the state at one time, and all the properties of the quantum system at that time can be derived from |[1)).

In mathematics, we say that a set of objects are vectors when we can do the following things with them:

(1) Scalar multiplication: Given a vector |v), z 1) is also a vector, where z € C is any complex number.
(A complex number is also called a scalar in physics, to distinguish it from vectors.)
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(2) Addition: Given two vectors |¢)) and |¢), their addition |i)) + |¢) is also a vector.

Moreover, these operations have the following properties: For arbitrary vectors [¢) , |¢) , |£) and arbitrary complex
numbers z,w € C,

) +16) = 1) + |4) (B.3)
(1) +10)) +16) = [¥) + (|6) + 1£)), (B4
zwly) = (zw) [¢), (B.5)
(z+w)[Y) =z|¥) +wly), (B.6)
[Y) +18) = z[¥) + z|9), (B.7)
Ly) = |¢). (B.8)
When we take a bunch of vectors and apply scalar multiplications and vector additions repeatedly, i.e.,
21 [1) + 22 [Y2) + ... (B.9)
we say that this is a linear combination of the vectors {|¢)1) , [¢2) , ... }. In physics, we also call it a superposition.

The set of all possible linear combinations of a bunch of vectors is called a vector space. A Hilbert space is a
special example of a vector space, and we call it complex when complex coefficients {z1, 2o, ... } are allowed in a
linear combination.

Because we can multiply a vector by any complex number for a complex Hilbert space, unfortunately it is
impossible to draw these vectors in simple pictures, and we have to rely on algebra.

There is a special vector called the zero vector, denoted by 0 (without the |) for brevity). It is defined by

0+ ) =) VYY) eH. (B.10)

Think of it as a vector with zero length.

Almost any Hilbert space that we encounter in physics can be expressed in terms of a special countable set of
vectors {|e1),|ea), ..., |en)} called a basis of the Hilbert space. This set is called a basis because any element of
the Hilbert space can be expressed as a linear combination of the vectors in the basis, so we can write

[V¥) =1 ler) + 2 lea) + -+ YN |en) (B.11)

for some complex numbers 1,9, ..., for any |¢)) € H. (A basis plays the same role as the unit vectors
{Z,y, 2} you learned in high-school physics, except that now we may have a large number of dimensions, not just
three.) We call {11, 2,...,1¥n} the components of |¢)) with respect to the basis. A basis is also required to be
linearly independent, such that the components {t,, } for a given |1)) € H are unique, i.e., no other set of complex
numbers can satisfy Eq. (B.11) for a given [1)).

Note that, given a Hilbert space, there are usually infinitely many bases that we can choose from, so we can
write a vector as

) =1 ler) +2lez) + - +Yn [en) (B.12)
=1 [el) + 2 les) + o+ U e) (B.13)
using another basis {|e}) ,...,|e/y)} of the same Hilbert space. For a given vector, the components depend on

the chosen basis. If we choose a different basis, the components change.
In quantum mechanics, if |¢) is the state of a quantum system, then we say that 1), as a function of n is a
wavefunction of the system. The wavefunction depends on the basis we choose.

B.3. Inner product

At the end of the day, we need to extract numbers from these abstract vectors to compare with experiments, and
the inner product is the main mathematical way of obtaining numbers from the abstract Hilbert-space vectors.

For vectors in a Hilbert space, we can take the inner product between two vectors |¢) and |v), denoted as (¢[1))
in the bra-ket notation. (Mathematicians don’t like this notation and prefer to write it as (¢, ¥) or (¢, 1)). The inner
product generalizes the dot product in high-school physics. Just like the dot product, the inner product (¢|¢)) of a
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vector |¢) with itself is always a nonnegative real number and we say that /(1|v) is the norm of |¢) (a fancy word
for length). The new feature of the inner product is that (¢|1)) between two different vectors is a complex number
in general.

An inner product is defined by the following properties: For arbitrary vectors 1) , |¢) , |n) and arbitrary complex
numbers z,w € C,

(1) (¢[t)) is a complex number.
(2) If we switch the order of the two vectors, the inner product becomes the complex conjugate:

(818 = ((¥le))". (B.14)
(3) The inner product of a vector with itself is always real and nonnegative:
(Yly) = 0. (B.15)
(4) Linearity with respect to the second vector:
(0] (z[) +w m) = 2 (8l¢)) + w (Bln) .| (B.16)

(5) (¢|v) = 0 if and only if |¢)) = 0 (the zero vector). In other words, the zero vector is the unique vector
that has zero length \/(¢|1)) = 0.
To compute the inner product in practice, we assume that the Hilbert space has an orthonormal basis
{le1) ,|e2),...,|len)}, obeying

1, n=m,

0. ntm, (B.17)

(en|em) = Onm = {

where 0, is called the Kronecker delta and = means “defined as.” In other words, each vector in the basis has
unit norm

(enlen) =1 (B.18)
and is orthogonal to all the other vectors:
(enlem) = 0if n # m. (B.19)
Given an orthonormal basis, we can express each vector in terms of the components
[6) = dnlen) = d1ler) + -+ én len) (B.20)
n
) =t len) =1 ler) + -+ dn fen) . (B.21)
n

Then their inner product is given by the following recipe:

(Bl) = dhthn = $i1 + d3tha + -+ + G N (B.22)

Two important points to remember about the recipe:

(1) The inner product is like the dot product, except that we must remember to take the complex conjugate
of the components of the first vector. If the components are all real then the inner product becomes the
same as the dot product.

(2) We must pick the same basis for the two vectors and the basis must be orthonormal, otherwise the recipe
doesn’t work.

Remark B.1.
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(1) Orthogonal is just a fancy word for perpendicular—two vectors are said to be orthogonal if their inner
product is zero. “Orthonormal” means orthogonal and normalized—a vector is called normalized if its
norm is equal to 1.

(2) The unit vectors {&,y, 2} in high-school physics are an example of an orthonormal basis of a 3D vector
space.

(3) The number of vectors N in an orthonormal basis is called the dimension of the Hilbert space.

Another way of writing the inner product is to write the components of each vector as a column vector:

(08} o1
w=|: | o= : | (B.23)
(N ON

We call ¢ a column-vector representation of |¢)). Again, the representation depends on the chosen basis. Then
the inner product can be written in terms of matrix algebra as

U1
(o) =l = (6] ... oi)| & |, (B.24)
(Y
where 7 is the conjugate transpose.
Exercise B.1. If
|p) = 2 |d1) +wld2), (B.25)
show that
[(glw) = 2" ($1]¥) + w” (gale)) | (B.26)

We say that the inner product is antilinear with respect to the first vector.

With the inner product, we can finally say what a Hilbert space H is:

(1) It is a vector space—the set of all linear combinations of the vectors in a basis as per Eq. (B.11).
(2) An inner product between any two vectors in the Hilbert space is defined.

The precise mathematical definition is a bit more complicated but not very important in physics. In physics, we are
blessed by the existence of orthonormal bases, so calculations are nothing more than matrix algebra, e.g., Eq. (B.24),
in a fancy language.

Exercise B.2. Let {|0) , |1) } be an orthonormal basis. Compute (¢|)), (¢|1)) and (¢p|¢) if

(D

1 1
) = 75(10) + 1), 9) = —=(0) = 1) (B.27)
2)
) = 7<\o>+zrl>> 6) = 7<ro>—zu>> (B.28)
3)
) = ——(10) + 1)), 16) = —=(=i[0) + [1)). (B.29)

V2 V2

Exercise B.3. Prove that, given an orthonormal basis {|e,,) }, each component 1), in the expansion of a vector |¢))
given by Eq. (B.11) can be obtained from the formula

¢n = <6nW}> . (B3O)
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Exercise B.4. Given one orthonormal basis {|e,) : n = 1,..., N}, show that the basis consisting of
N
len) =D Unmlem) n=1,...,N, (B.31)
m=1

where U is a unitary matrix, is another orthonormal basis. Show that the converse is also true: if {|e,,)} and {|e/,)}
are orthonormal bases of a Hilbert space, then they must be related by some unitary matrix as per Eq. (B.31). Find
the relations between the components { (e, |¢)) } with respect to the original basis and the components {{e},|¢)}
with respect to the new basis.

Exercise B.5. Show that the inner product is given by Eq. (B.22) regardless of the orthonormal basis we pick to
define the components.

Exercise B.6. Suppose that there is just one element |e1) in an orthonormal basis of a Hilbert space. How many
vectors in total are there in the Hilbert space? If there are N elements in an orthonormal basis, how many vectors
in total are there in the Hilbert space?

Exercise B.7. How would you define a 0-dimensional Hilbert space?

B.4. Operators

An operator maps a vector to another vector. In kindergarten quantum mechanics, we usually put a hat on it
(like this: A) to distinguish it from a scalar, but note that research papers and a lot of books often don’t do that. If
A maps a vector in H to another vector in the same space H, we say that Ais an operator on H.

All operators considered in this book are linear, in the sense that

A(z|¥) + wle)) = zA 1) + wA|g), (B.32)

for any |¢) ,|¢) € H and any z,w € C. In other words, we can always pull an operator inside a sum, and pull any
scalar outside an operator.

Assume an orthonormal basis {|e;,) }. The most powerful notation in the bra-ket formalism is the ket-bra form
of an operator:

A= Apm len) (eml, (B.33)

n,m

where each A,,,, is a complex number, and A is a matrix called a matrix representation of A, or simply a matrix
of A. Note that the matrix depends on the chosen basis. Notice that we write a ket first and a bra second in this
ket-bra form, and it is a double sum. When we apply an operator in this form to a ket |¢)), we obtain

A ) = Z Apm len) (em|¥) - (B.34)
n,m
This equation involves the following steps:

(1) Take the inner product of |1)) with |e,,) to obtain the components (e, |1) of |¢)).
(2) Multiply the components with the A matrix to obtain ) _, = Ay (em|1)), Which is a set of complex numbers.
(3) Use the complex numbers from the previous step to compute the linear combination

Alp)y =3 (Z Anm, <emyw>> len) . (B.35)

The result is a linear combination of kets, so it is also a vector.
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The second step above is equivalent to matrix algebra. If we want to compute the components (e,,| A [)) of
the output vector directly, we can write

(eal A1) = tenl 3 Agm leg) eml) (B.36)
= Z /jl]m (enles) (eml) (linearity of inner product) (B.37)
= g Ajmdnj (em|?) ({|en)} are orthonormal) (B.38)
= g Apm (em ) . (in the Z sum, only one j = n term is nonzero) (B.39)
m J

Hence, if we once again regard the components {{e,,|1)} as a column vector, the components of the output form
another column vector produced by a product of the matrix A with the input column vector:

2 Ay A ... AN
A
<€1| ' |¢> Aoy Agy ... Aoy <61'|w>

(B.40)

exl ) \ 4o Aws o Ay NN

Some caveats about the ket-bra form:

(1) In rare cases in advanced quantum mechanics, we also need to deal with antilinear operators that are not
linear and cannot be expressed in the ket-bra form, but we don’t need them in this book.

(2) For infinite-dimensional Hilbert spaces, there exist operators that cannot be expressed in the ket-bra form
exactly, such as the position operator of a particle. In physics, we deal with those using a trick by Dirac:
define a continuous version of an orthonormal basis {|x) : € R™} that obeys

(x|a') = §"(x — ), (B.41)

where " is the n-dimensional Dirac delta function, and then express an operator as an integral rather then
a sum:

A= // Az, x') |x) (/| d"zd" ", (B.42)

where A(x, ') is now a function of two variables « and @’ rather than a matrix. Mathematicians hate
this but it works.

There is a unique zero operator denoted by 0 (without the hat for brevity). It is defined by
Oly) =0 V) eH. (B.43)

In other words, when the zero operator is applied to any vector, the result is always the zero vector. It is slightly
sloppy to use the same symbol 0 to denote the zero number, the zero vector, and the zero operator, but the notation
is standard and harmless in practice; they all behave the same way as the number 0.

Be extremely careful that, like matrix algebra, you cannot interchange the order of two operators in a product
usually:

AB + BA usually. (B.44)

In the rare cases that AB = BA, we say that the two operators commute. In general, noncommutativity is the single
most annoying feature of quantum mechanics. Another way of describing this problem is to use the commutator,
defined as

A A A A

[A, B] = AB — BA. (B.45)
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If [fl, B’} = 0 (the zero operator), then we say that A and B commute, and if the commutator is not zero, they don’t
commute.

Exercise B.8. Assume an orthonormal basis {|e,,) : n = 1,..., N} in the following.

(1) Show that the matrix representation of Ais given by

Apm = (en| Alen) . (B.46)

In other words, there’s a one-to-one correspondence between an operator A and its matrix representation
A, as long as we fix an orthonormal basis.
(2) An identity operator I is defined by

L) = v) (B47)

for any |¢)). Prove that it can be expressed as
1= len) (en. (B.48)

n

Find the matrix representation of I. Show that I commutes with any operator.
(3) Find the matrix representation of AB in terms of the matrix representations of A and B if

A= Apm len) (em B =" Bunlen) (eml- (B.49)
n,m n,m
Exercise B.9. Let {|e,,) : n = 1,..., N} be a set of vectors in a Hilbert space that are not necessarily orthogonal
or normalized. Suppose that the identity operator can be expressed as
N
I=Y"len) (enl. (B.50)
n=1

Then show that any vector 1) € H can be expressed as a linear combination of {|e,,)}, i.e., {|e,)} is a complete
set of vectors of the Hilbert space, and Eq. (B.50) is called the completeness condition on a set of vectors.

Side note. A complete and linearly independent set of vectors is called a basis of the vector space. Equivalently, a
set of vectors {|e,)} is a basis if and only if any |¢) € H can be uniquely expressed as a linear combination of the
set. In other words, we can write any vector as

N
) = tnlen) (B.51)
n=1

and the coefficients {1, } are unique, such that no other linear combination of {|e,,)} gives the same |). To check
that a set of vectors is an orthonormal basis, we need to check that they are orthonormal and also they satisfy the
completeness condition given by Eq. (B.50).

B.5. Adjoint

The adjoint of an operator, also called the Hermitian conjugate, is analogous to the conjugate transpose t of a
matrix, and we use the same symbol {. To define it, it is easier to use mathematicians’ notation of the inner product.
Given an operator A, its adjoint, denoted by AT, is defined by the property

(¢, Azp) — (qus,zp) Vi, ¢ € H. (B.52)

To write this definition in the bra-ket notation, we first define the adjoint of the ket as the bra:

(0l =19)T, (B.53)
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so that the inner product can be written as
(0lv) = 10)" 1v). (B.54)
Then AT is defined by the property

WAk = (A'10)) 10) V1w .16) € 1. (B.55)

The adjoint operator is useful because it gives us a new way to compute (¢| A [)):

(1) The usual way: Apply A to |¢) first, and then compute the inner product between |¢) and A |4)).
(2) The new way: Apply A' to |¢) first, and then compute the inner product between A |¢) and |1).
Here are some fundamental properties of the adjoint, similar to those of the conjugate transpose:

(1) Antilinearity: for any complex numbers c1, c3 and any operators Ay and A,

o ~\T R X
(c1A1 + CQAQ) =t Al + 3 A, (B.56)

In other words, we can pull { inside a sum, but remember to take the complex conjugate of the coefficients.

(2) Involution (7 is its own inverse):
AT = A, (B.57)

(3) Contravariance:

(AB)" = BT AT, (B.58)

You should go through Exercise B.10 to learn how to compute the adjoint in practice.

Exercise B.10. Let A be the matrix representation of A with respect to an orthonormal basis {|e,,) }. Show that the
matrix representation of A is given by

(eal At lem) = ((eml Alen)) (B.59)
so that we can write
AF =37 (AF) fen) (enl, (B.60)

where At is the conjugate transpose of the matrix A. In other words, the matrix of A is the conjugate transpose
of the matrix of A.

Exercise B.11. An operator is said to be Hermitian if
(B.61)
Show that an operator is Hermitian if and only if its matrix representation is Hermitian.

Exercise B.12. The inverse of an operator is defined by A~1A = AA~' = I. Show that A~ is the inverse of A if
and only if their matrix representations are inverses of each other.

Exercise B.13. An operator is said to be unitary if

Ul =0t (B.62)

such that

oot =00 =1, (B.63)

where I is the identity operator. Show that an operator is unitary if and only if its matrix representation is unitary.
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Exercise B.14. Let {|e,,)} be an orthonormal basis of a Hilbert space and U be a unitary operator. Define another
set of operators as

len)y=Ulen), n=1,...,N. (B.64)

Show that {|e/,) } is also an orthonormal basis. Conversely, given two orthonormal bases {|e,,)} {|e},)}, show that
there exists some unitary operator U such that the two bases are related by Eq. (B.64).

Exercise B.15. An operator A is said to be normal if

AAT = ATA. (B.65)

In other words, a normal operator is defined by the property that it commutes with its adjoint. Show that an operator
is normal if and only if its matrix representation is normal.

Exercise B.16. Show that any Hermitian operator is normal. Show that any unitary operator is normal.

Exercise B.17. Prove that, for any |¢)) , |¢) € H and any operator A,

(@l A1) = Wl 4T [). (B.66)
Exercise B.18. Prove that
(ol k)| = (w1 Blo) = (61 C16) (B.67
where
B =AT|g) (4| 4, C=Al) (| A, (B.68)

Side note. You should notice from the exercises that the Hermitian, unitary, and normal properties of an operator
do not depend on the orthonormal basis you choose to express the operator. To put it another way, if an operator
is Hermitian, its matrix representation is Hermitian regardless of which orthonormal basis you choose; same with
unitarity, normality, etc. In mathematics, these intrinsic properties of an operator are usually defined using abstract
algebra without looking at the matrix representation at all.

B.6. Eigenvectors and eigenvalues

Given an operator A, a ket |} is said to be an eigenvector of Aif

Alp) = X|¥) (B.69)

for some complex number A. A is then called the eigenvalue of A associated with the eigenvector |¢)). The
most important example in quantum mechanics is, of course, the eigenvectors of the Hamiltonian operator and the
eigenvalues. You should go through the following important exercise:

Exercise B.19. Let A be a normal operator. Show that there exists an orthonormal basis {|e,,)} such that A can be
expressed in the diagonal form

A=Y "N len) (enl, (B.70)

where each |e,,) is an eigenvector of A and ), is the eigenvalue of A associated with |e,,), i.e.,
Alen) = Ay len) - (B.71)

Note that Eq. (B.70) is now a single sum, not the double sum in the general ket-bra form. Show that the eigenvalues
of A are the same as the eigenvalues of its matrix representation.
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A function of a normal operator f (fl) is defined in terms of its diagonal form given by Eq. (B.70) as

f(A) = Z f(/\n) |en> <€n’ . (B.72)

In other words, to compute f (fl), we express A in its diagonal form first, and then apply the function to each
eigenvalue. The result is another operator. The most important example is probably the exponential:

expA = Z exp(An) |en) (en| - (B.73)
n
This is equivalent to the following:
- -

A A"
exp A= —. (B.74)

n!

n=0

which can be used as the general definition of the operator exponential valid for any operator, not just normal oper-
ators. The most important example in quantum mechanics is the unitary operator associated with the Hamiltonian

U = exp <—;ﬁt> . (B.75)
Exercise B.20. Let A be a Hermitian operator. Show that all its eigenvalues are real.

Exercise B.21. Show that all the eigenvalues of AT A are nonnegative.

Exercise B.22. Let U be a unitary operator. Show that all its eigenvalues have magnitude |\, | = 1.

Exercise B.23. Let A be a Hermitian operator. Show that exp (zfl) is unitary.

Exercise B.24. Find the matrix representation of exp A in terms of the matrix representation of A.

Exercise B.25. Let U be a unitary operator. Show that it can always be expressed as exp (ZA) with respect to some

Hermitian operator A.

Exercise B.26. Show that for any operator Aand any unitary operator U,

U(exp A)UT = exp (UAUT) (B.76)

Exercise B.27. If A is a Hermitian operator, |¢) is an eigenvector of A, and ) is the eigenvalue associated with it,
show that [¢)) is also an eigenvector of exp (zfl) Show that the eigenvalue associated with |¢) for the operator

exp (zfl) is exp(iA).
B.7. Miscellaneous concepts

(1) The trace of an operator is defined as

trAd=> (en| Alen) (B.77)

given an orthonormal basis {|e;,) }.
(2) A Hermitian operator with nonnegative eigenvalues is called a positive-semidefinite operator. If all the
eigenvalues are strictly positive, we say that it is positive-definite.
The most important example of a positive-semidefinite operator is the density operator in quantum
mechanics to describe the state of a quantum state that interacts with an environment (an open quantum
system). The density operator is positive-semidefinite and has a trace equal to 1.



B.8. TENSOR PRODUCT 145

Exercise B.28. Show that the trace of an operator does not depend on the chosen basis, i.e., if there is another
orthonormal bsis {|e],) } of the Hilbert space, the trace is also given by

trA= Z<e’n‘fl|e;> (B.78)

If A is a normal operator with eigenvalues {\,, }, prove that

trd=> A, (B.79)

Exercise B.29. Find tr A in terms of a matrix representation of A.
Exercise B.30. Prove the linear property of trace: for any complex numbers ¢, c2 and any operators Ay, Ag,
tr(clth + CQAQ) = (tl" Al) + (CQ tr Ag) (B.80)

Exercise B.31. Prove

[tr ([¢) () = (8lv) -] (B.81)

Exercise B.32. Prove the cyclic property of the trace: for any operators A, B,

tr(AB) = tr(BA). (B.82)

Exercise B.33. Prove the unitary invariance of the trace: for any unitary operator U and any operator A,
tr(UAUT) = tr(A). (B.83)
Exercise B.34. Prove that an operator Ais positive-semidefinite if and only if
(WIAlp) 20 V|p) € H. (B.84)

B.8. Tensor product

Suppose that we need to describe two degrees of freedom for a system, e.g., the spins of two electrons. For
now, think of them as two classical random variables. Suppose that the first spin s4 € {+1, —1} has two possible
values, and the second spin sp € {+1,—1} also has two possible values. The set of all possible values (sample
space) of the two spins (s 4, sp) is the Cartesian product of the two sets

{+1, -1} x {+1, -1} = {(1,1), (1, -1),(=1,1), (-1, 1)} (B.85)

In quantum mechanics, we generalize the concept of Cartesian product by the concept of tensor product. Suppose
Ha and Hp are two Hilbert spaces that describe the sets of all possible states for two degrees of freedom. If
1) € H 4 is the state of the first degree of freedom and |¢) € H p is the state of the second degree of freedom, then
we can take the tensor product of the two vectors, denoted by

¥) ®19), (B.86)
and say that this is a possible quantum state of the two degrees of freedom. It is also possible to do a superposition,
i.e., a linear combination of states in the following way:

c1lar) ® |b1) + c2laz) ® |ba), ¢1,c0 € C. (B.87)

In general, we say that H4 ® Hp is the Hilbert space that contains the set of all linear combinations of all the
tensor products of two vectors, the first vector in 7 4 and the second vector in 5.

To be more specific, suppose that {|e,,)} is an orthonormal basis of H 4 and {|f,,) } is an orthonormal basis of
‘H p. Then the tensor product of the two Hilbert spaces H 4 ® H g, which is also a Hilbert space, can be expressed
as

HiQHB = {anm|en>®fm> : each Y, E(C}. (B.88)

n,m



B.8. TENSOR PRODUCT 146

In other words,
{len) ® | fm) :n=1,...,Nym=1,..., M} (B.89)

is an orthonormal basis of H 4 ® H p. Notice that there are now N x M vectors in the orthonormal basis. Notice
also that there are far more vectors in the Hilbert space H 4 ® Hp: any linear combination of the N x M vectors in
the orthonormal basis is fair game. This is an important property of the tensor product: H 4 ® H p contains not
only the tensor products of any two vectors in the two Hilbert spaces, but also all their linear combinations.

Another fundamental property of the tensor product: Given any complex numbers {c}, {d, }, and any sets of
vectors {|a,) € Ha} and {|b,) € Hp}, we can always write

(Z Cn |an>> ® <Z dpm \bm>> = cndm |an) @ [bm) . (B.90)

In other words, we can always convert the tensor product of two sums into a double sum.

The third important property of the tensor product has to do with how we take the inner product. Let |a1) , |ag) €
H 4 and |b2) , |be) € Hp. Take the tensor product of |a1) € H4 with |by) € Hp to get |a1) ®|b1) € Ha ® Hp, and
take the tensor product of |az) € H 4 with |by) € Hp to get |az) ® |b2) € Ha ® Hp. The inner product is given by

(1] @ (ba])(Jaz) @ |ba) = {ailas) (ba[b2) -] (B.91)

In other words, we take the inner product (a;|a2) and (b;|b2) in each Hilbert subspace first to obtain two
complex numbers, and then take the product of the two complex numbers.
To make the notations look nicer, I will write each vector in the orthonormal basis as

len, fm) = len) @ |fm) - (B.92)
The bra can be written as
(en frm| = |emfm>Jr = (en| @ (fml (B.93)
and the orthonormality of these vectors can be expressed as
(ens fmlents fimr) = Onpt G- (B.94)
If [¢)) € Ha ® Hp describes the quantum state of two degrees of freedom, then we can always write
) = Vnm len, fm) - (B.95)
n,m

in terms of the orthonormal basis {|e,,, fm)} and the components 1)y,,,,, which are given by

Unm = (€n, fm|¥) . (B.96)

Then we say that v, is the wavefunction of the two degrees of freedom n and m.
In general, if we write two vectors in H4 ® Hp as

W) = anm ‘6n7 fm> > (B.97)

n,m
16) = bnm lens fm) . (B.98)
n,m
Then you should be able to show that their inner product is

(D) = Brntonm. (B.99)

With the orthonormal basis, we can also write any operator on H 4 ® H p in the ket-bra form:

A = Z Anmn’m’ |€nv fm> <6n’7 fm” . (B.100)

n,m,n’,m’
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The matrix representation now has four indices. If we take a tensor product of multiple Hilbert spaces, the number
of indices will explode! You should begin to see why we prefer to use the abstract bra-ket notation—we don’t
want to write all the indices everytime we specify an operator, and the notations of matrix algebra are becoming
inadequate to fully handle what’s going on.

Another way of making up an operator on H 4 ® Hp is to take an operator A on H 4 and another operator Bon
‘H p and then form the tensor product A ® B, which is an operator on H 4 ® H p. It has this fundamental property:

(A® B)|[y) ® |¢) = (A1) @ (B|9)). (B.101)

In other words, as long as both A ® B and |) ® |¢) are tensor products, we can apply A to |1) and B to |¢p)

separately and then put them back together. All the other properties of A ® B can be derived from this. A common

example is A® 1, where I is the identity operator on H 5. It applies Ato the Ha part and leaves the H g part alone.
Some handy identities are as follows:

(Z ann> ® (Z dem> = Z endmAn @ By, (B.102)

(A® B)(C ® D) = (AC) ® (BD). (B.103)
[(la1) ® [b1)) ({az] @ (ba]) = (Jar) {as]) @ (|b) (bal). | (B.104)

When we have an operator AonH A, we often abbreviate A ® I on the big Hilbert space H 4 ® Hp as just A.
Similarly, when we have an operator AonH 4 and an operator BonH B, we often abbreviate A® Bas AB. What
we really mean by AB in that context is then

AB= (Ao (I®B)=A®B. (B.105)

It’s a bit ambiguous but such abbreviation is standard; otherwise we’d have to write really long formulas with tons
of ® and I.

The math may be a bit dry and tedious, but keep this general meaning in mind: we use the tensor product to
combine multiple degrees of freedom together. The tensor product is in fact how we define degrees of freedom
in quantum mechanics: if a Hilbert space can be decomposed as a tensor product H4 ® Hp ® ..., then each
constituent #,; corresponds to a degree of freedom. For example, a 3D particle has a state in the Hilbert space
H, ® Hy ® H, that can be expressed as [[[ ¢(z,y,2) |z) ® |y) ® |z) d>r, so the three Hilbert spaces represent
three degrees of freedom; we don’t count the momenta separately. If the particle has spin, we attach another Hilbert
space for the spin via the tensor product.

Exercise B.35. Prove
tr(A® B) = (tr A)(tr B). (B.106)

Exercise B.36. Given A = B @ C, write the matrix representation A of Ain Eq. (B.100) in terms of the matrix
representations of B and C, if

B =Y By len) (ewl, C=" Comlem) (enl. (B.107)

B.9. Isomorphism

Consider two Hilbert spaces H 4 and Hp. An operator U:H A — Hp is said to be unitary if Uto =1 A
and UU' = Ip, where I,, with any subscript x is the identity operator on H,. U is a bijective operator and also
preserves the inner product, since

(G| UTU [y) = (o|y) . (B.108)
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For example, for real Euclidean vectors in R", the dot product is an inner product, and the preservation of the inner
product means that the length of a vector is preserved through the unitary operator, and also the angle between any
two vectors is preserved. A unitary operator in that case is represented by an orthogonal matrix, which models any
rotation, permutation of components, and sign flip of each component.

Two Hilbert spaces H 4 and H p are said to be isomorphic, denoted as H 4 ~ H p or more sloppily H4 = Hp,
if a unitary operator U : Ha — Hp exists. Then there is a bijective relation U between the two spaces and the
bijection preserves the inner product.

Two isomorphic Hilbert spaces are effectively the same; we consider isomorphic spaces because one may be
more natural or convenient to use than the other, much like the use of an orthogonal matrix to transform the Cartesian
coordinates.

Exercise B.37. Prove that C" with inner product
n
(u,v) =) ulv; (B.109)
j=1

is isomorphic to any complex Hilbert space H with n dimensions.
Exercise B.38. Prove
Hi1 ® Ho ~ Ho @ Hi. (B.110)
B.10. Partial operations

B.10.1. Partial ket and bra. Consider a tensor product H4 ® Hp of Hilbert spaces. Let |b) € Hp. Given
|b), the partial ket |b) : H 4 — H 4 ® Hp is an operator defined by

1B ]a) = |a) @ [b), Vo) € Ha.| (B.111)

In other words, the partial ket just appends |b) via a tensor product. This partial-ket operator is simply written as
|b); it’s slightly sloppy but it works as far as I know. The partial bra (b| : H 4 ® Hp — H 4 is then defined as the
adjoint of the partial ket, and it turns out to be given by

(bl (Ja) @ [c)) = ({ble)) |a)

In other words, given any tensor product |a) ® |c), the partial bra takes the inner product of |b) with |c) and leaves
|a) alone.

Vl]a) € Ha,lc) € Hp. (B.112)

B.10.2. Partial trace. Given an operator A:H AQ®Hp — Ha ® Hp on a tensor-product Hilbert space
‘H 4 ® Hp, the partial trace of A with respect to H 5 produces an operator on H 4 and is defined by the fundamental

property

tr {A(O@f)} — tr [(trB A)o“}, (B.113)

where O is any operator on ‘H 4 and I is the identity operator on H . In quantum mechanics, it is mainly used on a
density operator, such that

tr [,3(0 ® f)} — tr [(trB ;3)()] : (B.114)

This expression means that, if p is the state of two degrees of freedom and we want to compute the expected value
of O for the first degree of freedom, then we can “trace out” the second degree of freedom by computing trp p first.
The partial trace is one of the most important operations in open quantum system theory.

Given an orthonormal basis {| f,,) } in H p, a recipe for the partial trace is

trg A=Y (filAlfi), (B.115)
l




B.11. DIRECT SUM 149

where (f;| and |f;) are partial bra and ket operators. With A in the ket-bra form given by Eq. (B.100), the partial
trace becomes

trg A = Z (f1l Z Apmntm 1€y fm) (€nrs for| | 1f2) (B.116)
l n,m,n’,m’
=3 > Ao (fil (len) @ | fn) (e @ (Frnr) 1 11) (B.117)
I nmmn' m
=D Awwilen) ew| (B.118)
I nn

If an operator is a tensor product A ® B, the partial trace is especially simple:

trp(A® B) = (tr B)A. (B.119)

This is handy if the density operator is given by p = p4 ® pp withtrps = land tr pgp = 1,
trp(pa ® pB) = (trpB)pa = pa. (B.120)

We say that the state is a product state if the density operator is a tensor product. We use it to model independent
degrees of freedom, since the expected value of any O for one degree of freedom becomes

tr [(O@f)(ﬁA ®ﬁ3)} =tr (OﬁA>, (B.121)
which does not depend on pp at all.
Exercise B.39. Prove that the partial trace also has a cyclic property in the form
trp [(i@B)OA} —trp [O(i@B)}, (B.122)
if O is an operator on H4 ® Hp and Bis an operator on Hp. o
(Beware that, for a partial trace, the operator being cycled needs to be in the form of I ® B.)

Exercise B.40. Prove

o

/11 (trB O)AQ =trp {(Al (%9 f)

where O is on Ha ® Hp while /11 and /12 areon H 4.

(/12 ® I)] (B.123)

B.11. Direct sum

Another way of combining two vectors |a) € H 4 and |b) € H p in two different Hilbert spaces is the direct sum

la) & [b) . (B.124)
It is defined by the property that, given |a1) , |az) € H 4 and |b1), |b2) € Hp,
((a1] ® (b1])(Jaz) & [b2)) = (a1laz) 4 (b1]b2) , (B.125)

This is similar to Eq. (B.91) for the tensor product, except that we sum the two inner products here. The set of all
such direct sums is also a Hilbert space and denoted as
Ha®Hp = {|a)®|b): |a) € Ha,|b) € Hp}. (B.126)
We don’t use the direct sum as much as the tensor product in quantum mechanics, but it is quite useful in linear
algebra and probability theory. In those areas, we usually consider two special cases:
(1) The direct sum of two column vectors a and b, which is simply the concatenation

adb= (Z) (B.127)
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(2) The direct sum of two square matrices A and B, defined as

/A
AEBB:( B>’ (B.123)

where the rest of the entries are zero.

These definitions agree with the abstract definition if we assume the inner product (y, ) = y'a for column vectors
and (Y, X) = tr(YTX) for square matrices, where t is the conjugate transpose.

One application of the direct sum is in probability theory: if we have two column vector of random variables
X and Y, we can use the direct sum X & Y to form one big column vector of all the random variables. If the
covariance matrix of X is (%), the covariance matrix of Y is ©(*), and there is no covariance between any entry
of X and any entry of Y, then the covariance matrix of X @Y is ©(X) ¢ n(V),

Exercise B.41. Let a be a column vector with n entries, b be a column vector with m entries, A, A’ be n x n
matrices, and B, B’ be m x m matrices. Show that

(1)
(A@ B)(a®b) = (Aa) ® (Bb). (B.129)

2)
(A® B)(A' @ B') = (AA") @ (BB'). (B.130)

3)
(AeB)'=AHe(B™. (B.131)

B.12. Positive-semidefinite operators*

An important class of operators in open quantum systems theory are called positive-semidefinite operators. The
most important example is the density operator, which models the state of an open quantum system.
For a complex Hilbert space H, an operator is said to be positive-semidefinite if

A=A" and (P|A[Y) >0 V) e (B.132)

The first equality means that A is self-adjoint, so that (1| A [+)) is real for any |[¢)) € H. If it is not self-adjoint,
(1| A|tp) may be complex, and the inequality would not make sense. Any self-adjoint A has the eigenvalue
decomposition

A=, len) (enl. (B.133)

Then A is positive-semidefinite if and only if all eigenvalues of A are nonnegative, i.e., A, > 0 for all n. A
shorthand for positive-semidefiniteness is

A>o. (B.134)
Similarly, we define a positive-definite operator by
A=A" and (| Ap) >0 Y[)eH:|p)#0. (B.135)

A self-adjoint operator is positive-definite if and only if all its eigenvalues are strictly positive. As a shorthand, we
write

A>0. (B.136)

For two positive-semidefinite operators A, B, the inequality

A>B (B.137)
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means that A — B is positive-semidefinite; A > B means that A — B is positive-definite. The notation is justified
because such a relation is indeed a partial order (https://en.wikipedia.org/wiki/Partially_ordered_se
).

B.13. Positive-semidefinite matrices*

Complex positive-semidefinite matrices are defined in the same way if we take H = C" to be the space of
complex column vectors and the inner product to be

(o, 9) = ¢ (B.138)

In other words, a matrix A is said to be positive-semidefinite if
A=Al PiAyp >0 v e C?, (B.139)

and we write A > 0. A self-adjoint matrix is positive-semidefinite if and only if all its eigenvalues are all
nonnegative.
All the above statements remain valid for a positive-definite matrix if we replace > by > and assume ) # 0.
If the Hilbert space is real, things get tricker. Since we will deal with real Hilbert spaces only in the context
of matrix algebra, let’s assume that H = R" is the Hilbert space of real column vectors, and the inner product is
defined as

(@) =o' (B.140)
A real matrix is said to be positive-semidefinite with respect to the real Hilbert space if
Wl Ap >0 Vap € R™ (B.141)

The definition no longer requires A to be self-adjoint or symmetric (A = A"). An example in physics is the
Onsager transport matrix (https://en.wikipedia.org/wiki/Onsager_reciprocal_relations), which is
always positive-semidefinite but may not be symmetric.

The covariance matrix of real random variables is an important example that is both positive-semidefinite and
symmetric.

In all cases, we can still write

A>B (B.142)
if A — B is positive-semidefinite, or write A > B if A — B is positive-definite.

B.14. Message to mathematicians

If you are a mathematician or going into mathematical physics, you should be cautioned that I have presented
a lot of the concepts backwards and with little rigor or generality, relying a lot on orthonormal bases and matrix
representations.

For finite-dimensional Hilbert spaces (/N < o0), the abstract formalism is isomorphic to matrix algebra, so
my approach is quite safe. When the Hilbert spaces are infinite-dimensional, however, mathematicians worry a
lot more about when and how infinite sums may converge. If that is the way you like your math, please consult
textbooks written by mathematicians instead, such as Refs. [39, 40].


https://en.wikipedia.org/wiki/Partially_ordered_set
https://en.wikipedia.org/wiki/Partially_ordered_set
https://en.wikipedia.org/wiki/Onsager_reciprocal_relations

APPENDIX C

Probability

C.1. Axioms

The set of all possible outcomes of an experiment, commonly denoted as €2, is called the sample space, e.g.,
Q={1,2,3,4,5,6} for a dice throw.

An event is a set of outcomes and a subset of (2, e.g., an even-number event for a dice throw is the set {2, 4, 6}.
The set of all events is called the event space F'. It also has the fancy name o-algebra in mathematics.

When both A AND B occur, we model the event as the intersection of the two sets, i.e.,

(Aand B) = (AN B). (C.1)
When A OR B occurs, we model the event as the union of the two sets, i.e.,
(Aor B) = (AU B). (C.2)

F'is assumed to include any set that results from such operations on its elements.
If the sample space contains a countable number of outcomes, we usually assume that the event space F' is the
power set of €2, i.e., the set of all subsets of 2. For example, for a coin flip,

Q = {head, tail }, F = {o, {head}, {tail}, Q}, (C.3)
and for a sample space with 3 elements,
Q={1,2,3}, F={2,1,2,3,{1,2},{2,3},{1,3},Q}. (C4)

If € contains an uncountable number of outcomes, e.g., when {2 = R, then a rigorous definition of F is a lot
more complicated for mathematical reasons. Fortunately, such a rigorous definition of F' is seldom important or
necessary in physics; we can just assume that F' contains all the subsets of €) that we need in reality.

The probability P[A] is a function that assigns a number to each event A € F'. The Kolmogorov axioms for
probability are as follows:

(1) The probability of any event is nonnegative.
(2) The probability of anything happening is 1, i.e., P[Q2] = 1.
(3) Given two mutually exclusive events (A N B = ©),

P[AU B] = P|A] + P|B]. (C.5)

Everything in probability theory can be derived from the three axioms, at least in principle.
It is useful to picture P[A] as the amount of stuff in an area, e.g., sand on a beach. Let 2 be the whole beach
and A C () be a subarea of the beach. Then

(1) Axiom (1) says that the amount of sand on any area is always nonnegative.

(2) Axiom (2) says that the total amount P[Q2] on the whole beach is normalized as 100% (such that the
amount on any area is always expressed as a fraction of the total amount).

(3) Axiom (3) says that, if two areas are disjoint (i.e., no overlap), we can count the total amount of sand
P[A U B] on the two areas by counting the amount on each area (P[A] and P[B]) and then summing the
two amounts.

Since we often deal with the three objects (2, F, P) together, we call (£2, F', P) a probability space.

152
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C.2. Random variables

Any function X : 2 — R" that maps an outcome to a vector of numbers is called a random variable. For
simplicity, we assume in this chapter that € itself is a set of numbers, e.g., 2 = R", so that the outcome is a random
variable.

We usually use a capital letter such as X to denote a random variable, although we will be a bit sloppier in other
chapters.

If 2 is countable, e.g., 2 = Ny = {0, 1,2, ...}, then we say that the random variable is a discrete variable.
We can define a probability mass function Px () as the probability that X is equal to a specific value z €

| Px(x) = P[X =a].| (C.6)

The probability of an event is then the sum of all the probabilities of outcomes in the event:

P[X € A] =) Px(x). (C.7)
z€A

To compute the expected value of a random variable, we do

E(X) =) xPx(x). (C.8)

z€Q

More generally, a function g(X ) of the random variable is another random variable, and its expected value is given
by

E[g(X)] = ) g(x)Px(x). (C9)

z€Q

If O = R”™, we say that X is a continuous variable, and we use a probability density fx (x) instead. Think of
fx (x)d™x as the probability that X is in a tiny n-dimensional cube around x, and d"x is the volume of the cube.
We can convert any formula in terms of Py to the corresponding formula in terms of fx using the following rules:

(1) Replace Px(x) by fx(x)d .
(2) Replace -, by [,.
The probability that X is in a region A C R" can then be expressed as the integral

PX € A] = /AfX(:c)d”:c, (C.10)

and the expected value of any function of X can be expressed as

E[g(X)] = /g(w)fx(w)d”w- (C.11)

Regardless of the type of the random variable, the algebra of the expectation can be summarized in three rules:

(1) The expected value of a constant is the constant itself, i.e.,
E(a) = a, (C.12)

because a constant can be considered as a special case of a random variable whose outcome is deterministic,
i.e., it always gives the same value.
(2) Given any two random variables X and Y,

[E(X +Y) =E(X) + E(Y).| (C.13)

Note that this formula works regardless of whether they are independent.
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(3) We can pull any constant out of the expectation:

|E(aX) = aE(X).| (C.14)

The latter two rules mean that the expectation E is a linear operation. Note that the result of an expectation is a
constant, i.e., it’s no longer random, so we have

E[E(X)] = E(X). (C.15)

A common measure of the randomness of a random variable is the variance, which is defined as

V(X)=E {[X - E(X)]Q} = E(X?) — [E(X)]2 (C.16)

C.3. Multiple random variables

Consider two random variables X and Y. Let the sample and event spaces for X be (Q2x, F'x), and those for
Y be (Qy, Fy ). The joint sample space for (X, Y) is the Cartesian product

Q:QXXQyE{<1‘,y):x€Qx,y€Qy}. (C.17)
The joint event space F' is a set of subsets of {2; we commonly write the joint event space as the tensor product
F =Fx ® Fy. (C.18)

For example, if 0x = 0y = R, then ) = Qx x Q, = R? is the two-dimensional plane, and any C' € F is a
two-dimensional area on the plane. In particular, the joint event (X € A) N (Y € B) is modeled as

(X e A)N(Y € B) =[(X,Y) € Ax B, (C.19)

where A x B is the Cartesian product of A € Fy and B € Fy. Such a Cartesian product of events is called a
rectangle event, because it looks like a rectangle when Qx = 2y = R and A and B are intervals, as illustrated in
Fig. C.1.

}f/\ }//\

C B

T====""r-=""

AN
7

X A

Ficure C.1. For a joint sample space 2x X )y = R2 aneventC € F = Fy ® Fy is an arbitrary
area on the two-dimensional plane (left). A rectangle event A x B for intervals A € Fx and
B € Fy is the rectangle {(z,y) : © € Aand y € B} (right).

[ N S i

y

Let the joint probability measure for (X,Y") on (Qx x Qy, Fx ® Fy) be Pxy, defined as
Pxy[C] = P[(X,Y) € (], C¢€Fx®Fy. (C.20)
Then the probability of each rectangle event is
P[(X € A)n(Y € B)] = Pxy|[A x B]. (C.21)
The marginal probability measures for X and Y become

Px[A] = ny[A X Qy], Ae Fx, Py[B] = ny[QX X B], B € Fy, (C.22)
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respectively. If Pyy is separable for all rectangle events in the sense of
Pxy[A x Bl = Px[A]Py[B] VA€ Fx,B € Fy, (C.23)

then we say that X and Y are independent.

Conversely, given a probability space (2x, F'x, Px) for X and a probability space (Qy, Fy, Py) for Y, we
can form a product measure Pxy on (Qx x Qy, Fx ® Fy) so that it obeys Eq. (C.23) for all rectangle events,
meaning that X and Y are assumed to be independent. Eq. (C.23) is sufficient to specify the probability measure
for all rectangle or non-rectangle events, since we can divide up any C' € F'x ® Fy into tiny rectangle events and
sum up the probabilities Pxy on them. We commonly write such a product measure as the tensor product

Pxy = Px ® Py. (C24)

C.3.1. Discrete variables. The easiest case is when both X and Y are discrete. Then we can simply consider
the joint probability mass function

[ Pxy(e,y) = P[(X =2)n (Y =y)],

(C.25)

which gives

P(X,Y)eCl= )  Pxy(z,y), Px(@)=> Pxy(z,y), Py(y)=) Pxy(x,y). (C26)
(zy)eC y T

(X,Y) are independent if and only if the joint distribution is separable in the sense of

ny(:li, y) = PX (l‘)Py(y) (C.27)

C.3.2. Continuous variables. If Qx = R” and 2y = R™, we can define the joint probability density
fxy(x,y) by

/C fx (@ y)d"zd™y = P[(X,Y) € C). (C.28)

Then the marginal densities are

fx(x) = /fXY(may)dmya fr(y) = /fxy(fﬂ, y)d'z, (C.29)
and (X,Y) are independent if and only if the joint density is separable in the sense of

fxy(x,y) = fx(x)fy(y) (C.30)

C.3.3. Independent and identically distributed (i.i.d.) variables. The construction of the joint probability
space for multiple random variables is similar. In particular, n independent and identically distributed (i.i.d.)
random variables (X1, ..., X,,) € Q" are defined as independent variables where each X ; has the same probability
measure P. The joint probability measure is then the product measure

Px,.x,=P® - -@P=pP°. (C.31)
N————

n terms

For example, if the random variables are discrete, then the joint probability distribution is

Px, . . x,(x1,...,2n) =P[(X1 =21)N---N (X, =) = P(x1) ... P(z4). (C.32)
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C.4. Conditioning

The probability P[A|B] of an event A given that an event B has occurred is called a conditional probability. It
is defined by

| P[An B] = P[A|B|P|B].| (C.33)
If P[B] > 0,
HMEZP%%E, (C.34)

but if P[B] = 0, we must also have P[A N B] = 0 since P[AN B] < P[B], and P[A|B] conditioned on a
zero-chance event B can be anything, although conventions exist depending on the problem.
Two events A and B are said to be independent if

|P[An B] = P[A]P[B].] (C.35)

Remark C.1. Do not confuse independence with mutual exclusivity, there’s no relation between the two concepts.

Consider two random variables X and Y on the sample/event spaces (2x x Qy, Fx ® Fy). For discrete
random variables, the conditional probability distribution can be expressed in terms of the joint distribution defined
by Eq. (C.25) as

P ; P ;
P(ely) = PLX =aly =] = 3 )” - ngljjﬁf; 0. (€36)

If Y is continuous, conditioning becomes trickier, because P[Y = y| may be zero for all y. Let 2y = R™. The way
forward is the following [41]. Assume an event B(y) € Fy containing y € 0y and possessing an m-dimensional
volume ¢, which should not depend on X. To define P[X € A|Y = y], write the conditional probability in terms
of B¢(y) the usual way, then take the ¢ — 0 limit:

P{(X € A)N[Y € Bc(y)]}

PX € A]Y = y] = lim Y € By . (C.37)

For example, consider the joint probability density defined by Eq. (C.28). For an infinitesimal e,

P{(X € A)N[Y € B(y)]} = E/Afxy(ac,y)d”:n, P[Y € B(y)] = e/fxy(a:,y)d"m =efy(y), (C.38)

where we can take € out of the integrals because it is assumed to be independent of . The conditional probability
becomes

_ Jafxy(m y)dix

P[X € AlY =] = , C.39
(X € A]Y =y] ) (C.39)
and the conditional density fx|y (x|y) becomes
 fxv(my)  fxv(z,y)
I (@ly) = fy(y)  [(numerator)d z’ (C40)

Side note. The so-called Borel-Kolmogorov paradox arises [41] if we assume that the volume of B, varies with x,
say, eg(x). Then the limit would give us

fXY (iB, y)g($)
[ (numerator)dra’

(C.41)

which is arbitrary and depends on the g(x) we choose. According to mathematicians, this paradox shows that
conditioning on the outcome of a continuous variable is ill-defined, and the so-called disintegration theorem is
needed to deal with it. Fortunately, Eq. (C.40) is correct afterall.
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C.5. Conditional expectation

Given that Y = y has occurred, the conditional expected value of X is written as E(X|Y = y). For example,
if both X and Y are discrete, the conditional expectation is given by

E(X|Y =y) =) aPxy(xy). (C42)

Notice that this is a function of y, so we can regard E(X|Y") as a function of the random variable Y. For example,
suppose that Y is a binary random variable about whether it rains or not:
norain: Y =0, rain: Y =1, (C.43)
and X is the duration of a bus ride. Then
(1) E(X|Y = 0) is the expected duration given that there’s no rain (Y = 0).
(2) E(X|Y = 1) is the expected duration given that there’s rain (Y = 1).
E(X1Y") is a function of Y, so it is also a random variable.
Since E(X|Y) is another random variable as a function of Y, we can take its expectation again using the
probability distribution of Y. For example, if both variables are discrete, we have

EE(X[Y)] = Z ZCUPXW (zly)

Y

)| Py (y ZxPXy (z,y) = B(X). (C.44)

In general,

[E[E(X]Y)] = E(X)]| (C.45)

is called the law of total expectation, which in fact works for any types of random variables. We can use this to
verify that Eq. (C.40) is the appropriate conditional density, not Eq. (C.41).

Exercise C.1. Derive the even more general law
E{o(Y)E [a(X)[Y]} = E[b(Y)a(X)] (C.46)
for any functions a and b, assuming discrete random variables. Verify that this holds for Eq. (C.40).
The conditional variance is given by
VXY =y) = E(X?]Y =y) - [E(X]Y =y)]?, (C.47)

which is simply the variance of X given that we know Y = y. Since this is a function of ¥ = y, we can again
regard V(X |Y) as a random variable that is a function of Y.
A useful law is the law of total variance (https://en.wikipedia.org/wiki/Law_of_total_variance):

[V(X) =E[V(X|Y)] + VE(X|Y)]. | (C.48)

(1) The first term E[V(X]Y)] is obtained by first computing the variance of X conditioned on Y = y using
Eq. (C.47). Treating V(X |Y') as a function of Y, we then compute its expectation.

(2) The second term is V[E(X|Y")] obtained by first computing E(X|Y" = y) conditioned on Y = y. Treating
E(X]Y) as a function of Y, we then compute its variance.

C.6. Gaussian random variables

A multivariate Gaussian random variable (also called normal random variable) with {2 = R" has the probability
density

_ v Tyt n
fx(x) = (27r)"det§]exp 2(w m) ¥ (x—m)|,| xzeR" (C.49)
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where m is the mean vector and X is the covariance matrix, defined as

E(X) =m, COV(X;, Xi) = E{[X; — E(X))][X; — E(X)]} = Zji. (C.50)

We often write a vectoral Gaussian random variable using the shorthand
X ~N(m,X). (C.51)
Gaussian random variables have the following nice properties:
(1) Any linear combination of Gaussian random variables are also Gaussian random variables. To be specific,
if we define
Yy = AjX;+bj, (C.52)
l

where {Aj;} and {b;} are real constants, then {Y}} are also Gaussian random variables. The means and
covariances of the new random variables become

E(Y;) =Y Ay E(X)) +b;, COV(Y},Y)) = > AjmSmnAin. (C.53)
l m,n
In matrix form, if we write ¥;;(Y) = COV(Y},Y]), then
E(Y) = Am + b, Y(Y)=A%A". (C.54)
(2) A corollary is that, if we consider only [ of the random variables, say,

X1
xW=|:1, (C.55)

X

then its marginal probability density is still Gaussian and the means [E(X ;) and covariances COV (X, X},)
remain unchanged, i.e.,

XU~ N mW), (C.56)
where m(1) is the first [ entries of m and () is the top-left [ x [ submatrix of .
(3) If X is a diagonal matrix (i.e., the variables are all uncorrelated), then the Gaussian random variables

are all independent from one another (i.e., fx () is separable into a product of n functions [ [ fx; (z;),
where each fx (z;) is Gaussian.)

Remark C.2. In general, independence always implies a diagonal covariance matrix, but the converse
need not be true; Gaussian random variables are just special.

(1)
v _ ( 2(2)>7 (C.57)

where (1 is I x I, ¥ is (n — 1) x (n — [), and the rest of the entries are zero, then fx (z) can be
factorized as

(4) If X can be partitioned as

fx (@) = fxo (@D) fye (x?), (C.58)
X1 X1

xW=|[:1] x@=( : [ (C.59)
X X,

A fancier way of writing this fact is to use the direct sum & (see Sec. B.11). Instead of Egs. (C.57) and
(C.59), we can write

=30 gn®, X=xWegx® (C.60)
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where X1 is the covariance matrix for X(*) and ©(2) is the covariance matrix for X(?. ¥ = 2(1) g %2
means that the covariance between any entry of X (1) and any entry of X () is zero. Then Eq. (C.58) holds.

The simplest case is when n = 1, and the probability density of X ~ N'(m, o?) becomes

RY
Fx(z) = \/%Jexp[—m], (C.61)

where o = /2211 18 the standard deviation.

C.7. Poisson random variables

Let Ng = {0, 1,2,...} be the set of natural numbers and assume a sample space {) = NOJ , where each outcome

(N1, Na, ..., Ny) is a set of J nonnegative integers. The Poisson distribution is defined as
J m"
_ -mj; J
PN(nl,...,nJ)fHe I (C.62)
j=1 o
(N1, Na, ..., Ny) are all independent from one another, and the mean and covariance are given by
E(N]) = mj, COV(NJ, Nk) = mj5jk. (C63)

We denote such a vectoral Poisson random variable as

N ~ Poisson(m). (C.64)

C.7.1. An origin of Poisson random variables*. There are a few ways that Poisson random variables arise.
One way is the following:

(1) Perform M independent experiments, and label each experiment by m = 1,..., M. In each experiment,
generate a binary random variable X,,, with probability mass function
P[X,, =0]=1—F¢, P[X,,=1]=e (C.65)

For a concrete example, let M be the number of time slots over some time interval and X,,, be the photon
number arriving at some detectors during the mth time slot.
(2) If X,,, = 1, generate a discrete random variable Y,,, with probability mass function

PlYpm=jl=p;, j=1,...,J (C.66)

Continuing the earlier example, suppose that there are J detectors and {1, ..., J} are the labels of the
detectors. If a photon arrives during the mth time slot (X,,, = 1), it is detected by one of the detectors,
Y, is the label of that detector, and P[Y;, = j] = p; is the probability that the jth detector detects the
photon.

(3) Atthe end of the M experiments, let L be the number of times X, hits 1:

M
L= Z Xoms (C.67)
m=1
and N; be the number of times Y, hits j:
J
Nj= ) 6y, L=)_N;j (C.68)
m:Xm=1 j:1

In the earlier example, L is the total number of photons that are detected by all detectors and N; is the
total photon number detected by the jth detector.
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(4) L is binomial:
Pr(l) = (]‘f) (1 — )M, (C.69)

In the limit of ¢ — 0, M — o0, and Me staying fixed, L is a Poisson random variable with mean
(LY = Me (https://en.wikipedia.org/wiki/Poisson_limit_theorem):

l
Po(1) — exp(—(L)

(5) Conditioned on L = [, the probability distribution of IV is multinomial (https://en.wikipedia.org
/wiki/Multinomial_distribution):

(C.70)

. l' 1 Uy
PN|L(n1,...,nJ‘l) _5Zjnj’lmp1 pJ . (C71)
Assuming that L is Poisson, the marginal probability of N becomes Poisson:
oo
l!
PN(nl,...,nJ) :ZPN\L(nlaﬂ nJ|l PL Ze — Jnjlmp’fl...p’}‘] (C-72)
mnj
_ p . —m Y
= 0Tt Z SYPES | (ot MU
. N

C.7.2. Poisson process*. If each Y, is not restricted to be a discrete random variable, we obtain a Poisson
process in general. For each Y},,, let 0y = R" be its sample space (generalizing {1, ..., J}), Fy be its event space
(a set of subsets of y), and p : Fy — [0, 1] be its probability measure (generalizing p;j). The Poisson process is
now defined as a random measure N(A), where A € Fy is a subset of Qy-. Continuing the photon example, we
now assume that 2y = R? is the detector area. Then A € Fy is a subset of Qy, i.e., a smaller area on the detector,
and N (A) is the photon number detected on area A. The total number detected in the whole sample space Qy is
now L = N(Qy ), and we write (L) = E(L) as before. The Poisson process obeys the following properties:

(1) N(A) for any A € Fy is a Poisson random variable with mean
E[N(A)] = (L) p(A). (C.74)
(2) N(A) and N(B) are independent if AN B = @.

C.8. Random process*

A random process in the time domain is a randomly fluctuating function of time. The easiest way of modeling
one is to assume discrete times

I={tj=to+jAt:j=1,2,...,J} (C.75)

and consider a set of random variables (X (¢1), X (t2),..., X (ts)), each labeled by a time ¢;. There are two ways
of modeling them:

(1) Assume that there is an underlying probability space (2, F', P) with an abstract sample space {2 such that
X : Q xZ — R"™is a function X,,(t;) of both an abstract variable w € 2 in the sample space and a time
t; € Z, producing a vector in R".

2) Assume that each X (¢;) has a sample space 2; C R", so that the sample space of the whole process is
Q=0 x---xQy and there is an underlying probab111ty measure P for (X (1), X (t2),..., X(ts)).

There is not much difference between the two approaches in what follows.
With discrete time, there really isn’t much difference between a random process and a vector of random variables.
For simplicity, assume that each X (¢;) is a real number, i.e., 2; C R. We can study its mean

E [X(t])] = m(tj) (C.76)


https://en.wikipedia.org/wiki/Poisson_limit_theorem
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and the covariance matrix
S = COV X (), X (6)] = E{[X(t;) — m(t;)][X () — m(t)]}, €.77)
just as we would for a vector of random variables.

C.8.1. Wide-sense stationary process. An additional assumption we often make in physics and engineering
is that the covariance is a function of the time difference only:

|COV [X(t;), X (ts)] = C(tk — t;), C:{=(J=1AL,...,(J —1)At} >R, (C.78)

where C' is a single-variable function. When the covariance matrix has this property, we say that the process is
wide-sense stationary. The definition of strict stationarity is a bit more complicated (https://en.wikipedia.o
rg/wiki/Stationary_process) and often unnecessary.

Since t;, — t; = (k — j)At, each covariance-matrix entry X ;, depends on j and k only in terms of their
difference k — j, i.e.,

Ejk = C(ty — t;) = cp—j, (C.79)
and it looks like
Co C1 C9 ... Cj1
C_1 Co C1 oo Cj—2
- C_9 c_1 c ... Cj-3]. (C.80)
C_(j-1) C—(J-2) --- C-1 Co

A matrix is called Toeplitz if it has this form. Moreover, assume that C'(7) is periodic with
C(r)y=C(r+T) vr, T=JAt. (C.81)

This is a good approximation if C(7) is concentrated near 7 = 0 and C(7) ~ 0 for 7 near £7'/2, i.e., X (t;) and
X (ty,) are uncorrelated if the time difference |t;, — ¢;| is close to half the duration of the process 7'/2, and T is very
long so that we can ignore the covariance for |t — ¢;| beyond T'/2. In other words, we assume that the entries of
> decay to very small numbers as we move away from the diagonal, so that the periodic assumption is harmless.
With the periodic C, ¢ is periodic with period J, that is,

Cl = Cl+J Vl, (C82)

and X becomes a circulant matrix (https://en.wikipedia.org/wiki/Circulant_matrix), which looks like

Co C1 C9 e Cj—1
Cj—1 Co C1 o Cj—92
Y=1¢-2 ¢j-1 Qo cee Cj-3 |. (C_83)
C1 Co ... Cj1 co

A circulant matrix has the eigenvalue decomposition

1 ) 27 2w
X = UIDUT7 Ujl = ﬁ exp(—zwltj), le = )\lélk, wp; = lAw, Aw = E = T’ (C.84)
so that
lo+J—-1
1 .
Ejk =Ck—j = C(Tk) = j Z )\l exp(—zwlrk), Tk = kAt, (C.85)
1=lg
ko+J-1 ko+J—1
A = Z i exp(iw ) = Z C (k) exp(iw; k). (C.86)

k=ko k=ko
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We may pick lp = ko = —|J/2], so that w; € [-n/At,n/At) and 7, € [-T/2,7/2). The power spectral
density of the process is defined in terms of the eigenvalues as

ko+J—1
S(w)=NAt= > C(r)exp(iwm) At. (C.87)
k=kg

It is given by the Fourier transform of the covariance function C'(7). Since ¥ is symmetric and positive-semidefinite
(E =T and u'Zu > 0 for all w € R™), all its eigenvalues are nonnegative, and we have A\; > 0 and S(w;) > 0
for all .

To measure the power spectral density in practice, consider the mean-subtracted process

Y(tj) = X(tj) - m(tj) (CSS)

and write
Z E[Y tr)] expliw(ty — t;)]At. (C.89)

Notice that the left-hand side does not depend on t;, so we can do

1 J—1 1 ) )
== Z S(w) ZE )] explis(ty — 1) A = B [(YT(W)\ ] (C.90)
where
J—1
Yr(w) =Y Y(ty) expliwty) At (C.91)
k=0

is the Fourier transform of the process Y. If we measure |Y7(w)|2/T repeatedly and take the average of the
observations, it should converge to the expected value S(w). Under a further assumption about the random process
called ergodicity, we can also obtain S(w) by the long—time limit

2
lim — ’YT ‘

T—oo 1

— S(w). (C.92)

C.8.2. Continuous-time limit. We now take the limit At — 0 with finite 7' = JAt. The frequencies w; are
still discrete with spacing

27
Aw = T (C.93)
but now they go from —oco to oco. We should define the continuous Fourier transform as
5 to+T1
Yr(w) = / Y (t) exp(iwyt)dt. (C.94)
to

The power spectral density becomes

T/2
S(wr) = /_ o O eliarm)ir = %E {

Hw;)ﬂ : (C.95)

C.8.3. Continuous-frequency limit. If we keep At nonzero but take J — 0o, so that time goes from —oo to
00, then the frequency becomes continuous with Aw = 7/ JAt — 0 but still stays in the range

€ [—m/At, 7/At). (C.96)

and we write
oo

S(w) = Z C (k) exp(iwTk) At = hm —E DYT ‘2] (C.97)

k=—o00
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C.8.4. White noise. If a wide-sense-stationary zero-mean process Y (¢) is uncorrelated at different times, then
we can assume
J

E[Y(t;)Y (ty)] = SN S(wy) = s. (C.98)

We call Y a white noise because the power spectral density is constant. If the sequence {Y (t1), Y (t2), ...} is also
normal,i.e., Y ~ N (0,33), then we call Y a Gaussian white noise. In the continuous-time limit, we write

E[Y ()Y (t)] =sé(t —t), (C.99)

where ¢ is the Dirac delta.

An important example of white noise occurs when we measure a stream of pulses in a coherent state with
constant photon flux. The mean photon number in each pulse is the infinitesimal |c; |2 = rAt, where 7 is the finite
mean photon flux (mean number per second), so the mean of a quadrature must scale as v/2 Re(ae™%) VAL,
while the variance is 1/2 regardless of At. Each homodyne output X is then a Gaussian random variable with

E(X;) x VAL, COVI(X;, Xi) = i (C.100)

If we divide X; by v/ At, then the process becomes a signal plus a Gaussian white noise.
If we perform photon counting, on the other hand, the process is Poisson with

E(N]) = ’I“At, COV(NJ,N]C) = 0jk E(N]) = T(SjkAt. (ClOl)
Then [N; — E(N;)]/At is also a white noise with power spectral density S(w) = s = r.

C.8.5. Wiener process. Let Y be a Gaussian white noise and define another random process W by the sum
J
W (to) = 0, W(t;) =Wi(tjio1) + Y () At = Y Y () At. (C.102)
k=1

In the continuous-time limit, W is called a Wiener process, also called a Brownian motion. We may think of T/ (¢)
as a process whose rate of change is driven by white noise:
dW (t)
dt

=Y (t), W(t) = /OtY(T)dT. (C.103)

The covariance of W is
E [W(t;)W (tx)] = smin {¢;,1}. (C.104)

In particular, the variance E [W(tﬂ = st grows linearly with time, as one expects from a Brownian motion. Note
that the Wiener process is not stationary in any sense.

Remark C.3. Beware that the variance of the white noise E[Y (t;)?] = s/ At scales inversely with At and becomes
infinite in the continuous limit At — 0. This means that we can’t assume Y (t) to be an ordinary function in a
differential equation and ordinary calculus becomes questionable because of the infinite variance. It turns out that
one should use a new calculus called stochastic calculus (https://en.wikipedia.org/wiki/Stochastic
_calculus) to deal with white noise. In our poor-man’s approach to random processes, we just stick with discrete
time and take the At — 0 limit when it looks safe to do so.

Side note. Mathematicians prefer to work with the Wiener process and not the white noise directly because they
hate the Dirac delta. In physics and engineering, the white noise is a more intuitive object as it models what we
observe in measurements.

C.9. Abstract measure theory*

Mathematicians often prefer to use abstract measure theory to study probability. While mostly unnecessary for
physicists, it is useful to learn at least the notation so that we can read their literature. The notation is also quite
elegant as we no longer need to write different expressions for discrete and continuous variables.
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C.9.1. Lebesgue integral. Given a measure P on (€2, F'), where €2 is an abstract sample space and F' is a
o-algebra of () (a set of subsets of 2 that satisfy certain properties to make mathematicians happy), the Lebesgue
integral of a function g : 2 — R is written as

/ g(x)dP(z). (C.105)

Think of dP(z) as the amount of certain stuff in a tiny region of 2 around z, and [ as a fancy way of writing a sum
over all the tiny regions that comprise (2. If we’d like to integrate over a subset A € F' only, then we can write

/ g(z)dP(zx) = /[1: € Alg(x)dP(x), (C.106)
z€EA

where

1, if the statement is true,

[statement] = { (C.107)

0, otherwise
is called the Iversen bracket. [x € A] is also called the indicator function in measure theory.

If P is a probability measure, think of dP(x) as the probability that the outcome is in a tiny region around x.
The expectation of a random variable is given by

E(g) = / o(2)dP(z), (C.108)

while the probability of an event A € F' can be written as

PlA] = / dP(z) = / v € AldP(x). (C.109)
T€EA
If the sample space is countable, the Lebesgue integral gives

E(g) =Y g(z)P(x), P[A] =) P(). (C.110)

TEA

If Q2 C R”, we use the conventional probability density f to write
E(g) = /g(ﬂf)f(:r)d”:v, PJ[A] = / f(z)d . (C.111)
€A

In other words, just replace dP(x) by P(x) and [, _, by >__ ., in the discrete case and replace dP(x) by f(z)d"x
in the continuous case.

C.9.2. Lebesgue measure. The Lebesgue measure for 2 C R"™ is simply a fancy name for a measure that
gives back our ordinary n-dimensional integral:

/g(m)dP(x) = /g(:c)d"x. (C.112)
In other words, dP(z) = d"z for a Lebesgue measure is the volume of a tiny n-dimensional cube around x.

Remark C.4. The Lebesgue integral is a general concept for any measure P, whereas the Lebesgue measure is
a special type of measure that gives us back an ordinary integral. Both are named after Lebesgue but they are
different concepts.
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C.9.3. Radon-Nikodym derivative. The Radon-Nikodym derivative generalizes the concept of the density
function. Let P and () be two measures on the same (€2, F'). The Radon-Nikodym derivative of P with respect to
@, written as g—g(m), is defined by

dP
o(@)iP(x) = [ a(z) o (2)dQ() (C.113)
for any function g. In other words, it allows us to substitute an integral of g with respect to P with an integral of
gdP/d@ with respect to (). The derivative exists if and only if

P(A) # 0 implies Q(A) #0 VA€ F. (C.114)

We say that () dominates P, written in brief as P < (), under this condition. People also say that P is “absolutely
continuous” with respect to ().

dP/dQ is called a derivative mainly because the notation looks like one; its relations with all the other derivatives
in calculus are rather tenuous. We should think of it simply as a ratio dP(z)/dQ(x) between the two amounts of
stuffs in the same region around x. We need () to dominate P for the ratio to be well defined because we need
dQ(x) # 0 whenever dP(x) # 0.

If P is a probability measure and () is a standard measure for (€2, F'), e.g., the Lebesgue measure, then dP/dQ
is called a probability density. If P and () are both probability measures, dP/d() often arises in statistics, where it
is called the likelihood ratio.

Examples:

(1) If Q is countable, then

P(z) apr P(z)
/ 9(x)dP(x) %}g(x)P(w) ;g@) o) 2@ 0= o) (C.115)
We see in this case why we need () to dominate P: we need P(x)/Q(x) < oo for all x € support P =
{z € Q: P(x) > 0} so we need support P C support Q.
In particular, if @ is the counting measure such that Q(z) = 1 for all x, then P(x) is its own
Radon-Nikodym derivative.
(2) For © C R™, the conventional probability density f(z) is the Radon-Nikodym derivative with respect to
the Lebesgue measure, and we write dQ(z) = d"x and dP(z) = f(x)d"x.
3) If P < Q < o, then dP/dQ is the ratio of the two Radon-Nikodym derivatives (dP/do)(x) and

(dQ/do)(x):
dpP (@)
—(z) = 95— C.116
For example, if o is the Lebesgue measure (do(z) = d"x) and dP/do = f and dQ/do = g, then
P ) = flz). (C.117)

dQ g(x)



APPENDIX D

Quantum Mechanics

D.1. Schrodinger picture

This chapter will assume a closed quantum system throughout, i.e., a collection of stuff that doesn’t interact
with anything else. The state of the system is modeled by a vector |¢) in a Hilbert space H (see Appendix B for
the math and notation). By convention, the norm of the vector should be equal to 1, viz.,

V(YY) = 1. (D.1)

The dynamics of the system is governed by a Hamiltonian operator H, which is Hermitian (H = HT). Then we
can define a unitary operator as

U(t) = exp <—zflt> , (D.2)

where ¢t € R is the time variable and I've redefined the Hamiltonian H so that  is absorbed into the new definition
and doesn’t appear in the formulas, for brevity. In the Schrodinger picture, the state evolves in time and becomes

(1)) = U(t) |[v) (D.3)

after time ¢.

Exercise D.1. Prove that the quantum state remains normalized after any time ¢ in the Schrodinger picture, viz.,

(6(8)16(1)) = 1 for any .
Exercise D.2. Derive the Schrodinger equation

dly(t))
dt

= —iH (). (D4)

D.2. Born’s rule

D.2.1. Simple measurement. The simplest kind of quantum measurement is modeled by an orthonormal basis
{len) : m=1,..., N} of the Hilbert space /. The set of possible outcomes are denoted by n = 1, ..., N, and the
probability of observing a certain outcome n with this simple measurement at time ¢ is assumed to be given by

P(n) = | (enlvo(t)) |, (D.5)

where [1)(t)) is the quantum state at time ¢ in the Schrodinger picture. This rule of assigning probabilities to a
quantum measurement is called Born’s rule. It gives an operational meaning to the quantum state [1(t)).

D.2.2. von Neumann measurement. A Hermitian operator A is often called an observable in quantum
mechanics. Any observable A on a finite-dimensional Hilbert space can be expressed in the diagonal form

A= len) (enl, (D.6)

where each |e,,) is an eigenvector of A with eigenvalue )\, all the eigenvalues are real (because A is Hermitian), and
{|en)} is an orthonormal basis of the Hilbert space 7. We say that a von Neumann measurement of the observable
A is performed when the measurement outcome is a random variable with the set of all possible outcomes given

166
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by the set of eigenvalues {\,, }. If the eigenvalues are all different from one another (i.e., nondegenerate), then the
probability of observing a certain eigenvalue A, in a von Neumann measurement is given by Born’s rule

P[A = Xi] = [ {enlv (D) [* (D.7)

If there may be multiple eigenvectors with the same eignvalue (degenerate eigenvalues), then we have to be more
careful: the probability of observing a given eigenvalue A is

PIA=XN= > [(eal(t)) (D.8)

n:An =M\

i.e., we need to sum all the probabilities for outcomes that give the same eigenvalue A\, = .

Side note. In reality, a measurement is performed by a measurement apparatus (your eyes, a cat, a camerda,
photodetectors, etc.), and the laws of quantum measurement don’t tell us what exactly counts as a measurement
apparatus, why we have a separate rule for the measurement apparatus, and why we don’t model it using quantum
mechanics as well. This ambiguity is called the measurement problem in quantum mechanics. There are various
interpretations of a quantum measurement but we won’t touch that topic—in quantum optics, measurements are
usually performed with photodetectors, and it’s quite clear that those are the measurement devices that obey Born’s
rule in principle.

Side note. In quantum optics, measurements are usually performed with photodetectors, which absorb the light and
convert it to energy excitations in the matter. Such measurements are called destructive. In this book, we do not
consider nondestructive measurements and what happens to the quantum state post-measurement.

Side note. Another thing to note is that the probability distribution of a measurement outcome in an experiment is
never exactly given by Born’s rule; there will always be extra noise due to technical imperfections, e.g., thermal
noise in detectors and circuits. The “quantum noise” due to Born’s rule is often a tiny fraction of the total noise in
a device.

Exercise D.3. Prove that a measurement modeled by an orthonormal basis {|e,)} satisfies the normalization
condition

> P(n) =) ealth(t)” = 1. (D.9)

Exercise D.4. Prove that the expected value of the measurement outcome for a von Neumann measurement of Ais
given by

(A) = (Y(&) Al(t)) . (D.10)

Prove that the variance of the measurement outcome is given by

~

(a42) = (o) (A- () 1wO) = WOl 2 ) - [l dlw)]

These are handy formulas in case we need the mean and variance only, not the full probability distribution.

2
. (D.11)

D.2.3. Measurement of compatible observables. Suppose that two Hermitian operators A and B commute,
ie.,

[21, B] —0. (D.12)

We say that the two observables are compatible. Linear algebra says that there exists an orthonormal basis {|e,,) }
such that A and B can both be expressed in the diagonal form

A= Z)‘n len) (enl, B= Z An len) (el (D.13)
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using the same basis. {|e,,)} are eigenvectors of both A and B, ), is the eigenvalue of A associated with |e,,),
while )/ is the eigenvalue of B associated with |e,). If we perform a simple measurement with respect to this
basis, we can write a joint probability distribution as

P[A=)and B= )] = > | (en]t(2)) 2. (D.14)
n:Xp=Aand A, =)\

Another way of saying this is that compatible observables can be measured simultaneously using one simple
measurement.

D.2.4. Continuous variables. For an infinite-dimensional Hilbert space, sometimes the diagonal form of an
observable is an integral

A:/OOA|A:/\><A:>\|d)\, (D.15)

where {|A = \) : A € R} are the orthonormal eigenvectors of A in the sense of
AJA=X)=\[A=)\), (A=MNA=X)=56(A-N), (D.16)
as introduced by Dirac. The completeness condition for {|A = A)} can now be expressed as
f:/ |A=)\) (A =Ad\ (D.17)

The outcome of a von Neumann measurement of A is then a continuous random variable, the set of all possible
outcomes is R, and the probability density is

Fay) = (A= Aw@®), (D.18)

which is a variation of Born’s rule. Remember the definition of a probability density: f4(\)d\ is the probability of
observing the outcome within the infinitesimal interval [A, A + d\).

Definition D.1. For brevity, I call the distribution P[A = ] or f4(\) that arises from a von Neumann measurement
of A the probability distribution of A.

Exercise D.5. Prove the normalization condition
o
/ fa(A)dx =1 (D.19)
—00
if fa(A) is given by Eq. (D.18).

Exercise D.6. Let A be an observable and its orthonormal eigenstates be {|A = A) : A € R}, so that

AlA=X)=AlA=)), (A=AA=N)=6)-X), /OO|A:)\><A:>\|d)\:f. (D.20)

Define another observable B3 in terms of A as
B=aA+0b, (D.21)
where a is a nonzero real c-number and b is a real c-number.
(1) Find the orthonormal eigenstates {|B = u) : u € R} of B in terms of | A = \) so that they also satisfy

B|B=u)=u|B=u), (B=u|B=u') =6(u—1), / IB=u)(B=uldu=1. (D.22)
Answer:

ei@

Vlal

where 6 can be any real number; harmless to set § = 0.

|B =u) =

A:”_b>, (D.23)

a
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(2) If the probability density of A is f4()), find the probability density f B(u) of B in terms of f4.

Answer:

1 u—>b

= —fa . (D.24)
|al a

fB(u)

The 1/|a/ factor in front is needed so that fp remains normalized as [ fp(u)du = 1.

D.3. Heisenberg picture

Consider a simple measurement with respect to an orthonormal basis {|e,) : n = 1,..., N}. In the Schrodinger
picture, the probability of each outcome n is
A 2 A A
P(n) = [{ealp )" = [(eal U@ [)| = (| TUT(t) [en) (enl U(t)[3) (D.25)
We can also compute this probability using the Heisenberg picture instead. Define
A, = len) (en] . (D.26)

Then the Heisenberg picture of A, at time ¢ is
An(t) = UN AU ) = UT(t) |en) (en] U(t). (D.27)
It follows that the probability of observing n is
P(n) = (| UY(t) len) (enl U () [9) = (] An(t) [0) - (D.28)
The Heisenberg picture is convenient if A, (¢) is easier to compute than [1)(t)).

Exercise D.7. Given an operator A, the Heisenberg picture of A is defined as

Aty = UN)AU(t), (D.29)

where U (t) is given by Eq. (D.2). Show that it obeys the Heisenberg equation of motion
dA(t oy
430 _ _ilaw.A). (D.30)
dt
Exercise D.8. Following Exercise D.4, show that the expected value and variance of the outcome for a von Neumann
measurement of A are given by

- . . 2
(A) = WIA®)v) (A42) = WIAGE W) - [wl A1) .| ©3D
where A(t) is the Heisenberg picture of A at time ¢.
D.4. Interaction picture
Suppose that the Hamiltonian is the sum of two terms:
H = Hepsy + 1. (D.32)

It is often the case that the dynamics governed by H casy 18 simple to solve. For example, we often assume that f]easy
is the Hamiltonian of free EM fields and free matter, while 7 is the Hamiltonian that models their interaction. Let

Urasy (£) = ex( =i fleast) (D.33)




D.4. INTERACTION PICTURE 170

which is the unitary with respect to ﬁeasy alone. The central identity of the interaction picture is

t
U1(t) = Ul (D0 (8) = Texp [—z' / ﬁeasymm], (D.34)
0
feasy (T) = Ugasy(T)ﬁUeasy(T)a (D.35)

where T exp is called the time-ordered exponential (https://en.wikipedia.org/wiki/Ordered_exponent
ial), defined as

"
T exp [—z/ ﬁeasy(T)dT]
0

= Al%moexp[—iﬁeasy(t)At] exp[—ifeasy (t — At)AL] ... exp[—ifleasy (2A) At] exp [—ifleasy (AL)AL],  (D.36)
_>

and feasy (7) is called the interaction picture of 7 (which is the Heisenberg picture of 7 using Ueasy). Now the
expected value of any observable A can be expressed as

W) Al() = (W] TTOAT @) [9) = @] U (1) Ueasy () Uy () Alasy UL, )T (1) [8) (D.3T)
=| (W] U} (£) Acasy ()T (1) [) , (D.38)

where
Acasy () = Udyoy () AUcasy (2). (D.39)

The main reason we use the interaction picture is that the interaction-picture operator UJasy(. .. )Ueasy is often simple
to compute, SO 7easy (t), Ur(t), and Aeasy (1) are often easier to compute.

D.4.1. Derivation of Eq. (D.34). Assume the more general case where Heysy (t) and 7)(t) are time-dependent
and write each unitary as a product of exponentials with tiny time step At:

O(t) = Texp{—i /0 By () + ﬁ(T)]dT} (D.40)
~ exp|— i (t) At] exp [—iﬁeasy(t)m} exp|—iA(t — At)AL exp [—if[easy(t - At)At}
... exp|— i (2At) At] exp [—iﬁeasy@At)At} exp|—if(At) A exp [—iﬁeasy(At)At] , (D.41)
Ueasy(t) =T exp{ —i /0 t H’easy(f)dr} (D.42)

% exp [—if[easy(t)At] exp [—iﬁeasy(t - At)At} . exp [—i]jleasy(QAt)At} exp [—iﬁeasy(At)At]
(D.43)

Now the trick is to use Eq. (D.43) to write

exp [—iﬁeasy(T)At} — Uy (1) Ul (7 — AY), (D.44)
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and then substitute this into Eq. (D.41), so that
Ugasy( )U( ) Uejrasy( )exp[ ( )At] Ueasy( ) Ujasy (t - At) exp[—iﬁ(t - At)At] ABﬁSy (t - At) Ugasy( - QAt)

x| —ifioasy (£) At] X[ —ifieasy (t— AE) At]
. Useasy (2A8) Ul (At) exp[—in(At) At]Ueasy (At) (D.45)
= exp [—iﬁeasy( )At] exp[ iMeasy (t — )At] .. .exp[—iﬁeasy(At)At} (D.46)
t
— T exp |:—Z/ ﬁeasy(T)dT]. (D.47)
0

D.5. Rotating-wave approximation
When using the interaction picture, we often encounter terms that oscillate in time as exp(—iwt):
Teasy (t) = -+ -+ (...) exp(—iwt) + ... (D.48)

where w is a positive or negative number. In the so-called rotating-wave approximation, we throw away such terms
and keep only terms that remain constant in time. To see the rationale, consider the first-order perturbation of the
interaction-picture unitary U;(¢) given by Eq. (D.34):

t
Uty ~1—i / feasy (T)dT. (D.49)
0

The first-order term is an integral of 7jeasy (7) in time, and the integral of the oscillating term becomes
t, w =0,

¢ t
/0ﬁeasy(T)dT:/o(...)exp(—in)dToc e—iwt/2Sinf:7;/2)7 w0, (D.50)

If w = 0, the term grows with time ¢ after the integration, but if w # 0, the term oscillates with ¢ and is inversely
proportional to w. To put it another way, exp(—iw7) = cos(w7) — i sin(wT) consists of a cosine and a sine, which
go positive and negative. In an integral over 7, the positive parts would cancel the negative parts, leaving only a
small value. If w = 0, on the other hand, the integral can grow with .

The argument is admittedly heuristic, but the approximation is very popular and useful. It can sometimes
be checked by comparing results from the full model with those obtained using the approximation (although the
approximation wouldn’t be useful if the full model could be solved.)

D.6. Density operator

Very often we don’t know which state a quantum system is in exactly. We may instead have a set of possible
states

{leb1) s 1b2) 5o 1) }- (D.51)

Suppose also that we know each state |i,,,) would occur with probability p,,. To model the state of the system on
average, we use the density operator

M
p= Z m () (W (D.52)
Obviously we must have
M
> pm=1, (D.53)
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so that {p,,, } is a probability distribution. Note that the number of possible states M here has no relation with the
dimension of the Hilbert space (M can be any number from 1 to co), and the set of possible states need not be
orthogonal, although we still require each possible state |¢/,,) to be normalized, that is,

(Um|thm) = 1. (D.54)

p is convenient because the expected value of any operator A can now be written as

(A) =" (W] UT$)AU(t) [thm) pm = | tr |AU(£)pUT (1) . (D.55)

m

Instead of evolving each |¢,,,) using U (t), we can simply compute the Schrodinger-picture density operator using
one formula

pt) = Ut)pU" (¢). (D.56)

When p,,, = d,,; is a Kronecker delta, the quantum system is definitely in state |1);). Then we say that the state in
terms of the density operator p = [1/;) (11| is pure; otherwise we say that the state is mixed.

More generally, we may assume that the quantum state |¢)x ) depends on a classical random variable X. The
density operator is then the expected value of |¢)x ) (¢ x|, written as

o = E (|vx) (¥x]). (D.57)

For example, if the sample space €) of the random variable is discrete and the probability mass function of X is
Px (x), then the density operator is written as

p="> Px(x)[ths) (¢l (D.58)

z€Q

If the sample space €2 is R™ and the probability density function is fx (x), then the density operator is written as

p= / Fx(@) ) (] dP. (D.59)

Note that this randomness about the quantum state is not the same as the randomness in a measurement outcome. A
state is mixed because of technical imperfections, e.g., it depends on a classical random variable. The randomness
due to Born’s rule, on the other hand, is fundamental: even if the state is pure, the measurement outcome is random
(except in very special cases).

One thing to note is that, given a density operator p, we usually can’t tell the set of pure states {|i;,,) } and the
probability distribution {p,, } that give rise to the p. In other words, there may be another set of pure states {|¢;) }
and another probability distribution {p]} that give the same p:

P—melcbm (Ym| = sz|¢l (] (D.60)

Since p is a Hermitian and positive-semidefinite operator, we can always write it in the diagonal form

P Z /\n |€n> <€n| , (D.61)

where each |e,,) is an eigenvector of p with eigenvalue \,,. The eigenvalues, all nonnegative and summing to 1, can
be regarded as a probability distribution, but that’s just one way of writing p as a mixture of pure states, there may
be many other ways.

Exercise D.9. Prove that p is Hermitian and positive-semidefinite. Prove that tr p = 1.
Exercise D.10. If p is pure, prove that only one of its eigenvalues is nonzero. Find this eigenvalue.

Exercise D.11. Derive the Schrodinger equation for a density operator

PO il o). (D.62)
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Exercise D.12. Following Exercise D.4, prove that the expected value of a measurement outcome is given by

(A) = tr [fl,[)(t)}, (D.63)

and the variance is given by

(AA?) = tr [(/1 - <A))2ﬁ(t)} =t [22()] — {o [Ap(0)] }2. (D.64)




APPENDIX E

Quantization of EM Fields: Details*

Consider the classical Maxwell equations:

B E 1
V‘Ezﬁ, V-B =0, a—:—VXE, a—:c2V><B——J. (E.1)
€0 at 875 €0
Our goal is to convert these equations to Heisenberg equations of motion in the form of
dO(t) QT
—=——|0(t),H } E.2
=0 (E2)

by converting E, B, p, and J to operators.

E.1. Helmholtz decomposition

The equations will look simpler if we perform the Fourier transform of each field. Define the Fourier transform
of a vector field F'(r) as

_ 1 . 3
F(k)= 2 // F(r)exp(—ik - r)d’r. (E.3)
The inverse Fourier transform is given by

We use the symbol F'(r) — F (k) to denote the Fourier transform. For a given k in k space, any vector field F (k)
is a vector that can be decomposed as

.'F(k) = ékjlfl(k) + ék,gfg(k) + ék,73f3(k), .7:5(]{:) = élt:,s . f'(k), (E.5)
in terms of three orthonormal vectors ey, 1, € 2, € 3 that satisfy
é,”;s “€fs = Oyl (E.6)
It will be convenient to assume
. k
€r3 = T k= |k|, (E.7)

so the third unit vector ey, 3 is in the direction of the wavevector k, while ey 1 and €y, » are unit vectors that are
orthogonal to k and to each other. Define

.7'_”(]{3) = ékvg}-g(kt), (E.8)
Fi(k) = ex1F1(k) + exaFa(k) = F(k) — F (k). (E.9)

In other words, (k) is the component of the vector field that is parallel to k, while F (k) is the component that
is orthogonal to k. | is called a longitudinal field, F | a transverse field, and

F(k)=F, (k)+ .'F'H(k) (E.10)

the Helmholtz decomposition. We can transform these k-space vector fields back to the real space to write the
decomposition as

F(T):FJ_(T>+F||(T), (E.11)
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where F' | (r) and F'||(r) are the inverse Fourier transforms of | (k) and F (k), respectively.
F(r) is real if and only if

F(k)=F*(—k).
If F'(r) is real, then F')(r) is also real, since
F1k) = enaleis 7)) = o | 70| = Fih)

It follows that F'| (r) = F(r) — F/(r) is also real.
The transverse and longitudinal fields obey the properties

k-F| =0, kX]:HIO,
k-.'F':k-(.'F'Hﬂ-.'FL):k?'.'F”:k‘fg, kXTIkX(.'F”-f-]:L):kal.

In particular, k x F = k x JF | is orthogonal to k.
Given another vector field G(k) = G (k) + G|/ (k), we have

Fi-G =0, FG=Fi-GL+F -G

and Parseval’s theorem gives
// F*(r)-G(r)d’r = // F*(k)-G(k)dk.

E.2. Maxwell’s equations with Helmholtz decomposition

Let
E(r,t) — E(k, 1), B(r,t) — B(k, 1), p(r,t) — o(k, 1), J(r,t) = T (k. 1).
Maxwell’s equations in k space become
‘ 4 . oB . 0E 4 1
k-&E=— k-B=0 — =—tk x & — =icckxB-—J.
) e’ /) , 5 1k x &, 5 c’k x 60;7
Applying the Helmholtz decomposition to all the fields, the equations become
ik-E) = ikés = 2, ik -B=ikBs =0,
€0
0B, , o€, ., 1
— =—ik x & — =ic’kx B — —
g ikx &, 5 1w’k x By EOJL
88“ 1 7
ot e I

Notice the following:
(1) We will ignore the k = 0 case and assume k # 0 and thus & # 0.
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(E.12)

(E.13)

(E.14)
(E.15)

(E.16)

(E.17)

(E.18)

(E.19)

(E.20)

(B.21)

(E.22)

(2) Gauss’s law for magnetism implies that B = 0, B = e 3B3 = 0, so the magnetic field only has the

transverse component

(E.23)

(3) The longitudinal component € = €, 33 of the electric field is determined by the charge density through

the equation

o(k, )
ikeg

Es(k,t) =

)

(E.24)

which shows that £5(k, t) is not a separate degree of freedom, because its value is slaved at all times to
o(k, t) that is determined by the matter. Contrast Eq. (E.24) with a differential equation 0O(t)/0t = ...,
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which allows an arbitrary initial condition O(¢ = 0) for the variable. In particular, if o(k,t) = 0, then
&3 = 0, and the longitudinal electric field cannot survive without a charge density.

(4) Eq. (E.24) already tells us &(k, t), so Eq. (E.22) seems a bit redundant. To see the physical meaning of
Eq. (E.22), combine it with Eq. (E.24) to write an equation in terms of matter variables ¢ and J only:

0&s3 1 9o 1 do . do .
—_— == — + kT3 = — +ik-J =0. E.25
TR TR o T RIs=10, g Tk T =0 (E.25)
This is simply the k-space version of the charge continuity equation
dp
—+V-J=0 E.26
5+ ; (E.26)

so Eq. (E.22) is in fact a statement about charge conservation.

E.3. Normal variables for transverse fields

Only the transverse components of the EM fields £ and B can survive when there is no source, so they are
also called free fields. Their equations of motion are given by
0B 1 o€ 1

1
o ik x &, 5 = x B EOJL (E.27)

To make them look more like Heisenberg equations of motion, we introduce the scalar potential ¢(7r,¢) and the
vector potential A(r,t), which obey

E=-V¢— %, B =V x A. (E.28)
Going to the k space with
¢(r,t) = p(k,t), A(r,t) = Ak, 1), (E.29)
and decomposing the vector potential as A = A 4 A, we obtain
) aAH 0A | .
g” ——Zk@—w, gl ——W, B—BL —’LkXAL. (E30)
Egs. (E.27) are then equivalent to
0A; 0€ | 2,9 1
— =-— —— =k —J. E.31
5 £, T c ALJFEOJL (E.31)

Recall that each transverse component F | = Fieég 1 + Foego of a vector field has two components in two
directions. Egs. (E.31) can then be rewritten as

OAs » 0&,
o 7 ot

For each j = (k,s), As(k,t) behaves like a position variable of a harmonic oscillator, —&5(k, t) behaves like a
momentum variable, and J;(k, t) behaves like a force, except that they are all complex. Despite the complexity, we
can turn them into an equation of motion for a harmonic oscillator by defining a complex normal variable

as(k,t) = C[wl/2A5(k,t) - iw—1/255(k,t)}, (E.33)

where C' is a real constant, so that

dag
ot

1
= A+ =T, s=1,2. (E.32)
)

s=1,2. (E.34)

= —lwaog

iC
+ mjw

This differential equation shows that each mode labeled by (k, s) is a separate degree of freedom—free in the sense
that it allows an arbitrary initial condition a(k, 0) for each (k, s).
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The normal variables fully model the dynamics of the transverse fields, since we can write A and £, as
functions of the normal variables. To do so, recall that, since A and E in real space are real, A, and £ obey the

property
Now consider

3 au(k, t)ew,s = C{wl/Z.AL(k,t) - z’w—l/?&(k,t)}, (E.36)

S al(—k ey, = c[wl/QAj(_k,t) + iw—lﬂgj(—k,t)} - C[wl/QAL(k,t) w28 (k1))

(E.37)
The two equations can be combined to give
1 - N -
Ap(kt)= —— Z [as(k, t)ex,s +ai(—k,t)e", ], (E.38)
20wt/ . ’
wl/2
Ei(kt) =" Z licus (K, t)Ep,s — ick(—k,t)E"y, ,]. (E.39)
These fields can be transformed back to real space to give
1 2
_ -1/2 p 7. 3
Aj(r,t)= R 821 ///w [as(k,t)ér s exp(ik - ) + c.c.|d’k, (E.40)
1 2
E,|(r,t) = P ;///wm[ms(k,t)ék,sexp(z‘k 1) +c.cld’k. (E.41)
These expressions are consistent with the classical model in Chapter 2 if we take the L — oo limit.
E.4. Gauge invariance of A |
Recall that, given any scalar field (7, t), a gauge change given by
0
qb':qb—a—z, A = A+Vy (B.42)
has no effect on the F and B fields:
0A
E=-V¢ - TR B=VxA (E.43)

In k space, let y(r,t) — T'(k,t). Since Vy — ik[’, which is parallel to k, any gauge change has no effect on the
transverse component A | :

or ‘
o =v- g0 | = A +ikT, | =AL (E.44)

Hence, there is no need to worry about gauge ambiguity when we deal with A | ; it is unique given F and B.



E.5. CANONICAL QUANTIZATION OF THE TRANSVERSE FIELDS 178

E.5. Canonical quantization of the transverse fields

Consider a fixed time ¢ = 0. The total EM energy is given by

(eoE E + B B) d3r (E.45)
<eog* £ + B* B> >k (Parseval) (E.46)
(608” 8” =+ 605J_ SJ_ —‘r B* BJ_)d k (Helmholtz) (E.47)
- %0 /// CE+ELEL+ c2k:2.Aj AL PR (Blmikx ALAL LK) (E4)
Define
HZH”-FHL, (E.49)

H=2 /// £k, (E.50)
620// (€1 -EL + CRPAL - APk ///;(’C‘*;Z| o () 2k, ES)

where H is the energy of the free transverse fields. We defer the quantization of H| in terms of £ to Sec. E.6
later and quantize the transverse EM fields here by setting

H,

Eow

202

€0
, o=\/2 ©52)

and replacing a5 (k) with as(k) on some Hilbert space 7 . Assume the commutation relation

[&s(k), @L(k’)] = 5,03 (k — k). (E.53)

Then

2
H, = ///mZag(k)as(k)d%, (E.54)
s=1

and the operators for the transverse vector potential and the transverse electric field at ¢ = 0 can be defined as

. T

AL(k:):,/%Ow;[aS Yen.s + al(—k)e” k} (E.55)
2

£, ( ,/2602 [za er.s — ial(—k)e" k} (E.56)
s=1

which are consistent with Eqs. (E.38) and (E.39) at ¢ = 0. The Heisenberg equations of motion for A 1 (k,t) and
&1 (k,t) can be derived from

(k. t) = a5 (k) exp(—iwt). | (E.57)
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In real space,

N 1 N
1 < [ h
_ ~ ~ ik-r 3
=\ @y ; /// Se [as(k,t)ek,se +H.c.}d k, (E.59)
~ 1 ~
E, (rt)= W // E | (k,t)exp(ik - r)d3k (E.60)

R o )
- WZ///\/;[las(k,t)ek,se’ "" +H.c.}d k, (E.61)
s=1

which are consistent with Egs. (E.40) and (E.41) as well as the classical and quantum models in Chapters 2 and 3
for free EM fields, where Hgy = H | is assumed.

E.6. Quantization of the longitudinal electric field

The quantization of H| in terms of the longitudinal £ = €y 3 is quite different. When there is no matter,
&3 = 0, and there is no need to quantize it. When there is matter, we should introduce a new Hilbert space Hmatter
and additional terms to the Hamiltonian that model the matter dynamics and the light-matter interaction. In that
case, the simplest way of quantizing &3 is to follow Eq. (E.24) and assume that the longitudinal component at t = 0
is equal to

L olk)
Es(k) = E.62
3( ) ikﬁo ) ( )
where (k) is the charge-density operator on Hmater- The Heisenberg picture
N o(k,t
&k, ) = 21 (E.63)
Zk‘E()

is then consistent with the classical Eq. (E.24). This model means that we do not need to introduce any new degree
of freedom for the longitudinal electric field, and it suffices to stick to the Hilbert spaces H  for the transverse fields
and Hmareer for the matter. E3(k) is an operator on Hpager, and the quantized H I is also an operator on Hmatter:

=2 // E}(R)Es(k)dk = 5~ /// 0 (R)ak) k. (E.64)

E.7. Current source

Let H, matter D€ the matter Hamiltonian on a matter Hilbert space Hpaer and let the interaction Hamiltonian be

= — //AL )-J(r //AL (k)d’k, (E.65)

where J () is a current-density operator on Hmager. H,| || is assumed to be part of Hnatter- The Heisenberg equation
of motion for as(k,t) under the Hamiltonian H,uer + H | + 7) becomes
das(k,t)
dt
which is consistent with the classical Eq. (E.34). )
To model the current as classical, as discussed in Sec. 5.2, we go to the interaction picture with Heasy =
Hatter + H 1, leading to

= —iwig(k,t) +i Ts(k, 1), (E.66)

1
v 2€ephw

Tleasy (¢ // A (r r,t)dr. (E.67)
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Then we approximate J (7, t) by a c-number function J (7, t).

Do note that the model here is just one possible model of light-matter interaction. Although it serves our purpose
in this book, there are many other models that differ in nontrivial ways [42]. For example, when light is coupled to
atoms or charged particles in the nonrelativistic limit, the interaction Hamiltonian is a bit more complicated.

E.8. Coulomb gauge

So far we have completely avoided the quantization of ¢ and .A,|, which may appear in the classical Hamiltonian
when there is matter. The simplest way is to assume the Coulomb gauge

V-A=0, (E.68)
which is equivalent to
.A|| =0, A=A, . (E.69)
The longitudinal electric field becomes
. . 1 Y
E|=—ik E3 = —ik =——E& = . E.70
| R, 3 R, ¥ ik 3 ]{?260 ( )

Then there is no need to quantize LA and we just treat ( as a function of ¢ if needed (i.e., ¢(k) = 4(k)/(k?eg) is
an operator on Hmarer). The quantized vector potential becomes

A(r,t) = A (r,t), (E.71)

meaning that we can omit the L.

The gauge issue is both deep and fundamental in quantum field theory, although it is outside the scope of
this book to discuss it. It suffices to point out that the “canonical” Coulomb-gauge treatment here turns out to
be equivalent to other treatments that assume other gauges and fully compatible with special relativity [42], even
though the quantum formalism treats time differently and its Lorentz invariance is not obvious.



APPENDIX F

EM Fields in Matter*

Matter responds to EM fields by creating a bound charge density p,(r, t) and a bound current density Jp(r, t).
We model the effect of the bound charges on the EM fields by assuming a polarization field P(r, t) that obeys

oP
V-P=— — =J,. F.1
Pb, ot b ( )
Magnetization is negligible at optical frequencies. With these assumptions, (pp, J3) obey the continuity equation
Ipy
— +V -J, =0 F.2
ot b =0, (F2)
as expected. Assuming that there is no extra charge or current other than the bound quantities, Gauss’ law becomes
1
v,E:@:_iv.P7 V-D =0, (F.3)
€0 €0
where
D=¢E+ P (F.4)
is called the displacement field. The modified Ampere’s law becomes
oFE oP oFE oD
V x B = upd —— = oo — = lo——- E5
Hodb + poco g~ = o5+ Hofo 5 = Ho o, (F.5)

Remark F.1. Do not confuse the polarization field with the polarization of a wave; they are completely different
things. Unfortunately both terms are standard.

We can study how the electric field responds to a given P by looking at the equation
10°E _ 9°P

2oz Mg

To fully solve for the EM fields, we also need a model of how P responds to the EM fields by studying the dynamics

of the matter.
A material is called dielectric when P is a function of E only. The simplest model is

P(rt) = eoxVE(r, 1), (F7)

so the polarization field is assumed to respond instantly and locally to the electric field, that is, P(r,t) at each
position 7 and time ¢ depends only on the electric field at that particular position and time. Moreover, P here
is assumed to be linear with respect to E, and we call this a linear dielectric model. As a result of Eq. (F.7),
D = ¢(1+xM)E, V- E = 0, and we arrive at the wave equation
) 10°E  xWoE
V°E 22 - @ o (E.8)
This is a wave equation with speed ¢/n if we assume the refractive index

N e} =)

The net effect is that the wave travels at a different speed ¢/n in a dielectric, but it is important to keep in mind the
underlying mechanism: the EM fields interact with the matter through the polarization field, and the matter is an
important participant of the wave dynamics.

VX (VxE)— (F.6)
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To model loss, we assume that the matter consists of damped oscillators. The easiest way is to change Eq. (F.7)
to
oo
P(r,t) = 60/ Wt =t E(r, t)dt, (F.10)
—0oQ
where x(1) is a Green’s function (also called an impulse-response function) that relates the electric field to the
polarization field. Causality implies that

YPit-t)=0, >t (F.11)

so that P(r,t) depends only on the past values of the electric field { E(r,t') : ¢ < ¢} before time ¢. It’s easier to
study this relation in the frequency domain

P(r,w) = \/12? /_00 P(r,t)e“tdt = oy (w)E(r,w), (F.12)

and then study )2(1)(w) only within the frequency range of interest. A nonzero imaginary part of 1) (w) would
correspond to loss or gain. The easiest way to see this is to consider the average power per unit volume lost by the
EM field to the matter for a sinusoidal plane wave (the overline denotes averaging over a long time):

P oP A .

V(:)l:rfe =Jy- E= i E « [(—iw)xD(w)ae=t 4 c.c.] (ae™t 4 c.c.) (F.13)

= —iwxWD(w)]af? + c.c. oc Tm YV (w). (F.14)




APPENDIX G

Open Quantum Systems*

An open system refers to a system that interacts with an environment. The hope of open system theory is that,
since we care more about the system and less about the environment, our model can be simplified if we study only
the effect of the environment on the system of interest.

The subject is huge and this chapter provides only a quick summary; more specialized textbooks, such as
Refs. [43, 21, 19, 44, 45, 46, 47], should be consulted for details.

We stick to the Schrodinger picture in this chapter. It is not impossible to use the Heisenberg picture for open
quantum systems [48] but the Schrédinger picture is much more popular.

G.1. Density operator

We have introduced the density operator earlier in Sec. D.6 in terms of an average quantum state. Another way
of arriving at a density operator is to consider a larger Hilbert space H ® Hp, where H models the degrees of
freedom of a system and H p models those of the environment. The environment is also called a bath, a reservoir,
or an ancilla (fancy word for an aid), depending on the context. Assume that the system and the environment are
in a pure state |U) € ‘H ® Hp in the larger Hilbert space, normalized as (U|W) = 1. Then the expectation of any
system observable A ® I becomes

fr [(A ® f) ) <\1/|] _— [AtrB () <\p|)] _— (Aﬁ), (G.1)
where trp is the partial trace with respect to H g and
p=trp (|0) (T) (G2)

is the density operator on the system Hilbert space H. In other words, with the density operator, the expectation
with respect to any system observable A can be expressed in terms of operators A and p on the smaller Hilbert
space ‘H only. We also call p the state of the system.

In general, we call any operator a density operator if it satisfies all of the following properties:

p=p, (Hermitian) (G.3)
(W|ply)y >0 V) eH, (positive-semidefinite) (G.4)
trp = 1. (unit trace) (G.5)

Exercise G.1. Prove that Eq. (G.2) is a density operator, i.e., it satisfies Egs. (G.3)—(G.5).

G.1.1. Purification. A fundamental converse of Eq. (G.2) called the purification theorem says that, given any
density operator p, there exists a pure state | V) in some larger Hilbert space H ® H g such that the right-hand side
of Eq. (G.2) is equal to the given p. |¥) is called a purification of 5. Beware that, given a p, the purification may
not be unique; there may be many purifications that give the same p.

Remark G.1. The term purification here does not mean any physical act of purifying something, like purifying
water or turning a mixed state to a pure state. It merely means the mathematical task of finding a pure state |¥V)
that results in the given density operator p upon the partial trace.

Exercise G.2. Given a purification |¥) of p, prove that
IeU|D) (G.6)
is also a purification, where U is any unitary operator on ‘Hp.
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G.2. Generalized Born’s rule

G.2.1. Projection-valued measure (PVM). For any Hilbert space, including infinite-dimensional ones, we
can use one concept called the projection-valued measure (PVM) to model all the measurement types discussed
in Sec. D.2. Let ) be the sample space for the measurement outcome and £ an associated event space (see
Appendix C); we often write them together as (£2, ). A projection-valued measure I1 takes any event S € I as an
argument and produces an operator II1(.S), such that the probability P[S] of the event S is given by the formula

P[S] = tr [ﬁ(S)ﬁ}, (G.7)

where p is the density operator in the Schrédinger picture. A measurement that can be modeled by a PVM is called
a projective measurement.
IT is called projection-valued because II(.S) for any S is a projection operator, namely, it satisfies

VS e E: II(S) =T11(9), I1(5)% = 11(S). (G.8)

Further properties of IT ensure that P is a probability measure satisfying the Kolmogorov axioms in Sec. C.1, such
as

Q) = I, I1(S; U Sy) = T1(S)) + I(Sy) if S1N Sy = @. (G.9)
An additional property is
TI(S)TI(S2) = TI(Sy)T1(S1) = TI(S1 N S). (G.10)
Examples:
(1) Simple measurement with respect to orthonormal basis {|e,)}. Then Q = {1,..., N},
[1(n) = |en) (enl (S) = len) (enl - (G.1D)
nes

(2) von Neumann measurement of A = > nAnlen) (en]. Then Q = {A,} is the set of eigenvalues,
TN = > len) {enl, I(S) = D len) (enl. (G.12)
n:Ap=A\ n:Ap €S

(3) von Neumann measurement of continuous variable A = JAA=X)(A=\d\ ThenQ =R,

11(9) = / |A = \) (A= )\ d (G.13)
AeS

Exercise G.3. Show that, if IT is a PVM, then its Heisenberg picture defined by
(S, ¢t) = UT(O)I(SU(t), SekE (G.14)
where U is a unitary operator, is also a PVM, i.e., it satisfies Egs. (G.8)—(G.10).

For a finite-dimensional Hilbert space, the PVM concept is an overkill compared with the simple measurement
in terms of an orthonormal basis, but it becomes the preferred choice of mathematicians when dealing with a
continuous observable on an infinite-dimensional space, to avoid the heuristic Dirac trick.

G.2.2. Positive operator-valued measure (POVM). As discussed in Chap. 8, the most general type of mea-
surement may enlist an ancilla for help. To model any kind of measurement, including ancilla-assisted measurements
as well as projective measurements, We can use an elegant concept called the positive operator-valued measure
(POVM).

Let the Schrodinger-picture density operator of a system in state p augmented by an ancilla in state pp be p® pp
on the joint Hilbert space H @ H . The probability measure for the outcome from a projective measurement of the
augmented system is

P[S] = tr |TI(S)(p ® p)|, (G.15)
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where T1 is the PVM on H @ H. B that models the measurement. The formula can be rewritten as
P[S] = tr [ﬂ(s)(ﬁ ® /33)} _ [ﬂ(S) (f ® ﬁB) (;3 ® fB)] = |tr [M(S)ﬁ] , (G.16)

where [ is the identity operator on H and

N(S) = trg [ﬂ(S) (f ® ﬁB)} (G.17)

is an operator on the smaller Hilbert space . M is called a POVM. Like a PVM, it takes any event S € F as an
argument, although M (S) may not be a projection operator anymore.

In quantum information theory, it is common to draw the so-called quantum circuits, such as Fig. G.1, to
represent the concepts. In the figure,

(1) each line represents a Hilbert space,

(2) each line is labeled by the initial state on the left,

(3) multiple lines represent the tensor product of the Hilbert spaces,
(4) time flows from left to right,

(5) and the cartoon on the right represents a measurement.

A~

; II M

S — N

A —A
PVM POVM

Ficure G.1. Quantum circuits representing a measurement. Left (ancilla-assisted form): a projec-
tive measurement modeled by a PVM [Tona system in state p together with an ancilla in state pp.
The probability distribution of the outcome is given by Eq. (G.15). Right: the same measurement
can also be modeled by a POVM given by Eq. (G.17).

In general, we call any M a POVM if it satisfies the following properties:

M(S) >0, MQ) =1, M(S1USy) = M(S1)+ M(S)if SN Sy = @. (G.18)

G.2.3. Naimark dilation. A fundamental converse of Eq. (G.17) called the Naimark dilation theorem says
that, given any POVM that satisfies Eqgs. (G.18), there exist an ancilla density operator g on some Hilbert space
‘Hpand aPVM HonHeH p that satisfy Eq. (G.17) [43]. Eq. (G.17) and the converse Naimark theorem imply that
any measurement, simple or generalized, can be modeled by a POVM, and conversely, any POVM has a physical
implementation using an ancilla, at least in principle.

While it is nice to know that any POVM is physically realizable, finding a physical setup to do it in practice is a
much harder problem.

Exercise G.4. Show that a PVM is a special case of a POVM. Find an example of a POVM that is not a PVM.
Exercise G.5. Show that the Heisenberg picture of a POVM is still a POVM.

Exercise G.6. Show that homodyne detection, introduced in Chap. 8, can be modeled by a PVM, while dual-
homodyne detection and heterodyne detection are examples of ancilla-assisted measurements. Find I1, pp, and M
for the three measurements.
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G.3. Decoherence

G.3.1. Trace-preserving completely positive (TPCP) map. In Chap. 7, we considered optical loss in terms of
a two-input-two-output beam-splitter model. This model turns out to be a representative example of decoherence,
which can be defined as an interaction of a system with an inaccessible environment.

To construct a general model of decoherence, consider again a system augmented by an ancilla with a joint
state p @ pp on the joint Hilbert space H ® H . (In the context of decoherence, the ancilla is not really helping us
with anything, so it is more commonly called an environment, a bath, or a reservoir, although we mostly stick with
the term ancilla from now on for consistency.) Suppose that the augmented system evolves in time according to a
unitary operator U on H ® Hp, so that the final-time Schrodinger-picture state is

U(p pp)UT. (G.19)
Now we make a new decomposition of the joint Hilbert space as
HRHp ~He®Hp, (G.20)

where ~ denotes an isomorphic relation (see Sec. B.9), and assume that H ¢ is accessible while H p is inaccessible
at the final time. We make this new decomposition for generality—we see in Chap. 7 that, for optical loss, the
accessible Hilbert space at the final time is the output mode, which lives in a different Hilbert space than that of the
accessible input mode. Of course, depending on the problem, we can also take Ho = H and Hp = Hp.

We call the state on H ¢ at the final time the final system state. It is given by the partial trace

trp [U(ﬁ ® ﬁB)fﬁ} = Fp. (G.21)

This relation defines a map F from the initial system state p on H to the final system state on Hc. F is called a
trace-preserving completely positive (TPCP) map. Some quantum circuits representing Eq. (G.21) are shown in
Fig. G.2.
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p— F =

Ficure G.2. Quantum circuits representing a trace-perserving completely positive (TPCP) map
given by Eq. (G.21). The label = on top of each line indicates that the Hilbert space represented by
the line is H,. The left figure is the ancilla-assisted form and the right figure is the simplified form.

Let O(H) be the space of operators on a Hilbert space H. Then the domain of F is O(H), the codomain is
O(Hc), and we write F : O(H) — O(Hc). Such a map is sometimes called a superoperator, as it is an operator
on operators.

F in Eq. (G.21) is trace preserving because

tr (Fp) = trotrp |U (@ ﬁB)(AJT} — tr [ﬁ(p@ﬁB)U’f} = (tr p)(tr pp) = trp, (G.22)

where we have assumed tr pp = 1. In other words, the trace of the final system state is equal to the trace of the
initial system state p. We demand tr p = 1 for a density operator, so tr(Fp) = 1 is satisfied if F is trace preserving.

Side note. The “completely positive” (CP) part of the name refers to a certain mathematical property of the map
https://en.wikipedia.org/wiki/Completely_positive_map. To describe this property, let H,, be yet
another Hilbert space with dimension n < oo and O(H & H.,,) be the space of operators on H & H,,. We define a
newmap F @ L, : O(H @ Hy,) = O(Hc @ Hy) by

(F@T) (A B) = (ffl) ® B e OHe ® Ha). (G.23)
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This relation for any A ® B is enough to define F @ T, : O(H®@Hy) = O(He @ Hy,) in general. Now a CP map
is defined as a map F such that, for any n < oo, F ® I,, maps positive-semidefinite operators in O(H ® H,,) to
positive-semidefinite operators in O(Ho @ Hy).

Physically, this CP property together with the trace-preserving property imply that the application of the map
F ® I, on a density operator on any larger Hilbert space should give another density operator.

If the definition of the CP property sounds too complicated for your taste, I don’t blame you—we don’t actually
use the definition much in physics. Instead, we usually think of a CP map as a shorthand for the left-hand side of
Eq. (G.21).

G.3.2. Kraus form. There’s a more succinct way of writing a TPCP map called a Kraus form or a Kraus
representation. First write the ancilla state pp in the diagonal form

pB =Y Dnlen) (en, (G.24)

where {p,, } are some positive numbers and {|e,,)} are a set of vectors in H . Write also the identity operator Ip
on H p as a completeness relation

Ip = |fm) (fml (G.29)
m
in terms of a set of vectors {| f,,) } in #p. Then we can write the TPCP map as
Fp=Y KunpK},, (G.26)
m,n
where
Konn = /Dn (fm| U len) (G27)

is an operator Kpm : H — Hce called a Kraus operator. (f,,| and |e,) in Eq. (G.27) should be interpreted as
a partial bra and a partial ket, respectively (see Sec. B.10). The expression of a map in the form of Eq. (G.26),
where we sandwich the initial system state p between two operators K and K. ;r,m and then take the sum, is called
a Kraus form or an operator-sum form.

Beware that the Kraus form of a TPCP map may not be unique, i.e., there may be many sets of operators that
give the same CP map F. For example, the diagonal form of pp given by Eq. (G.24) and the completeness relation
given by Eq. (G.25) may not be unique, so the Kraus operators {K mn ) are different depending on the forms we
choose. By virtue of the purification theorem, we can also assume a pure ancilla state pp = |¢) ()| on a large
enough Hilbert space, so that a Kraus operator becomes

K = (fin] U 1) (G.28)

with only one index.
G.3.3. Stinespring dilation. In general, any map F in the Kraus form
Fp= KnpK], (G.29)
m

for some Kraus operators {K m } can be shown to be CP. A fundamental converse of Eq. (G.29) called the Stinespring
dilation theorem says that, if a map F is CP, then it can always be expressed in a Kraus form for some Kraus operators
{K,,}. If the map is also trace preserving, then the Kraus operators must also satisfy

Y KKy =1 (G.30)

It turns out that, given a set of Kraus operators that satisfy Eq. (G.30), one can always cook up an ancilla state
pB = |1) (1| and some unitary operator U so that Eq. (G.28) holds and the map can be written in an ancilla-assisted
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form on the left-hand side of Eq. (G.21) [46, Theorem 5.1]. In other words, any TPCP map is physically realizable,
at least in principle.

G.4. Time evolution

G.4.1. Quantum Markov chain. For a system that interacts with 2 ancillas sequentially, the final system state
in the Schrodinger picture can be expressed as sequential applications of TPCP maps F1, F2 . .., Fp:

0 = Fu- - FaFijo, (G.31)

where py is the initial state on a Hilbert space H and F; : O(H;—1) — O(H;). Each TPCP map can be expressed
as

fjﬁj_l = trDj [Uj(ﬁj_l & 53')0;}, (G.32)
where &; is an ancilla state on Hp,, Uj is a unitary operator on H;_1 ® Hp;, we assume
Hio1® HBj ~H;® HDj, (G.33)

and trp; is the partial trace with respect to Hp,. Some quantum circuits representing Eqs. (G.31) and (G.32) are
shown in Fig. G.3.
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Ficure G.3. Quantum circuits representing the quantum Markov chain modeled by Egs. (G.31)
and (G.32). The left figure is the ancilla-assisted form and the right figure is the simplified form.

Physically, Eqs. (G.31) and (G.32) imply that, at each time step, the ancilla is always in a fresh state 7;
independent of the system and the other ancillas for the other time steps.

Another perspective is to think of the n ancillas as one big bath. Then Eqgs. (G.31) and (G.32) imply that the
bath “forgets” any previous interaction with the system and becomes independent of the system at the beginning of
each time step.

We call Eq. (G.31) a Markov chain because it is a generalization of the classical Markov chain. Let
(Xo, X1,...,X,) be a classical random process with discrete time j = 0,1,...,n. Assume also countable
sample spaces for simplicity. The probability distribution of X, can be expressed as

Px, (xn) = Z Px. X010 X0 (@TnlTn—1, -, 00) Px,, X0, X0 (Tn—1]|Tn—2,...,%0) ...
Tn—1,---,L0
Px, |x, (z1]20) Px, (20)- (G.34)

Make the Markov approximation

Pxi1x; 1,0x0@jlzj—1s - @0) = Py x; -, (T]T5-1), (G.35)

which means that each Py |x,_, .. x, depends only on the immediate previous value X;_; and “forgets” the earlier
o J (AR
values. Then we can write

Px, = > Px,x, . (@al@a1) - Y Pxyix, (al21) > Py, x, (1]20) P, (20)- (G.36)
Tp—1 x1 zo
We can now think of each operation

PX]' (:L']) = Z PXj|Xj—1(ivj‘l'j*l)PXj—l(l‘j*l) (G.37)

Tj—1
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as a map from a distribution Py, _, to another distribution Px;; each F; in Eq. (G.31) is a generalization of such a
map. The “Markovianity” in the quantum case comes from the independent ancilla assumed in each time step.

G.4.2. Master equation. Let
tj=to+jAt, 7=0,1,2,..., (G.38)
be the discrete time with step size At,

p(t)) = p; (G.39)
be the Schrodinger-picture density operator of the system at time ¢, and assume that the system at each time always
lives on the same Hilbert space 7, so that F; : O(H) — O(H{). Write the map as

F; = exp[L(t;)At], (G.40)
where L(t;) : O(H) — O(H) is another map and At is the duration of the time step. In the limit A¢ — 0, we can

model the time evolution in Eq. (G.31) in the form of a differential equation

dp(t) . plty) —plti1) _ s
o S A T = W), 4D

This equation is called a (Markovian) master equation. In the continuous-time limit, we can write F,, . . . F; formally

as
ln

Fn-o.F1 = T exp [ L'(t)dt] =G(tn), (G.42)

0
where 7 denotes time ordering (https://en.wikipedia.org/wiki/Path-ordering#Time_ordering). If
L(t) does not depend on time, the set G = {G(t) : t > 0} is called a quantum Markov semigroup, and we can write
each element of the semigroup as

G(t) = exp (Lt), (G.43)

where L is called the generator of the semigroup. G(t) for each ¢ is a TPCP map, and G is called a semigroup
because of the property G(t)G(t') = G(t +t'). G is only a semigroup, not a group, because the set G may not
contain the inverse of each G(t).

Gorini, Kossakowski, Sudarshan [49], and Lindblad [50] (GKSL) found that the generator of any quantum
Markov semigroup can be expressed as

s o la. 1.
Lp= _Z[H, p} +3 (Lij} S LiLp- 2pLj.Lj), (G.44)
J

where H is a Hamiltonian, each «y; 1s a positive real constant, and each ﬁj is called a jump operator. Conversely,
as long as H is Hermitian and each 7y; is positive, the right-hand side is the generator of some quantum Markov
semigroup.

Beware that the GKSL form is not unique, i.e., there exist many different Hamiltonians and jump operators that
give the same generator L.

The quantum Markovian master equation generalizes the Fokker-Planck equation and the Chapman-Kolmogorov
equation in the classical case [51].

Remark G.2. To model time evolution using multiple TPCP maps F, ... Fi, At for each F; needs to be long
enough for the bath to forget the interaction and begin in a fresh ancilla state for the next map. Yet, here we have
taken the limit of At — 0 to derive the master equation. It is therefore important to keep in mind that the master
equation, while mathematically well defined, is an approximation of the fundamental physics. It does model many
phenomena quite well, such as the Brownian motion, but may cease to be accurate when the physics becomes
“non-Markovian.”

The fundamental dynamics of a closed system (i.e., no ancilla) is described by the Liouville equation in the
classical case or the Schrodinger equation in the quantum case, and we do get precise Markovianity. For any other


https://en.wikipedia.org/wiki/Path-ordering#Time_ordering

G.5. INDIRECT MEASUREMENT 190

open system, however, Markovianity is an approximation, not a clear-cut property. It can get more or less accurate
depending on how we make the system-ancilla partition.

Side note. The right-hand side of Eq. (G.44) is often called the Lindblad generator or Lindbladian, while the master
equation in terms of the right-hand side of Eq. (G.44) is often called the Lindblad master equation, but that would
not be fair to GKS, who discovered the form independently at around the same time.

G.5. Indirect measurement

Suppose that a system with initial state p interacts with an ancilla with initial state pp through a unitary operator
U. Then we perform a partial measurement in terms of a POVM Mp on Hp only, with sample and event spaces
(Q, E'). This measurement scheme is called an indirect measurement. For example, we often measure an atomic
or solid-state system by sending an optical probe beam with multiple modes to interact with the system, before
measurements of the output optical modes.

With an indirect measurement, the measurement on the ancilla can be destructive while the system remains
intact, so we can study what happens to the system after the measurement. The central concept for this problem is
the hybrid state, defined as

trp { [fc ® Mp(S)|U(p® ﬁB)ﬁT} =F(S)p,| SeE, (G.45)

where I for any subscript s is the identity operator on Hs. We call F : Ex O(H) — O(H ) amap-valued measure,
since F(S) : O(H) — O(H) for each event S is a CP map, while F(5)p for each S is a positive-semidefinite
operator on H¢. The probability of .S becomes

P[S] = tr [F(S)4], (G.46)

while the unconditional quantum state on H¢ if we ignore the measurement outcome is F(£2)p, where F(£2) is a
TPCP map. The normalization condition for the hybrid state is hence

tr [F(Q)p] = trp = 1. (G.47)

F(S)p behaves like a joint probability distribution, except that one part is classical and one part is quantum (hence
the name hybrid state). It gives a classical probability measure if we ignore the quantum part by taking the trace
and gives a quantum density operator if we ignore the classical part by plugging S = 2.

p— 2 A T
N c N C
pBiU—> S le,

Ficure G.4. Quantum circuits representing Eq. (G.45) for the hybrid state F(S)p produced by an
indirect measurement. A double line represents a classical variable and the symbol on top is the
event S. The left figure is the ancilla-assisted form and the right figure is the simplified form.

We can write Eq. (G.45) in the Kraus form as well. First rewrite M p(S) in terms of its square root (see Sec. B.6)

Mp(S) = \/MD(S)\/MD(S)a Ic ® Mp(S) = [fc ® 1/ MD(S):| [fc ® \/MD(S)]' (G.43)

Then we can use the cyclic property of the partial trace given by Eq. (B.122) to write

F ()0 = tro { [ic- 0\ ¥1o(8)| 01 pm0 1 0 itn(3)]} = 5= Knn($)pm (), (G49)

as
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where the Kraus operator

Kon(S) = v/Pr { fl [fc ® 4/ MD(S)} U len) (G.50)
generalizes Eq. (G.27).

G.6. Posterior state

Let the first measurement outcome be X . If we make another measurement on the system with POVM M¢ on
‘Hc and the outcome is Y, the joint probability of Y € R and X € S becomes

P[(Y € R)and (X € S)] = tr [MC(R);E(S),@] (G.51)

The probability of Y € R conditioned on X € S is then

an tr | Mc(R)F(S)p
Py e Rlx € 5] = 21 elf& eds(]X €5 _ [ trc[]-"(S)ﬁ] | . (G.52)

Hence, we can regard

R F(S)p
ps = t()p (G.53)
r (numerator)

as the posterior system state conditioned on the event X € .S, so that any subsequent measurement can be modeled
as

PlY € RIX € §] = tr [MC(R);;S] (G.54)

Eq. (G.53) is sometimes called a quantum Bayes theorem. It generalizes the phenomenon of measurement-induced
collapse in ordinary quantum mechanics.

Side note. There are many proposals to generalize Bayes theorem in quantum mechanics;, Eq. (G.53) is only one
special case.

We can also condition on a measurement outcome X = x. This is most easily done if X is discrete: just take
S = x, so that the posterior state becomes

A F(x)p

= —— P Q. G5
tr (numerator) ve (G.35)

If X is continuous, however, the definition of a posterior state is a bit trickier, similar to the classical problem in
Sec. C.4. To proceed, we assume that the POVM in Eq. (G.45) can be expressed as

Mp(S) = /ES fo(x)du(z) (G.56)

for a classical reference measure y and an operator-valued density f D : Q — O(Hp). Then we can think of the
POVM as a function of the outcome x as

Mp(z) = fp(z)du(z). (G.57)

For example, for a von Neumann measurement of A = [ x|A=z) (A= z|dz, we can use the Dirac trick to write

~ ~

Nip(S) :/ A = 2) (A = 2| da, Nip(z) = |A = 2) (A = 2| da. (G.58)
zes

Given fp(x), we write F () for an outcome x as

Fla) = dua) trp { [fo ® fo@)|U(p© pn)0, (G.59)

=f(x)p
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so that
tr [F(2)7] = dya() tr [F(2) (G.60)
and tr[f(z)p] gives the probability density. The posterior state becomes
. ()5
_ Fap _ fap Gon

:0 - N INR!
T ulF@)p  tlf(z)p)
where dp(z) drops out of the final expression.
G.7. Sequential measurements

We can model sequential measurements with outcomes (X7, ..., X,) € Q; X - -+ x Q,, by assuming the hybrid
state

| F(Sn, - 51)p = FulSn) ... Fir(S1)p, | (G.62)

where p is the initial system state, each F; is a map-valued measure in the form of Eq. (G.45), and each S; is an
event for the jth measurement outcome X;. Each F; can also model any time evolution and decoherence besides
the measurement by including additional degrees of freedom in the ancilla and modifying the ancilla state and the
unitary in Eq. (G.45) accordingly. The joint probability of all the events becomes

P[(X, € Sy)and ... and (X7 € S1)] = tr [Fn(Sn) ... F1(S1)p]. (G.63)

If we ignore all the outcomes and plug the sample space €); for each outcome into S;, we get back the Markov chain
in Sec. G.4.1:

P = Fn(Qn) ... F1(Q1)p. (G.64)
We can also compute the posterior state by

Fn(Sn) ... F1(S1)p

A _ G.65
PSn,...,51 tr (numerator) ( )
or by the iterative relation
./."j(Sj )ﬁSj 1,551
» — —— G66
PS;,....51 tr(numerator) ( |

for the posterior state pg;, .. s, at each time. Fig. G.5 shows some quantum circuits representing Eq. (G.63).
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Ficure G.5. Quantum circuits representing sequential measurements modeled by Eq. (G.63). The
left figure is the ancilla-assisted form and the right figure is the simplified form.

G.8. Continuous measurement

The outcomes of sequential measurements form a discrete-time random process (Xi,...,X,). There is a
beautiful theory of continuous measurement, pioneered by Belavkin, that takes the continuous-time limit of the
sequential-measurement model, so that the outcomes become a continuous-time random process [45]. The resulting
equation for the posterior state is called a stochastic master equation, a generalization of the master equation we
introduced in Sec. G.4.2.

The stochastic master equation is less popular and arguably less useful, however, because

(1) It requires stochastic calculus, a hairy subject.
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(2) Itisn’t any easier to solve than the discrete-time Eqs. (G.65) or (G.66) in most cases. One often needs to
solve the stochastic master equation numerically assuming discrete time, but then one may as well solve
Egs. (G.65) or (G.66) without ever worrying about stochastic calculus.

(3) Outcomes from real-life measurements are always recorded at discrete times and a continous-time process
is only an approximation, so a stochastic master equation is an approximation in any case.

G.9. Measurement-based feedback

An experimenter can take the measurement outcomes and modify the future dynamics based on the outcomes.

We can model measurement-based feedback by assuming that each F; depends on the previous events S;_1, ..., S1.
For example, consider two sequential measurements. Then the conditional probability is
F1(51)p
P[S2|S1] = tr [Fa(S2]S1)ps, g, = ———————, G.67
[S2|S1] = tr [F2(S2[51)ps,] Ps1 tr(numerator) (G.67)

and the joint probability distribution becomes
P[SQ and 51] = P[Sg|Sl]P[51] = tr []:2(52|Sl)]:1 (51),5] (G68)

Fig. G.6 shows the quantum circuits that represent the feedback.
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FiGgure G.6. The first event S can be used to modify future dynamics by perturbing ﬁQ(S 1) or Fa(S2|51).

This argument can be generalized for multiple measurements, so that Eqs. (G.62)—(G.66) remain valid if each
F;(S;) depends on the previous events, and we can rewrite it as F;(S;]S;-1,...,51).

G.10. Principle of deferred measurement

Similar to the theorems of purification, Naimark, and Stinespring, it turns out that, through the so-called
principle of deferred measurement [47], we can also model sequential measurements and measurement-based
feedback by ordinary quantum mechanics without resorting to CP maps.

To see how it works, first consider a simple example of a system on H and an optical mode as the ancilla on
‘H p. Let the initial state of the augmented system be p on H ® H p and consider the following experiment:

(1) The experimenter measures the photon number 7 = ), n|n) (n| of the optical mode.
(2) The experimenter then uses the outcome n to modify the dynamics of the system, so that the unitary
operator of the system after the measurement becomes a function U (n) of n.

This experiment turns out to be equivalent to the following:
(1) The system and the optical mode interact according to the so-called controlled unitary operator

V=> Umn)@|n)(n|. (G.69)

(2) Then the experimenter measures the photon number of the optical mode.
To show that the two experiments are equivalent, we observe that the hybrid state for the first experiment

Filn)p = U(n){trB [(1 ® |n) <n|) f)} }U(n)T (G.70)
is equal to the hybrid state for the second experiment

Faln)jp = trp [(i@ In) <n\)f/ﬁf/f] (G.71)
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With the same hybrid state F1(n)p = Fa(n)p, the joint probability distribution P(m, n) = tr[M (m)F;(n)p| after
any subsequent measurement with outcome m is the same, so the two experiments are indistinguishable. In other

words, we do not have to use a CP map trg [(.f ® |n) (n|> ﬁ} to describe the measurement before the feedback; we

can use a controlled unitary Vona larger Hilbert space to model the procedure and assume that the measurement
is performed afterwards. The general idea is depicted in Fig. G.7.

~ 0 D1 Sl ~ 0 D1 D1
peU 2 = = paf] FaRi ka
. B 111 ! 2 2 . B 111 ~ 2
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02 2 2[2 > R O'2ﬁ2 2%.

Ficure G.7. Sequential measurements and measurement-based feedback (left) can be modeled by
controlled unitaries and deferred measurements (right).

Exercise G.7. Show that V given by Eq. (G.69) is a unitary operator.
Exercise G.8. Show that Egs. (G.70) and (G.71) are equal.

We now prove the principle for sequential measurements in general, at least for discrete outcomes and finite-
dimensional Hilbert spaces.

(1) Write each map in the ancilla-assisted form as

Fj(xjly;)pj—1 = trp, { [fj ® ﬁj(xj)] Ui (yj)(pj—1 ® 6)U;(y;)" [fj ® Aj(xj)} } (G.72)
= trp; { [fj ® ﬂj(%‘)] U (y;) [¥5) pi—1 (7| Us(y;)! [fj ® ﬁj(fﬂj)} } (G.73)
&j = |'¢]> <wj|a yj = (ZL‘jfl,...,.ﬁl). (G74)
Note that X
(@) pjisonHj, o;isonHp,, Ujison
Hio1® ’HBj ~H;® HDJ., (G.75)

and flj isonHp;.
(b) InEq. (G.73),

Vi) Hjm1 = Hjm1 ® Hp;, (W] Hjm1 ® Hp, = Hj-1 (G.76)

are understood to be a partial ket and a partial bra, respectively.

(c) We have assumed a suitable ancilla so that the measurement can be modeled by a PVM f[j.

(d) & can always be assumed to be pure on a large enough Hilbert space by virtue of the purification
theorem.

(e) We have used f[j(xj) = ﬂj(xj)2 for a PVM and the cyclic property of the partial trace given by
Eq. (B.122).

(f) Without loss of generality, [1/;) can be assumed to be independent of the previous outcomes y;. Proof:
Because any two pure states can be related by a unitary operator, we can write any y;-dependent pure
state as

[9(y5)) = aly;) [¥;) (G.77)

in terms of a y;-dependent unitary 4 (y;) and a fixed [1;), and @(y;) can be absorbed into U i (yj) by
a redefinition of Uj.
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(g) With no practical loss of generality, we can also assume ij to be independent of y;. Let’s prove it

for simple measurements with

i (@ly;) = lex(s)) {ex(ys)l (G.78)

where {|e;(y;))} for each y; is an orthonormal basis of Hp,. Since two orthonormal bases of
a Hilbert space can always be related by a unitary operator, we can write any PVM for a simple
measurement as

() = lea () (ea(yy)] = aly;) |€,) (4] alyy)" = alyy)TL;(@)a(y;)" (G.79)
in terms of a y;-dependent unitary @(y;) and a fixed PVM IT;(x) = |e.) (¢,|. Then
Iy @ 73 (wlyy) | Us(u) = |1 @ iy ) T (@)C)!| O (w), (G.80)

the 4(y;)! on the right can be absorbed into U, (y;) while the @(y;) on the left goes away after the
partial trace trp;.

Side note. As long as we stick to a finite-dimensional Hilbert space, the proof for projective mea-
surements is pretty much the same. For an infinite-dimensional Hilbert space, however, two arbitrary
PVM’s need not be unitarily related (e.g., for quadrature and photon-number measurements) and
we have to restrict ourselves to a set of unitarily related PYM’s {7;(-ly) = a(y)IL;()a(y) : y €
ch;ll Qg }. It’s not that bad a restriction—for example, we know from Chap. 8 that optical homodyne
detection is implemented with a local oscillator and square-law detectors, so the local oscillator can
be regarded as an ancilla and a real homodyne detector is unitarily related to photon counting after-
all. For the homodyne detector to implement a quadrature measurement exactly, the local oscillator
needs to be infinitely strong, but we don’t have that in reality.

(2) With n such maps, we use Eq. (B.123) to defer each partial trace repeatedly to obtain

Fo(@n|yn) ... Fi(z1)p = trp, ...trp, (WlﬁWf), (G.81)
Wor = [ © Wa() | On(gn) 1on) (G82)
Wy = [Wiar @102 O) [) s G =n—1,.0,1, (G.83)
where
Wyt Hno1 = Hno1 @ Hp, ~ Hn @ Hp,, Wj:Hj—1 — Ho @ Hp, ® - @ Hp,. (G.84)

(3) Key step: we repeatedly defer each ﬂj to a later time using the identity

where

A(z) @ Ti(z) = [f ® ﬂ(a;)} Y A(x) ®Ti(2), (G.85)
which comes from II(z)II(z) = II(z)d,. for a PVM with discrete outcomes x and z. We obtain
Wl = [An@)ﬂn(xn)®-"®ﬂ1($1)}’lﬁn...ﬁ)1, (G.86)
Tf)j = Uj(zj_l,...,zl) ‘w]> ®ﬂj_1(zj_1) & "'®ﬂ1(2’1), (G.87)
Zj—15--+9%1
w1 Hog = Ho® Hp, ~ H1 ® Hp,, (G.88)

l@j:ij1®HDj_1®...'HD1—)Hj®HDj®...HD1, j=2,...,n. (G.89)
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(4) The final result is

Folznlyn) - .. Fi(z1)p = trp, ... trp, { [fn ® p(zn) ® -+ ® ﬂl(xl)} %n}, (G.90)
=V eVl i=1...n H=p (G.91)
Vj = Z Uj(zj_l,...,zl)®ﬂj_1(z]~_1)®-~®ﬂ1(21), (G.92)

Zj—1y..521

where each 71 ison Ho @ Hp, ® - @ Hp, ,, Tj-1 @ 0jison Ho ® Hp, ®--~®HB].,Vj is on
Ho®@Hp, @ Q@Hp, ~H; @Hp, ® - @ Hp,, (G.93)

and Eq. (G.92) applies to the latter order. The dynamics is now fully unitary, as modeled by the
controlled unitaries {V}}, while all the measurements have been deferred to the final time, as modeled by
(5) The principle can be verified by observing that the two models give the same probability distribution:

Py, xty (T w1) = 0 [F(@nlyn) - .. Fiz1)p] = to { [fn ® o (a0) @+ ® f[l(xl)} %n}. (G.94)
Exercise G.9. Prove that ‘7] is unitary and I, ® ﬂn(xn) R ﬂl(xl) isa PVM.

G.11. Church of the larger Hilbert space

We stress that open quantum system theory does not modify quantum physics in any way; the former merely
introduces a suite of mathematical tools to describe the latter more succinctly when we partition the universe—
somewhat arbitrarily and artificially—into a system of interest and some ancillas. In fact, for some problems, it may
be easier and more general to stick to ordinary quantum mechanics in terms of pure states, unitaries, and projective
measurements. The price to pay is that the Hilbert space needs to be large enough to accommodate all the system
and ancillary degrees of freedom, so brute-force simulations may be challenging.

The fact that ordinary quantum mechanics, with a sufficiently large Hilbert space, can be used to model
open quantum systems is sometimes called “the church of the larger Hilbert space.” The principle of deferred
measurement, in particular, underlies the Everett interpretation of quantum mechanics, which says that any observer
can be modeled as a quantum ancilla and the measurement modeled as a quantum interaction between the system
and the ancilla, so that Born’s rule is unnecessary—an illusion.

Despite this radical viewpoint, Born’s rule remains very convenient. In Sec. G.10, we still have to use Born’s
rule for the final PVM to verify the principle of deferred measurement. Everett’s interpretation also doesn’t explain
why Born’s rule works so well in practice. Born’s rule is an oddball in quantum foundations that awaits a more
satisfying explanation.



APPENDIX H

Statistics™

H.1. Introduction

The goal of any experiment, especially in sensing and imaging, is to infer unknowns from noisy data. The
measurement is not the end of the story, and the data need to be further processed. The accuracy of our inference
thus depends not only on the quality of the measurement but also the method of the processing. To devise a
performance metric that accounts for both, the signal-to-noise ratio (SNR) we used in previous chapters turns out
to be inadequate. From this chapter and the next few, we introduce the necessary statistics so that we have more
holistic ways of assessing the performance of an experiment, including the data processing.

Remark H.1. We can make a distinction between probability and statistics as two disciplines:

e Probability theory, as outlined in Appendix C, assumes one probability measure and studies its various
properties, such as the probability of an event and the expected values of random variables.

e Statistics (in the sense of a discipline studied by statisticians) assumes a set of probability measures called
the statistical model, all with the same sample space ) and event space E. An observation is assumed to
be a random variable that comes from one of the probability measures, and our goal is to learn certain
properties of the model from the observation.

In statistics, the terms inference, decision, detection, hypothesis testing, and estimation are all fancy words for
the act of guessing in various contexts.

H.2. Statistical model

To define a statistical model, we introduce a new variable called the parameter § € O to label a set of
probability measures, where © is called the parameter space. Then a statistical model is defined as a set of
probability measures

{Py: 0 €0}, (H.1)

where each Py : E — [0, 1] for a given € is a candidate measure for our observation. For most problems, there exists
a f-independent reference measure o that dominates all measures in the model, and we call the Radon-Nikodym
derivative (see Sec. C.9)

dPy

fo(x) = o

—(z) (H.2)

the probability density.

(1) If the observation is discrete, then we take o to be the counting measure so that

do() = 1, [dPy(x) = fo(z) = Py(a), (H.3)

and the expectation of a random variable g(z) conditioned on 6 becomes

Eo(g) = / 2)dPy(x Zg (H4)
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(2) If Q C R™, we take o to be the Lebesgue measure so that fy(z) is the conventional probability density,
and we write

do(z) = d'z, [aPy(@) = folw)d"z] Big) = [ g@flads|  @©3)

Remark H.2. Beware that 0 in Py or fy does not denote a random variable for a probability mass function or
probability density, unlike the notation in Appendix C; here 0 is an additional label of the measure.

Two basic examples of a parameter space O:

(1) If © is discrete, e.g., © = {0,1,2,...}, then the parameter is more commonly called a hypothesis, and
the inference is commonly called hypothesis testing.

The simplest example is when there are only two elements in ©, commonly denoted as © = {0, 1}.
Then there are only two probability measures Py and P; in the model, and the inference is called binary
hypothesis testing or detection. = 0 is commonly called the null hypothesis, and 6 = 1 is called the
alternative hypothesis. Examples:

(a) Radar detection: The radar readings are the observations. § = 0 denotes the hypothesis that a target
is absent, while 6 = 1 denotes the hypothesis that a target is present.

(b) Tumor detection: The X-ray images are the observations. § = 0 denotes the hypothesis that a tumor
is absent, while 6 = 1 denotes the hypothesis that a tumor is present.

(¢) Gravitational-wave detection: The data from our optical measurements are the observations. § = 0
denotes the hypothesis that no gravitational wave hits the detector, while # = 1 denotes the hypothesis
that a gravitational wave is there.

Remark H.3. Outside statistics, the words detection and detector refer to a generic measurement and a
generic measurement device, e.g., homodyne detection and gravitational-wave detector, whereas detection
in statistics means something more specific: the detection of a target in binary hypothesis testing.

(2) If © is continuous, e.g., © = RP or a subset with non-empty interior, then § € © is commonly called a
parameter and © a parameter space. The inference is commonly called parameter estimation. Examples:
(a) Radar, X-ray: suppose that a target is present. We’d like to estimate its size and shape, which are
modeled by real numbers.
(b) Gravitational-wave estimation: estimate the gravitational waveform as a function of time.
(c) Astronomy, microscopy, spectroscopy: estimate the positions, brightnesses, shapes, and intensity
distributions of stars, particles, or spectral lines.
If © is multidimensional, e.g., © C RP with p > 1, then the task is sometimes called multiparameter
estimation, as there are multiple components in each parameter . We model it by a vectoral 6.
(3) Inpractice, one may wish to perform both hypothesis testing and parameter estimation from one set of data,
e.g., tumor detection and measurement from an X-ray image, in which case the task is called composite
hypothesis testing.

H.3. Decision rule

Our next task is to model our guess of the parameter mathematically. Given an observation x € 2, we model
our guess by a function

0:0xQ -0 (H.6)

called a decision rule, also called an estimator in parameter estimation. The decision may depend not only on the
observation z € 2 but also an independent ancilla random variable y € €2’. When a decision rule involves such an
ancilla, we say that the rule is randomized, otherwise it is deterministic. In other words, a deterministic rule will
always give the same guess §(x) for the same observation z, while a randomized rule §(z, i) depends also on the
random ancilla y so the guess may be different in each trial for the same observation x. We allow randomized rules
because they may be advantageous in special cases, to hedge among a bunch of deterministic rules.
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H.4. Loss function

To carry out the first step of quantifying the statistical performance, we define a loss function [(6,6) that
quantifies the difference between the true parameter § and our guess ¢(z). Examples:

(1) For hypothesis testing, the zero-one loss is common:

3 0, 0=0
10,0) =1—0p5 =12 - ’ H.7)
1, 0#86.
(2) For parameter estimation where # € © C R is a scalar parameter, the square loss is common:
16,0) = (6 —6)°. (H.8)
(3) If © is a normed vector space, then we can use the norm to quantify the distance:
5 112
1(6,0) = |0 — 6" (H.9)
For example, if O is an inner product space, we can pick
16— 6] = (6— 6,6 — 6) (H.10)
in terms of the inner product. In particular, the standard /2 norm for R? is
P
112 N2
16— 6]]"=>" (6 —6;)", (H.11)
j=1
or one may pick
) < «
16— 6]]" =" (65 — 0;) G (6k — br), (H.12)

gk
where G is a positive-definite matrix.
Side note. In some areas of machine learning, people prefer to define a reward function instead. Just put a minus

sign on a loss function to obtain a reward function, or in general apply any decreasing function to convert a loss to
a reward and vice versa.

H.5. Errors of a decision

Often we do not know the ground truth 6. After we have made an observation (z, %) and a decision (z, y), we
need to quantify the uncertainty about the particular decision. In other words, we would like to put an error bar
on our experimental result. The concepts of p-value, confidence interval, Bayesian posterior errors, bootstrap, etc.,
are all invented for that purpose, but we won’t go into the details of them; see, for example, Ref. [52].

H.6. Errors of a rule

The decision rule 9(35, y) is a function of the observation = and the ancilla y, which are independent random
variables sampled from the product probability measure (see Sec. C.3)

Py=Py P (H.13)

With random x and y, 6 and l(é, ) become random variables. To study the average loss of a rule over many trials,
we consider the expected loss:

R(0,0) =Eq [1(9,0)] = /l(@,é(ﬂs,y))dpg(x,y), (H.14)

where Ey denotes the expectation with respect to Py for a fixed #. We will simply call this R the error. It is
sometimes called the risk function in the literature. The error R(6, ) is a function of the true parameter ¢ and also
the rule 6, but it no longer depends on the observation x and the ancilla y. For example,
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(1) if we use the zero-one loss for binary hypothesis testing, then
R(0,0) =Ko (1 —65) = / ) dPo(z,y) = Po[0 = 1] (H.15)
(z,y):0(z,y)=1

is the probability of a false alarm, also called a false positive or a type-I error. In this case, § = 0 is

the truth, while {(x,y) : 6(z,y) = 1} is the set of (augmented) observations that make us decide on the
alternative hypothesis. Similarly,

R(1,0) =E (1-65) = / ) dPy(z,y) = P1 [0 = 0] (H.16)
(2,9):0(z,y)=0

is the probability of a miss, also called a false negative or a type-II error. In this case, § = 1 is the truth,

while {(x,y) : 6(x,y) = 0} is the set of observations that make us decide on the null hypothesis.
(2) For scalar parameter estimation, the mean-square error is

R(0,0) = / [0 — 6(x, )] *dPa(x, ). (H.17)

The error R(6,6) is a function of the parameter # € © and may be difficult to study if the parameter space © is
large. To further simplify it, we define the average error

R:(0) = / R(0,0)dr(0) (H.18)

with respect to a prior probability measure 7 on (O, G) for the parameter, where G is an event space for ©, and the
worst-case error:

max R(6,0). (H.19)

These two errors are summaries about R(6, é)—they are now functions of the decision rule 6 only. They obey the
inequality

max R(6,0) > R(0) (H.20)

for any prior 7. Fig. H.1 illustrates the three errors.

worst case maxg R(6, ) =====-==smmg=mmmmmmmmmmm-

average R () ===============-\-=--------

error R(6, 6)

N

0

Ficure H.1. Given a decision rule , R(#,6) is the error as a function of the parameter 6, R, (6)
is the average with respect to a prior measure 7 for #, and maxg R(6, 0) is the worst-case error.

Side note. For rigor, mathematicians often use inf and sup instead of min and max, since the latter may not exist
for certain sets, but for practitioners it is splitting infinitesimal hairs. We write min and max exclusively in this
book.
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H.7. Errors of an experiment

A nice fact about the average error R () and the worst-case error maxy R(6, 6) is that there exists a strategy
that minimizes each. The decision rule § that minimizes the average error R, (6) is a deterministic rule called
Bayesian or Bayes, given by

OBayes(2) = arg min / 10, $)dQ.(0), (H.21)
PEO

where () is the posterior measure on the parameter space (0, G) conditioned on the observation z, determined by
the Bayes theorem

_ feeA Jo(x)dm(6)
fgee fg(.]})dﬂ(@) ’

and [1(0,¢)dQ,(0) is the posterior error. For example, for the square loss, the Bayes rule is the conditional
expectation

Qz(A) Aeaq, (H.22)

éBayes(x) :/ede(e) (H.23)

RBayes(T") = Hgn Rﬂ(é) = Rfr(éBayes) (H.24)

achieved by the Bayes rule is called the Bayes error.
The rule Oppinimax that minimizes the worst-case error maxgee R(0, ) is called minimax, such that the minimum
worst-case error

Ruinimax = Hléln reneaé{ R(G, 0) = IGHEag){ R(Q, Hminimax) (H.25)

is called the minimax error. Eq. (H.20) leads to

Ruinimax > Rw(éminimax) > Hléin Rw(é) = RBayes (77) (H.26)

Under certain conditions, the two errors RBayes(ﬂ') and Rpyinimax can coincide for a certain prior 7 called the least
favorable prior. Then the Bayes rule for the least favorable prior is the same as the minimax rule. See, for example,
Ref. [53] for further details.

Side note. The worst-case error and the minimax rule are much more difficult to study mathematically but are
favoured by statisticians who don’t like to assume a prior, as well as computer scientists.

Errors such as Rgayes and Riinimax N0 longer depend on the decision rule, so they are figures about an experiment
assuming that optimal data processing can be performed. These errors can be used as benchmarks for quantifying
and comparing the performances of measurement devices for sensing and imaging. They are far more meaningful
than the SNR we used in previous chapters, because the errors have taken the data processing into account and
represent the final-stage performance of a measurement task.

While it is generally true that, assuming optimal processing for a given device, the higher the SNR, the lower
the errors, the specific relations between the SNR and the errors can be quite nontrivial and depend on the statistical
model. For different devices with different noise types, e.g., photon counting versus homodyne detection, their
SNRs can’t tell us precisely which one has lower errors after data processing, and we should use the errors as the
more conclusive benchmarks.
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H.8. Side note: caveats and virtues of statistics

Statistics is as challenging as it is important. Some key challenges:

(1) System identification: An accurate and useful statistical model requires a careful calibration of the
experiment.

(2) Curse of dimensionality: A huge number of unknown parameters may be needed for an accurate
statistical model. In other words, the parameter space © for a statistical model may have a huge number of
dimensions. For example, the space of candidate gravitational waves is a function space, often modeled
as a space with very high dimensions or even an infinite-dimensional space.

(3) Even if one has a decent model, the optimal rules and quantities may be difficult to compute. The
difficulties are on many levels:

(a) Theoretical complexity: While the fundamental decision theory is in place, there may not be
closed-form or accurate solutions to the optimal rules and quantities.

(b) Human skill: Even if good solutions exist in the literature, a practitioner may find the theory
challenging to digest or they may harbor misconceptions to use it correctly.

(c) Human effort: Even if a practitioner understands the theory (or finds a collaborator who does), the
solutions may require a lot of effort to derive, or the computer code may require a lot of effort to
write.

(d) Computational complexity: Even if the code can be written, it may require a lot of computational
resources to run.

(4) Spherical cows: If we dumb down our statistical model to make the theory easier, we run the risk of having
a naive “spherical-cow” model of the reality (https://en.wikipedia.org/wiki/Spherical_cow).
This is a major criticism of the traditional “model-based” approach in statistics [54].

A famous aphorism is “All models are wrong, but some are useful” (https://en.wikipedia.org
/wiki/All_models_are_wrong).

A major recent trend in data processing is, of course, “machine learning” and neural networks, which enable
one to skip the statistical model and arrive directly at a decision rule by training with datasets. While they solve
many of the aforementioned challenges, model-based statistics is still valuable for our purpose:

(1) Decent physical models: Compared to other disciplines such as social sciences, a good news for physics
and engineering is that we often know our physical laws and devices pretty well, and simple statistical
models such as Gaussian or Poisson are decent.

(2) Experimental design: The performance of any machine-learning technique for an experiment is difficult
to assess until one runs it with some data, requiring a lot of time and effort. Without a simpler theory
to guide us, it becomes difficult to design or modify an experiment to optimize or improve the end-stage
performance.

(3) Fundamental limits: Even if one uses machine-learning techniques, theoretical statistics can still inform
us the fundamental limits of large classes of data-processing techniques, in the same manner as the laws
of thermodynamics.

With all the virtues and caveats of statistics in mind, we proceed with simple statistical problems in the next few
chapters.
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APPENDIX I

Binary Hypothesis Testing*

The simplest problem in statistics is binary hypothesis testing with parameter space © = {0, 1} and only two
candidate probability measures Fy and P; for the observation. To pick a decision rule, there are two common rules
used in statistics: the Neyman-Pearson rule and the Bayes rule.

I.1. Neyman-Pearson rule

The rule calls for the false-alarm probability to be restricted below a tolerance level e and the miss probability
to be minimized. In other words, the rule can be expressed as

Onp = argmin Pyi[f = 0). (L.1)
6:Polf=1]<cx
We call the resulting miss probability
Rxp(@) =  min  Pi[f = 0] 1.2)
0:Pyl0=1]<c

the Neyman-Pearson error. It can be shown that the Neyman-Pearson rule can be implemented by the so-called
likelihood-ratio test [55, 56]. Itis in terms of the likelihood ratio, a special case of the Radon-Nikodym derivative
introduced in Sec. C.9:

dPy fi(x)
Alx)= —(x) = . (1.3)
In terms of the likelihood ratio, the likelihood-ratio test is the decision rule
< 0, Ax) <T(y),
Ba,y) = (o) =Tt (14)
L, Az) =T(y),

where T is the test threshold, which may depend on the ancilla y.

The likelihood-ratio test illustrates the trade-off in minimizing the two errors Po[A > T] and Pi[A < T].
Raising the threshold 7" would decrease the false-alarm probability Py[A > T'] but increase the miss probability
P1[A < T, while lowering the threshold would do the opposite. It therefore makes sense that the optimal choice
of T' should make the false-alarm probability

Po[é = 1] = 770[./\ > T] =« (L5)

hit the tolerance level . For a given «, a randomized threshold 7" may be necessary if the observation and thus A
are discrete.

1.2. Bayes rule

The Bayes rule is easier in many ways, as long as the prior probabilities g and 71 = 1 — 7y are given for the
two hypotheses. Here we seek to minimize the average error under the zero-one loss:

R:(0) = moPolf = 1] + mP1[0 = 0], (1.6)
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which is a weighted average of the false-alarm probability and the miss probability. It has the operational meaning
of the average error probability, since it is the probability of making any of the two types of errors. The Bayes rule
given by Eq. (H.21) can be framed as a likelihood-ratio test with the threshold

T=—. @.7)

This fixed threshold is much more convenient to use in practice than the Neyman-Pearson rule according to Eq. (1.5),
which may be quite hard to solve because Py[A > T as a function of T is often difficult to compute and then we
need to invert it to obtain the desired 7.

The resulting Bayes error has the nice formula [57, 58]

1
RBayes(T) = 3~ K(moPy, mP1), (L3)
where
1
K(T['()P[),?Tlpl) = iu% ‘71’0P0(A) — 7['1P1(A)’ = 5 / ‘ﬂof()(l') - Wlfl(x)‘dU(.%') (1.9)
S

is called the Kolmogorov distance between two measures. K quantifies the distinguishability between the two
hypotheses, so that the higher the K, the lower the error Rpyes.

Side note. The minimax rule seems far less commonly used in binary hypothesis testing; the Neyman-Pearson rule
is standard if one doesn’t like Bayes.

For further details about binary hypothesis testing, see, for example, Refs. [55, 56].

I.3. Chernoff upper bounds

The Neyman-Pearson error Rxp given by Eq. (1.2) and the Bayes error Rp,yes given by Eq. (I.8) are useful figures
about an experiment, but they are often very difficult to compute analytically or even numerically. Statisticians often
resort to bounds on the errors and asymptotics to get a rough idea about them.

Assume the likelihood-ratio test with a deterministic threshold 0 < 7' < oco. Let

t=InT € R, (1.10)

which is the threshold if the likelihood-ratio test is in terms of the log likelihood ratio In A. Chebyshev’s inequality
(sometimes called Markov’s inequality https://en.wikipedia.org/wiki/Markov%27s_inequality) yields

Py[A>T]| <T °Ep(A°) =exp[—st+ pu(s)] Vs>0, (L11)

PIIA<T)<T'*E; (A1) =exp[(1 —s)t +pu(s)] Vs <1, 1.12)
where we call

p(s) =InEy (A®%) = InE, (As_l) = ln/fl(:p)sfo(x)l_sda(x) (1.13)

the Chebyshev exponent. 4(s) is often much easier to compute analytically than the errors.
To obtain the tightest upper bounds, we set

s10 = arg max [st — pu(s)] (L.14)
5>0
for the first bound in Eq. (I.11) and
sy = arg max [—(1 — s)t — u(s)] (L.15)
s<1

for the second bound in Eq. (I.12). Notice that the local extrema of both problems occur at /i(s) = ¢. Furthermore,
notice the following properties of the Chebyshev exponent p(s) when Py # Py [59]:


https://en.wikipedia.org/wiki/Markov%27s_inequality
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(1) p(s) is strictly convex for s € R, i.e., ji(s) > 0. This is because In is strictly increasing and

82
= Eo(A") = Eo [(m A)QeslnA] >0 (L16)
s
as long as Py # P, such that Eq(A®) is strictly convex. It follows that fi(s) is strictly increasing, and we
can define
v(t) = max [st — p(s)] = sit — p(se), where s; satisfies f1(s;) = ¢ (I.17)
se

as the Legendre transform of u(s) (https://en.wikipedia.org/wiki/Legendre_transformatio
n). By the basic property of the Legendre transform, v/(t) is also strictly convex for all ¢ € R (¥(t) > 0)
and ©(t) is strictly increasing.

(2) Define

dFPy

prlr) = [ iR w)|are) L18)

as the relative entropy, also called the Kullback-Leibler (KL) divergence. Then
((0) =Eo(InA) = —=D(FPy|| P1), (1) =Ei(InA) = D(P|| P), 1.19)

which are the expected values of the log likelihood ratio under the two hypotheses. Since D = 0 if and
only if the two measures are equal and D > 0 otherwise, 1(0) < 0 and /(1) > 0 as long as Py # P.
(3) With the strict convexity of u(s), f1(s) must be strictly increasing, meaning that

f(s) < @(0) for s < 0, a(s) > (1) for s > 1. (1.20)
All these facts imply that, as long as Py # P; and the threshold ¢ = In T is in the interval
—D(P()le) = M(O) = EQ(IHA) <t< El(lnA) = M(l) = D(PlHP()), 1.21)

there is one and only one solution to ji(s) = ¢ for s € R and the solution must occur inside the interval 0 < s < 1.
It follows that sy and s4 given by Eqgs. (I.14) and (I.15) coincide in the interval (0, 1) and we can write

| Po[A > T] = Pylln A > 1] < exp[-w(t)], (1.22)
|PiA < T] = Pi[InA < 1] < exp[-v(t) +1],| (1.23)
v(t) = sit — p(se), where s; satisfies fi(s¢) = ¢, 0<s < 1. 1.24)

The first inequality is an upper bound on the right tail area of the probability density of the log likelihood ratio
A=InAfor\ € [t,00),t > Ep(InA), and # = 0, while the second inequality is an upper bound on the left tail
area of the probability density for A € (—o0,t),t < E1(InA), and § = 1, as depicted in Fig. I.1. If the threshold
t is outside the interval (Eg(In A),E;(In A)) bounded by the means, one of the tail areas would be quite large,
prompting a redesign of ¢ or the experiment.

Within the interval s € [0, 1], we can say more about the Chebyshev exponent 1i(s) and its Legendre transform

v(t):
s=0 14(0) = 0, t=(0) =Eo(InA) = —D(P|PL) =to, (125
v(ty) = 0, v(to) — to = D(Pl| Pr), (1.26)
s=1 (1) =0, t = (1) = E; (InA) = D(P,||Ry) = t, (1.27)
v(t1) = D(P1[| ), v(t1) —t1 = 0. (1.28)
0<s<1: p(s) <0, (Jensen’s Eo(A%) < [Eg(A)]* = 1, etc.) (L.29)
to <t <tp: 0 < v(t) < D(P1||P), (v(to) = 0,0(to) = 0,0(t) > 0) (1.30)
D(Fy||P1) > v(t) —t > 0. (exchange Py and P;) (L31)

Fig. 1.2 summarizes these findings.


https://en.wikipedia.org/wiki/Legendre_transformation
https://en.wikipedia.org/wiki/Legendre_transformation

1.3. CHERNOFF UPPER BOUNDS

1
1
1
1
1
1
1

A

Ei(\) =
¢ D(Py||Po)

>/\/

Ficurel.1. fy(\)is the probability density of the log-likelihood ratio A = In A given the hypothesis
6 = 0 (top) or § = 1 (bottom); its mean is Eg(A\) = —D(F||P1) given § = 0 (top) or E;(\) =
D(P,||Fy) given § = 1 (bottom). Py[A > t] and Pi[\ < ¢], the tail areas given a threshold ¢, are
the error probabilities. If ¢ < Eg(\), the false-alarm probability Py[\ > t] would be very high;
likewise for the miss probability Pi[\ < t] if ¢ > E;()), so it is reasonable to assume that the
threshold ¢ stays in the interval Eg(\) < ¢ < E;(\).

dh wls) IR
AV R S N —— g
B m— b= fu(s)
y(s) = plst) +t(s — s1)
—u(t)4

0 / S
to = 1(0) = —D(F|| 1) -

Ficure 1.2. Top: Chebyshev exponent y(s) versus s for s € [0, 1]. C' is the Chernoff distance. The
Legendre transform converts j(s) to v(t) via sit — p(se) at f1(s;) = t. Bottom left: Alternative
picture of Legendre transform [60]. The curve is ¢t = fi(s) (vertical axis) versus s (horizontal axis).
The same curve gives s = ©/(t) (horizontal axis) versus ¢ (vertical axis). yu(s) is the signed area of
the red region up to s. v(t) is the absolute area enclosed by the blue boundary (blue lines and the
curve). v(t) — t is the absolute area enclosed by the green boundary (green lines and the curve). C'
is the absolute area of the red region up to ¢ = i(s) = 0. Bottom right: plot of v(¢) and v(t) — ¢
(horizontal axis) versus ¢ (vertical axis).
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For the Bayes rule with 7" = 7y /mp = 1 and t = In T = 0, in particular, Eq. (I.21) is satisfied and we obtain

Rige(1/2,1/2) < 3 exp (~C), (132)
where
C=v(0) = max [~u(s)] (1.33)

is called the Chernoff distance, which is another metric of distinguishability between two measures.
Egs. (I1.22), (I.23), and (1.32) are known as Chernoff bounds [55]. They serve as performance guarantees that
the errors cannot exceed certain levels.

L.4. Large deviations

The Chernoff bounds are also tight in an asymptotic sense. Consider n i.i.d. (independent and identically
distributed) observations (z1, ..., x,) € Q" following the product measure (see Sec. C.3)

Py = Py, (1.34)

Then the likelihood ratio becomes

A (.. x,) = (21, xn) = A1) ... A(zy), (1.35)

where each A(x;) is the likelihood ratio for one observation x;. Assume the likelihood-ratio test

y 0, A <T®)

ﬂmz{L A® > 70, (1.36)
and define

f= lim L lnT® (1.37)

n—0o0 M,

as the growth rate of the threshold 7™, assumed to be finite. Then

T = explnt + o(n)], (1.38)
where o(n) denotes terms asymptotically smaller than n, i.e.,
lim Ln) =0. 1.39)
n—oo n

For example, the Bayes rule has the fixed threshold 7" = /71, so t = 0. The test inequalities can then be
rewritten as

1 1 < o(n)
_ (n) — D >
- In A - ]Ezl InA(z;) =t+ ; (1.40)

n

where the left-hand side is the sample mean of the log-likelihood ratio In A. Now assume
t> Eo(lnA) = _D(POHPI); (1.41)

which is the same as the first inequality in Eq. (I.21). Then Cramér’s theorem (https://en.wikipedia.org/w
iki/Cram%C3%A9r%27s_theorem_(large_deviations)) gives the asymptotic decay rate of the false-alarm
probability:

— lim 1 In Pén) [1 InA® > t} = max [st — pu(s)], (1.42)
n

n—oo N seR


https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_theorem_(large_deviations)
https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_theorem_(large_deviations)
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where the o(n)/n term can be thrown away in the limit and p(s) is the Chebyshev exponent for one observation. A
similar argument, assuming

t <Ei(InA) = D(P1||Po), (1.43)

which is the second inequality in Eq. (I.21), gives the asymptotic decay rate of the miss probability:

— lim 1 In Pl(n) [:L InA™ < t] = max [—(1 — s)t — p(s)]. (L.44)

n—oo N seR

By the earlier arguments about the Legendre transform, as long as Py # P;, we can write

~ lim % In P\ [:L In A > t] = u(t), (L45)
~lm 1 r [1 InAM™ < t] = u(t) —t, (L46)
n—oo n, n

which are the same as the Chernoff bound exponents in Eqs. (I.22) and (1.23) for one observation.
If t = 0, the two decay rates coincide with the Chernoff distance C given by Eqgs. (I.13) and (1.33). In particular,

~ lim R

n—oco N, Bayes

(m) =C, 1.47)

(n)

where RBT;yes(ﬂ) is the Bayes error in terms of {Pén), Pl(n) }. It makes sense that the two decay rates should match
under the Bayes rule, as increasing one would decrease the other, the asymptotic decay rate of the average error is

the higher of the two, and the rule that minimizes the average error would make the two rates match.

1.5. Stein’s lemma

Consider the Neyman-Pearson rule with n i.i.d. observations. Assume that a deterministic threshold 7™
satisfies the rule, so that

PV (A > 70| — a (1.48)

Notice that this false-alarm probability stays constant and its decay rate is zero. Then Eq. (1.45) suggests that the
threshold growth rate ¢ satisfies v(¢) = 0. It follows from Egs. (1.26) and (1.46) that the asymptotic decay rate of
the miss probability should be v(t) — t = D(Py||Py), where D is the relative entropy for one observation given by
Eq. (I.18). A more rigorous proof of this argument can be done to give

1 n
— lim —In R (a) = D(P|P), (1.49)

n—oo n

where RI(\;;) denotes the Neyman-Pearson error given by Eq. (I.2) in terms of {Po(n), Pl(n)}. Equivalently, we can

write

R{J (@) = exp [-nD(Po|| Py) + o(n)]. (1.50)

This result is called Stein’s lemma.

Note that there is no limit on the absolute size of exp[o(n)], only that its exponent must vary sublinearly with
n. Thus, Stein’s lemma—and statements about asymptotic decay rates in general—are not at all precise about the
absolute error for any finite n. Note also that D(Fy||P;) does not depend on the tolerance level «; only the o(n)
term depends on a.
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1.6. Bayes error bounds

The Chernoff bounds are upper error bounds, and often we would like lower error bounds as well, which serve
as fundamental limits to how low the errors can go. Here are some handy inequalities for the Bayes error [57, 58]:

1
mome 2B < 3 (1 —/1— 47r07rle_23> < Rpayes(m) < Vmome B, 1.51)

where

B=-u(1/2) = ~In [ VA h()do(a) (152)

is called the Bhattacharyya distance. Defining two more distances related to the relative entropies as

, - 1 1 -
Din = min {D(P()le),D<P1HP0)}, D= |:D(POHP1) + D(PlHP())] , (1.53)
which obey
h)h<D<Dm ( ! < 1 <:wa>x>0> (1.54)
g i = = 1z +1/x — 1/xz+1/y ~— 1/x -

we obtain the following handy inequalities concerning Dyip, D, the Bhattacharyya distance B, the Chernoff distance
C given by Eq. (1.33):

|B<C <2B< D] C <D. (1.55)

The first inequality B < C' comes from the defintions of B and C, the second C' < 2B comes from combining
Egs. (I1.47) and (I.51) for n i.i.d. observations, the third 28 < Dy, comes from the theory of Rényi divergences
[61], and the fourth C' < D can be proved using the Legendre-transform theory in Sec. 1.3 and is tighter than the
bound C' < Dpin [62].

Interesting observations:

(1) Eq. (I.55) means that B and C' are within a factor of 2 of each other, as we can also write C'/2 < B < C,
while the relative entropies are somewhat higher. B is hence a decent substitute of C' if the latter is too
difficult to compute.

(2) C < Duyjip can also be observed from Fig. [.2 and proved using the Legendre-transform theory there. It
makes sense that C, the Bayes error decay rate, should be lower than D(Fy||P;), the Neyman-Pearson
error decay rate, since the Bayes rule minimizes the average error, requiring both decay rates to be low,
while the Neyman-Pearson rule permits the false-alarm decay rate to stay constant, allowing the miss
probability to decay faster.

With C being symmetric under the exchange of Py and Py, C' < D(P;| Py) follows from the same
argument.

(3) The tighter bound C' < D can be proved as follows. Since U(t) > 0, v(t,) < v(tp) for t, < tp. By the
mean value theorem, there exist a t, € [tg, 0] and a ¢, € [0, ¢1] such that

V() ~v(t) _ vltr) —(0) _ C D(P||Py) - C
e T DRI = DR

which results in C < D.

#(ta) = (156)

Remark 1.1. Mathematicians have a stricter definition of distances and metrics (https://en.wikipedia.o
rg/wiki/Metric_space). A Riemannian metric is another type of metric specific to differential geometry
(https://en.wikipedia.org/wiki/Riemannian_manifold). We use the terms distance and metric
loosely in this book and they may not satisfy the strict definitions.

Side note. There are a whole zoo of distances for probability measures; we've discussed only a few that have
important operational meanings. More notable examples:


https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Riemannian_manifold
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(1) The Hellinger distance (https://en.wikipedia.org/wiki/Hellinger_distance) is related to
the Bhattacharyya distance by

H=+/1—¢B. (157)

The former is more common in statistics, while the latter is more common in engineering. They are, of
course, equivalent concepts.
(2) The Rényi divergences are defined as [61]

Dy(PRy||P) = —“(11__:’), s € (0,1)U(1,00). (1.58)

For s = 0,1, or oo, Ds is defined by taking the limit s — 0,1, or oco. Then
1
B = §D1/2(P0||P1), D(Py||P1) = Dy(FPyl| Pr). (1.59)
2B < D comes from the fact that, given a pair of probability measures, Dy is an increasing function of s
(Ds < Dy fors < s').
L.7. Properties of statistical distances

By virtue of the error bounds, statistical distances such as B, C, D are appealing alternatives to the exact errors,
as the former are often easier to compute by hand or numerically. Their evaluation can be eased further by various
special cases and more bounds.

I.7.1. nindependent observations. Let (z1,...,x,) € Q1 X - -- X £, be independent observations following

the product measure
PM=Py® - ® Py, (L60)
where each Py ; is a probability measure on (€2, F;) and the individual measures {Fy; : j = 1,...,m} need

not be the same. Let 11;(s), B;, Cj, D(Py ;|| P1 ;) be the Chebyshev exponent, Bhattacharyya distance, Chernoft
distance, and relative entropy with respect to { P, j, P1 ; }, respectively, and (™ (s), B, (™) and D(Pé") HPI(”))
be those with respect to {Pon), Pl(n) }. Then

p(s) =" (), BM™ =% "B, (1.61)
j=1 J=1
wy _ 0 - ) pmy _ P
¢ = max 1)) < 3 cy, D(R"||P; )_;D(PO,JHPLJ). (L62)

L.7.2. ni.i.d. observations. If the individual measures are identical with Py ; = I, such that the observations
are i.i.d. with ;(s) = u(s), B; = B, and C; = C, then

1 (s) = np(s), B™ = nB, cm = nC, D™ P™)y = nD(Ry| Py). (1.63)

1.7.3. Gaussian. Let the observation be the vectoral normal random variable X ~ N (mg, Xg), wnere my is
an n X 1 column vector and >y is an n X n covariance matrix. Then [57, 59]

u(s) = —1{s<1 ) (ma —mo) 550+ (1 — 8)S1]" (my — mo) + In EZ0 + (L7 9) %] } (L.64)

2 det(Z52] )
1(1 Yo+ 3\ ! det[(Zo + £1)/2]
B=Z|=(mi—my) " | 2= — 1 I.
5 [4(7”1 mo) < 5 ) (m1 —mg) +In detvsy, | (1.65)
1 _ _ _
D(Ro||Pr) = 5 [(m1 —mp) 'S (m1 —mo) + tr(2125 1) — Indet (2,55 1) — n} (1.66)


https://en.wikipedia.org/wiki/Hellinger_distance
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A simpler expression for C' is unknown in the general case. Special cases:
(1) EU = 21 =

1
w(s) = —55(1 = s)(m1 = mo) ' X7 (my — mo), (L67)
B=C= é(ml —mg) 7 (my —my), (1.68)

1
D(Py||Py) = D(Py||Po) = = (mq1 —mg) 'S (mq — mo). (1.69)

2

C can be solved in this simple case and coincides with B.

(2) If mg = my, the first part in each expression is zero, and B, C, and D can be regarded as distances
between two covariance matrices g and 1.

(3) Suppose that > and 33} commute and my = m;. The two matrices commute if and only if there exists a
6-independent unitary matrix U such that X9 = UDyUT, where Dy jr, = Xo(j)0;, is the diagonal matrix
of eigenvalues of 2y. Then

_ 1 sAo(J) + (1—8)/\(‘)
,u(s)——2;1n OAO( WO ) (1.70)

(
B= 12111 Poly) + /\1(?)])/2 L71)

245 V3()Ai()

MG) MG
DRI = 53 365G

) —1]. 1.72)
)

These expressions are especially useful if X is a stationary random process, in which case Ag(j) is
proportional to the power spectral density; see Sec. C.8.

I.7.4. Poisson. Letthe observation be the vectoral Poisson random variable N = (N, ..., N) ~ Poisson(myg)
with Eg(N;) = mg(j). Then [63]

uis) = Z [=sma(5) = (1= 8)mo(5) +m1(j)ma(i)'~*]. (173)

B = Z [mo ) ml(j)m0<j):|7 (1.74)

D(RIFY) = 3 |ma(7) = moli) + ma(i) in 220 |. a7s)

J
L.7.5. Joint convexity. Suppose that the probability density of a random variable Y is

fyie(y) /fyxe ylz) fxjo(z)do(z), (1.76)

where fx|o() is the probability density of a hidden variable X and fy|x ¢(y|z) is the probability density of ¥’
conditioned on X = . We call X the input, Y the output, and the map from fx s to fy|g via fy|x ¢ a channel.
While all the densities may depend on the hypothesis € in general, we assume in this subsection that the input
density fxjo = fx|1 = fx does not. Then the Rényi divergences for a given s < 1 satisfy joint convexity, meaning
that yi(s) for s > 0 satisfies joint concavity py (s) > E[uy|x (s)], while B, C, and D satisty joint convexity [46]:

By <E (By|x), Cy <E(Cyx), D(Pyo||Py1) < E [D(Pyx ol Pyixa)] @L.77)
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where the subscript Y denotes a quantity in terms of the output fy |9, the subscript Y'| X' denotes a quantity in terms
of the channel fyx g, and

Elg(X)] = / 9(2) fx (2)do(z) L78)

is the expectation with respect to the input fx. Joint convexity means that, if one has access to a hidden random
variable X of an experiment, then the distinguishability on average is higher than that without access to X.

1.7.6. Data-processing inequality. Now assume a channel given by Eq. (1.76) that does not depend on 0, i.e.,
Jyix,0 = fyix,1 = fy|x- Then the Rényi divergences satisfy the data-processing inequality, implying that our
distances also satisfy the inequalities:

By < Bx, Cy < Cx, D(Pyol|Py1) < D(Pxol| Px1)- (1.79)

where the subscript X' denotes a quantity in terms of the input fx|9. The inequality is so called because a channel
can model any processing of the input X to produce an output Y. The inequality implies that no postprocessing
can increase the distinguishability of two probability measures (as long as the processing has no access to the
hypothesis). Another name for a data-processing inequality is monotonicity.

The channel can also model the evolution of an open system in time, where Px|y models the initial system
state and Py-|gp models the final state. The data-processing inequality can then be regarded as a generalization of the
second law of thermodynamics.

1.7.7. Strong concavity. Define the Bhattacharyya coefficient as
B = exp(—B) = / VI @ i (@)do (). (1.80)
Then, given Eq. (1.76), where all the densities may depend on 6, B satisfies the strong concavity [47]

By > /Bym/fxo(x)f)(l(x)da(x), (I.81)

where Bylm is the Bhattacharyya coefficient in terms of the channel fy|x s with X = z. In terms of the

Bhattacharyya distances,
By < —In / e 1o [Fipo@) fxp (@)do(a), (1.82)

We get back the joint convexity of B if fxjo = fx|1 because

/e_BYfo(m)da(x) = E(e Brix) > exp[— E(Byx)], (Jensen) (1.83)

By < —InE(e PV1¥) <E (By|x), (1.84)

and we get back the data-processing inequality if fy|x,0 = fy|x,1 so that By|x = 0.



APPENDIX J

Parameter Estimation™®

J.1. Key parameter

Often a model involves a huge number of unknowns but a practitioner is interested only in certain succinct
properties of it. For example,

(1) For a vectoral parameter § = (61,...,6,) € © C RP, one may be interested in only ¢; and not the rest
(62, ...,0,), which are called nuisance parameters.

(2) For a waveform 6(t) in some function space, one may be interested in only the energy [~ [6(t)[*d¢ or
the mean arrival time [*°_¢0(t)[2dt.

(3) Suppose that we know nothing about the statistical model except the sample/event spaces (€2, £'). Then
Py = 0 € O, where O is the set of all probability measures. This model is called nonparametric (not the
best name as there is still a parameter, namely, the probability measure itself). Given n i.i.d. observations,
one may be interested in a population parameter

B(P) = / b(z)dP(z). a.1)

Mathematically, we model a large number of unknowns by a high-dimensional parameter space ©. The statistical
model remains { Py : 0 € O}, while we define the parameter of interest by a function 5 : © — ®. We call () €
the key parameter, also called the parameter of interest, and ® the key parameter space. The decision rule, more
often called the estimator in parameter estimation, is now taken as B : Q x Q' — &, and we should redefine the
loss function I(3, ) in terms of the true 3(6) and the estimate /3(x, y). For example, if the key parameter is a real
number, we can define the square loss as

18,8) = (8- 5)". 1.2)

It can be proved using the Rao-Blackwell theorem that, for a large class of loss functions including the square loss,
ancillas do not help [64], so we assume deterministic estimators 3(z) hereafter. The errors are now defined as

R6.5) = [ 150). 5(w)dry(o), Ro(3) = [ R(6.5)dx(0), a3)
Bpages = min B (), Bninimax = min max R(, 5), (J.4)

and we can rewrite Eq. (H.26) as
Riinimax = max R(0, Buminimax) > R (Bminimax) > mBiH R (B) = Rpayes(T). (J.5)

We get back the simpler-looking formalism in Chap. H if we set 5(6) = 6. Conversely, we can also obtain the
key-parameter formalism here as a special case of the one in Chap. H if we define a larger parameter space as the

graph of g3
{(6,0) c©x®:9=p(0)} J.6)

and require the loss function to depend only on the ¢ component of the augmented parameter (6, ¢).
A practical reason for introducing the key-parameter concept is that an accurate estimation of a high-dimensional
0 is often impossible or infeasible, while the estimation of a low-dimensional 3(f) may be more straightforward.

213
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For example, for the population parameter given by Eq. (J.1), a common estimator is the sample mean

1 n
Bx1,...,2n) = EZb(xj), (4.7
7j=1
and there is no need to estimate the underlying measure P.

J.2. Bayes estimator

The Bayesian theory is the cleanest so we start with it. For simplicity, assume that 3 is a real number (® C R);
generalizations for a vectoral § are straightforward but too tedious to write out. The error for the square loss is
called the mean square error (MSE), defined as

R0.5) = [ [3(a) ~ 5O aPa(e) = B0 {[5 - 506}, a8)
while we call
R (B) = / R(9, B)d(6) = E [ (3 - 8)°] (1.9)

the average MSE, which is obtained after taking the expectation [E with respect to both the observation x and the
parameter 6. The scalar 3, the square loss, and the MSE’s are assumed hereafter in this chapter.

The Bayes estimator here is also called the minimum-MSE (MMSE) estimator, and it is given by the conditional
expectation

BBayes(x) = /B(H)de(0)> (JlO)
where () is the posterior measure described in Sec. H.7. The resulting Bayes error has the interesting formula
RBayes (77) = HlBiIl Rrr (B) = R7r (/BBayes) = V(B) - V(BBayes) =E (52) -E (/B]%ayes)a (J-l 1)
E (62) = /B(G)Qdﬂ(e)a E (B]%ayes) = /BBayes(:E)zdP@(x)dﬂ(g), J.12)
E(B) = / B(0)dn(0) = E(Bpayes) = / Bpayes (7)dPy(x)dm(0), (J.13)

where V denotes the variance with respect to dPy(z)dmr(0) and Eq. (J.13) follows from the law of total expectation
(see Appendix C).

Side note. Eq. (J.11) looks like a Pythagorean theorem, and indeed the average MSE and the conditional expectation
that minimizes it have a geometric interpretation [65].

Eq. (J.11) in itself is not very useful, but we can at least read from it a trivial upper bound

RBayes S V(ﬂ) (J- 14)

given by the prior variance V(/3). The right-hand side is equal to the average error R, () if we set the estimator
B(x) to be the prior expected value E(3), ignoring any observation z. An experiment is informative only when the
average error is much lower than than the prior variance, so we need alternative ways to evaluate Rpayes.

J.3. Linear Gaussian model

A rare case where BBayes(x) and the Bayes MSE Rpayes can be evaluated exactly is when the observation and
the prior follow the linear Gaussian model and the key parameter is a linear function of § € © = RP:

x ~ N (A, %) under Py, 6 ~ N(6,1I) under T, B(O)=0b"0, (J.15)

where A is an m X p matrix, X is the m X m observation covariance matrix, 6 is the prior mean (p x 1 column
vector), I1 is the prior covariance matrix, and b is a p X 1 column vector, all assumed to be independent of 8 (we’ve
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abused notation by using x and 6 to denote the random variables as well). Then the posterior measure (), is also
Gaussian:

o« . _ -1
0 ~ N (Opayes(z), T) under Qp,  fpaes(z) = T(ATz—lx n H_10>, T= (ATz—lA + H—l) . (.16)

The posterior mean payes is a weighted average of the observation x and the prior 0, while the inverse posterior
covariance Y ! is a weighted sum of the inverse observation covariance ¥.~! and the inverse prior covariance IT~.
For the estimation of 5 = b 6, we obtain

Bhayes(z) = b Opayes (7), (J.17)
Rpayes = b' Y. (J.18)

The famous Wiener and Kalman filters assume this linear Gaussian model. The Kalman filter and its extensions
have found many successful applications in diverse areas of science and engineering, most notably in navigation
(https://en.wikipedia.org/wiki/Kalman_filter).

J.4. Bayes error bounds

J.4.1. Gill-Levit bounds. Rp,yes is difficult to compute in most cases, and we often have to resort to error
bounds. There are a whole zoo of lower error bounds in the literature [66]; here we mention just one family of
bounds called the Gill-Levit bounds [67], also called Bayesian Cramér-Rao bounds or Van Trees inequalities, which
include many useful bounds as special cases.

Side note. Beware that the Gill-Levit bounds may grossly underestimate Rpqyes for certain problems. See, for
example, Ref. [66] for alternative bounds that may work better.

Let o(#) be the probability density of the prior 7 (with respect to the Lebesgue measure). Assume that g is
strictly positive, i.e., o(f) > 0 for all @ € O. Let

V= (o - %)T (1.19)

be the gradient with respect to §. Assume also that each observation density fy(x) is strictly positive for all x € Q.
Then the Gill-Levit bounds on the average MSE for a scalar 8 : © — R are given by

5 _ [E(v-VB)]?
R, > Gv) = , J.20
(B) > G(v) E[UTFUHdivgv)?} (J.20)
IE(...):/(.. )dw(@):/(...)g(ﬁ)dp& d.21)
v(0) - VB(0) = Z v;(0) agéj) ; (J.22)
v(0) TF(0)v(0) = > v;(0) Fjr(0)vx(9), (1.23)
7.k

Fiu(6) = By [(;ejln fe) <£kln fe)] -/ [8‘; In fe(a:)] [(fek In fﬂx)} folw)do(x),| 124

. _ Lo = L S0 v,
divyv(8) = 55V - [e(@)u(®)] Q(Q)ij 56 2®)v3 6)] (1.25)

The proof is in Sec. J.8 and the quantities are defined as follows:
(1) v: ©® — RP is any vector field on the parameter space © that satisfies

0(0)v(#) =0 VO € boundary(O). (J.26)


https://en.wikipedia.org/wiki/Kalman_filter

J.4. BAYES ERROR BOUNDS 216

(2) F given by Eq. (J.24) is called the Fisher information matrix. It is the only term in the bound that
depends on the observation densities { fy(x)}. Another handy formula is

82 82
Fyu(6) = By <—89j69k1n fe) -/ [‘aejaekl“ fo(@)| fo(@)do (). 4.27)

The Fisher information is a fundamental metric of the statistical model; more on that later.
(3) div, v depends on the vector field v(6) and the prior density o(¢) only.
Note that

(1) The bound G'(v) does not depend on the estimator and applies also to the Bayes error Rpayes = R ( BBayes).
(2) By virtue of Eq. (J.5), G(v) for any prior 7 also serves as a lower bound on the minimax error Rpinimax a8

well as the worst-case error maxy R(6, §) for any estimator.
(3) By choosing the vector field v, we can obtain various bounds useful for different purposes.
(4) Given a v, cv for any nonzero constant c gives the same bound.

Side note. It is possible to reframe G(v) in the language of differential geometry and treat o(0), v(0), F(0), and V
as geometric concepts on a manifold © [68, 69].

J.4.2. Optimal Gill-Levit bound. An optimal choice of v to give the highest Gill-Levit bound max, G(v) can
be obtained by solving the linear partial differential equation [69]

To(8) = F(0)v(0) — V[div,v(8)] = VA(H), (1.28)

where 7' is a linear operator, assuming that a solution exists (V3 is in the range of 7). Any solution gives the same
bound, and writing itas v =T _1V6 , the optimal bound is

max G(v) = E [(w)T (T—lw)} , (1.29)
v
as proved in Sec. J.8.
J.4.3. Schiitzenberger-Van Trees bound. Let v be the constant vector field

82

v =[E(F+ H)]E(VB), Hir(0) =~ 55,50,

In o(6). (1.30)

Then the bound becomes

Gv) =E(VB) T[E(F + H)] ' E(VS). (1.31)

This bound was first discovered by Schiitzenberger in 1957 [70] and then independently by Van Trees [55, 66].
The H (/) matrix depends on the prior density o(6) only and quantifies the prior information, similar to the Fisher
information matrix F'(6).
The bound coincides with the optimal Gill-Levit bound if V3(6) and F'(#) are constant and p(#) is Gaussian,
such that H = II~! is the inverse of the prior covariance matrix and the v given by Eq. (J.30) satisfies Eq. (J.28).
For the linear Gaussian model in Sec. J.3, the Schiitzenberger-Van Trees bound coincides with the Bayes error
given by Eq. (J.18), since

E(VB)=VB=b, EF)=F=A"S"'A EH)=H=0I"' EF+H)=F+H=Y"1 (@132

Of course, we don’t need any error bound for the linear Gaussian model since we know the error exactly. What this
example offers is an intuition: the bound should be pretty good if the model is close to linear Gaussian.
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J.4.4. Borovkov-Sakhanenko bound. For n i.i.d. observations, the total Fisher information

FM(0) = nF(0) (1.33)
is n times F'(#) of one observation, and we pick
v(0) = F(0)"'VA(0), (1.34)
so that
v(0) - V() = v(0) TF(0)v(0) =| [VB(0)] F(6)'VB(9) = C(6). (1.35)

div, v does not depend on n and does not need to be written out explicitly here. The resulting bound G(™ (v) is
called the Borovkov-Sakhanenko bound [71], given by

2
G (v) = WE(C) [IESEC[)(]dinv)Q] > %E(C) - % E[(div,v)?] (1/(1+u)>1—u) (1.36)
_ Ef) +0<;). (1.37)

This bound is important because C(#)/n turns out to coincide with the Cramér-Rao bound (CRB) and also the
asymptotic error of the maximum-likelihood (ML) estimator, both historically important concepts to be tackled in
Secs. J.5 and J.6.

J.4.5. Upper bounds. Curiously, upper error bounds for parameter estimation are not as well studied, although
I can present one family here. Let {2 C R"™ and assume that the estimator

D
5 d
Bp(x) = Z Z Cg‘l,)...,jlle C T, (J.38)
d=0j1,....J1
1 2 D
=04 ch‘l)%d + Z 05-1;2@1.%]-2 + 4 Z c§17?.'7ijj1 STy J.39)
Ji J1:92 J15+5JD

is a degree-D polynomial of the observation z called the Volterra filter or the polynomial filter [72]. If we define
T
y:(l, T1, v Tpy ... Tj...Tjy, ) J.40)
as a column vector of all the monomials of x up to degree D, then the estimator can be expressed as

Bp =c'y, (J.41)

where c is a column vector. The average error becomes
. 2
Re(fp) =& [(Jy - 8) } = c"E (yy")e—2¢T E(yB) + B(5?). 0.42)

The optimal c is then

c= [E (ny)} T E(yB), R.(Bp) =E(8%) —E(yB)" [E (nyﬂ E(y53) > Rpayes- (J.43)

The simplest example is when D = 0, 5y = E(f3), and we obtain the trivial R, = V(3). It is equal to Rgayes When
the observation is independent of the parameter and the optimal estimator is simply the prior expectation. The next
simplest example is when D = 1 and the estimator is linear. For the linear Gaussian model in Sec. J.3, we know
that a linear estimator is optimal among all estimators, so R ( Bl) = Rpayes, and the upper bound is tight. For other
models, Rw(Bl) may be the easiest nontrivial upper bound.

In general, R (B p) decreases with D (RW(B D) > R (/5’ pr) for D < D’), so one may try to improve the upper
bound by increasing D. One may also put different functions of x in y other than monomials.
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J.5. Maximume-likelihood (ML) estimator

We now switch gears to the frequentist approach, ignoring any prior. We could go the minimax route, but it is
too difficult a subject to be addressed in this book; see Refs. [53, 73] for example. Instead, here we will focus on
the most popular estimator in frequentist statistics called the maximum-likelihood (ML) estimator.

To define the estimator, let us plug the observation x into the observation probability densities fy(x). fo(z) as
a function of the parameter 6 is called the likelihood function. (We’ve encountered this function earlier in Chap. I
in the context of the likelihood ratio fi(x)/fo(z).) In terms of the likelihood function, the maximum-likelihood
(ML) estimator is defined as

BML(m) = 5(5ML(3:)), éML(x) = arg max f¢($), (J.44)
¢
where we’ve used a different variable ¢ for the argument of the likelihoood function, reserving 6 for the true
parameter.
Elementary properties of the maximization:
ey

arg max fg(x) = arg maxIn fy(z) (J.45)
¢ ¢

in terms of the log-likelihood In f;(x); the latter is often easier to solve.
(2) We are free to add any ¢-independent term g(x) to the function fy(z) or In fy(z) to be maximized; it
doesn’t change the maximum point arg max.
(3) We can also multiply the function fy(x) or In fy(x) by any positive ¢-independent term.
(4) If we multiply fy () or In fy(z) by —1, we can use arg min instead of arg max.
The ML estimator is hard to study in general but its asymptotic properties are easier to derive; we present a
quick and dirty derivation in the following.

J.5.1. Consistency. For n i.i.d. observations (z1, ..., x,), write
él(v?L)(azl, ..., Ty) = arg max L((bn) (T1,...,2pn), (1.46)
¢
where
1 n
Lgbn) (T1y...,zp) = - Zln fo(xj) J.47)
j=1
is the sample mean of the log-likelihood random variable
Ly(z) = L) (x) = In fy(). (J.48)
Let 6 be the true parameter. For n — oo, the law of large numbers gives
x
LYY — Eg (L) = Eg (Lg) — D(Fy|| Py), DRIPy) = [ n? Z((m)) fo(w)do(x). (1.49)

Since the relative entropy obeys D > 0 and gives D = 0 if and only if Py = Py,
arg maxEg (Lg) =6 (J.50)
@

as long as 6 # ¢ implies Py # Py (in which case we say ¢ is identifiable). Hence, we expect the estimator to
converge to the true parameter:

(n)

918[2 =argmax L’ — arg maxEg (Lg) = 0, J.51)
¢ ¢
i = 8(0R) — 80). (1.52)

An estimator is said to be consistent if B (n) [, so the ML estimator is consistent.
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J.5.2. Asymptotic bias. Consistency implies that the peak location 91(\,[2 = arg max, Lfﬁ”) of Lé)") will be

pretty close to the true 6§ for a large enough n. To study the behavior of 91(\,&) in that case, we approximate L((z)n) for a
¢ close to 6 by the Taylor series
Ll ~ (" + (¢ — ) TVLYY + (¢ 6)7 (vaL "’) (6 —0) (1.53)
~ I 4 (60— 0) VLY — (6 6) F(6)(6— 6), (J.54)
where we have made the approximation
VVTL Z VvV In fo(z;) = Eg <VVT In fg) (law of large numbers) J.55)
__ F(G) (1.56)

and F' is the Fisher information in Eq. (J.27) for one observation. The Taylor series means that sz)")

quadratic with respect to ¢. Maximizing the quadratic function gives

is approximately

Oy = arg max LY ~ 0 + F(9)"'VL", (1.57)
¢
i~ 80) + (VB0 (05— 0) ~ 8(0) + [V80)) F(9) VL. (1.58)
Define the bias of an estimator as
5(0) = Eq (B) — B(0). (J.59)
Then the bias of the ML estimator is
5 (0) = By (ggg) — B~ [VA(0)] F(O) " Ey (VLgn>) —0, (1.60)
since
By (VL)) = B0 (VEo) = [ IV o) foa)do(@) = [ [V fa(@)ldo(z) a.61)
=V / fo(z)do(z) = V(1) =0, (1.62)

where we have pulled the gradient V with respect to 6 out of the integral with respect to x. It can in fact be proved
more rigorously that the ML estimator is asymptotically unbiased [74], viz.,

58 (6) — 0. (1.63)
J.5.3. Asymptotic error. Eq. (J.58) also gives
R(97 Bﬁ?ﬁ) =y { [Bﬁ?ﬁ - 6(9)} 2} (J.64)
~ VB FO) B |(VE]) (vm )| vso) (165)
1 T ()1 _ C()
= [VBO)] F(O)~ VEO) =— (1.66)

All the rough arguments thus far can be proved a lot more rigorously under a subject called local asymptotic normality

[74], which states that the random variable /n (9&2 — 6) converges to a normal random variable N'(0, F(6)~1). A
more precise statement of Eq. (J.66) becomes

r(0, Bw) = lim nR<9, BIE}L)) = C(9), 1.67)
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or, equivalently,

“(n Cc(o 1
R(H, 5&3) - 7(1) n 0<n> (1.68)
The resulting average error
o E(C 1
R, (515“)) - 7(1 ) 4 o(n> (J.69)

approaches the Borovkov-Sakhanenko bound given by Eq. (J.37) if we ignore all the o(1/n) terms. Hence, under
the conditions for the bound and the error (such as the strict positivity of the densities ¢ and fy, the existence of
F~1, and the identifiability of §), the ML estimator is asymptotically optimal in the sense of
Tim nR(BR)) = Tim nG (). (1.70)

Note that there is no limit on the absolute size of the o(1/n) term in Eq. (J.68), only that it decays faster than
1/n,i.e.,no(1/n) — 0. For any finite n, Eq. (J.68) is not at all precise about the absolute error of the ML estimator.
Moreover, the o(1/n) term may depend on 6, and the convergence no(1/n) — 0 is pointwise, not uniform, meaning
that the o(1/n) term for a given finite n may be negligible for some 6 but not for others. Note also that o(1/n) may
be positive or negative. Just like Stein’s lemma in Sec. 1.5, asymptotic statements should be treated with caution.

It is also possible that C(#) = oo, in which case the asymptotic theory here breaks down. It means that
nR — oo, and R is decaying more slowly than the 1/n trend.

J.6. Cramér-Rao bound (CRB)

The Cramér-Rao bound (CRB) is one of the earliest error bounds in statistics and still remains very popular
today. Howeyver, it makes questionable assumptions about the estimator bias and is not as conclusive as the Bayesian
error bounds, so we present it last.

Let us focus on the error at the true # and decompose the MSE as

RO.5) = Vo(B)+ 300, Vo) =B {[5-50)]°},  sO=F0)-50), 67D

where we have defined

B(9) = Eo(B) 1.72)
as the mean of the estimator. Then Sec. J.8 proves that
R(0.5) > Vo(B) > [VB(©O)] F(0) V(). 1.73)

This bound in itself is rather useless, since 3(6) depends on the estimator 3 and there is no lower limit on the
magnitude of V3; we might as well compute the error R(6, ) directly if we have to specify an estimator. However,
if we assume that the estimator is unbiased around the true 6, i.e.,

then we obtain the CRB

R(0, ) = Vo(B) > [VB(0)] F(6)~'VB(0) = C(0). 1.75)

C already appeared in two places earlier: the Borovkov-Sakhanenko bound in Eq. (J.37) and the asymptotic error
of the ML estimator in Eq. (J.68). We find here a third significance for C(#): it is also a lower error bound for any
unbiased estimator. An unbiased estimator is called efficient if its error achieves the CRB.

Exercise J.1. Derive the bounds in this section of wikipedia: https://en.wikipedia.org/wiki/Cram%C3%A9
r%E2%80%93Rao_bound#Bound_on_the_variance_of_biased_estimators.


https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93Rao_bound#Bound_on_the_variance_of_biased_estimators
https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93Rao_bound#Bound_on_the_variance_of_biased_estimators
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Remark J.1. Egs. (J.74) at one point 0 are called the local unbiased condition, which is sufficient to yield the CRB
at that point. Technically speaking, the condition allows the estimator to be biased at other points of the parameter
space. But of course 0 is unknown in practice; allowing an estimator to be biased outside an unknown point is not
much of a generalization.

Despite the name “bias” suggesting that it is a bad thing we should minimize, if we think about it, there is no
good reason why we should care about the estimator mean (3 and why the bias should be zero so that the estimator
mean /3 is equal to the true parameter 3. All one should care about is how close the estimator Bisto 3, as quantified
by the error R(6, 3). It makes no difference in practice whether the error is dominated by the variance V() or the
squared bias §(#)2, and a biased estimator may have a lower error afterall. Moreover, exactly unbiased estimators
may not even exist for a problem and many standard estimators may be biased; even the ML estimator may be
biased. For a finite n, it is entirely possible for a biased estimator, such as the ML estimator, to have an error R(6, /3)
that violates the CRB C(6) by any amount in certain regions of the parameter space; see Ref. [75] for an example.

To relax the unbiased assumption slightly, consider n i.i.d. observations and allow an estimator (™ to be only
asymptotically unbiased:

61 (6) = Eg(6™) — B(6) = 0, B(6) = Eg(5™) — B(0). (1.76)
The ML estimator now satisfies this relaxed condition. Eq. (J.73) then gives an asymptotic version of the CRB:

r(0,53) = Tim nR(, By > C(6). (J.77)

An estimator /3 with an asymptotic scaled error 7(6, 3) that achieves the CRB C(#) for all § is called asymptotically
efficient. The ML estimator is asymptotically efficient by virtue of Eq. (J.67).

The CRB given by Eq. (J.77) is, again, an asymptotic statement that should be treated with caution. The
definition of r means that

R(9, 3™ = r(enﬁ) + o(;> (1.78)

For any finite n, there is no limit on the absolute size of the o(1/n) term, and an asymptotically unbiased estimator
may still be biased so that it may violate the CRB C(#)/n by any amount. Moreover, the asymptotic unbiased
condition is difficult to check, and one may be better off with the Bayesian bounds in Sec. J.4, which do not assume
anything about the estimator.

Despite all the caveats, the CRB remains the most popular error bound in statistics and widely accepted as a
performance metric of experiments in optics, especially in fluorescence microscopy. For a lot of problems, the CRB
often remains tractable while other error bounds are much harder to compute. As long as one is aware of its precise
significance and shortcomings, the CRB serves as a decent first option.

J.7. Properties of Fisher information

In view of the fundamental role of the Fisher information in the error bounds and the asymptotics of the ML
estimator, it is often used as a performance metric of experiments for parameter estimation. We list some of its
properties in the following that can help us compute or bound it.

J.7.1. Relations with Bhattacharyya distance B and relative entropy D. Let 8, ¢ € © C RP and the
Bhattacharyya distance between two measures Py and P, be B(Fy||Py), as introduced in Sec. 1.6. If the two
parameters 6, ¢ are neighbors, it turns out that B can be approximated as

1 2
B(Py||Pyter) = =€*v F(0)v + o(€?), Fip(0) =4 B(P9HP¢)' . d.79)
8 090y, =0
Similarly, the relative entropy introduced in Chap. I can be approximated as
Lo 2 0
D(Py||Pptev) = =€“v ' F(0)v + o(€7), Fir(0) = D(P||Py) . (J.80)
2 8¢ja¢k $=0
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Hence, we can think of ' as a metric that determines the distance between two neighboring probability measures.

Side note. The Fisher information matrix can in fact be regarded as a Riemannian metric for a manifold of
probability distributions, as first proposed by Rao [76]. The treatment of statistical distance measures in the
language of differential geometry is known as information geometry [77].

J.7.2. n independent observations. Let (z1,...,2,) € Q" be n independent observations following the
product probability measure given by Eq. (I1.60) and F;(6) be the Fisher information in the jth observation with
respect to { P ; : 6 € ©}. Then the total Fisher information is simply the sum

F™(0) =Y Fy(0). (J.81)
j

If the individual measures are identical with Py ; = P and F;(0) = F'(), then we get back Eq. (J.33).

J.7.3. Gaussian. Let the observation be the vectoral normal X ~ N (my, Xy). Then [78]

Omg\ ' (10 1 0%, 0%
Fi(0) = (8”;?) 1 (29180?291%:’). (1.82)
J J

J.7.4. Poisson. Let the observation be the Poisson N = (N, ..., N;) ~ Poisson(mg). Then
0 0
Fix(0) = Zl: me (1) [8% In mg(l)] [aak In mg(l)} : (J.83)

J.7.5. Extended convexity for a channel. Assume a channel given by Eq. (I.76), where all the densities may
depend on the parameter §. Then the strong concavity of the Bhattacharyya coeflicient described in Sec. 1.7.7
implies the upper bound [79, 80]

Fy (0) < By [Fyx(0)] + Fx(0), (J.84)
where Fy (0) is the Fisher information matrix in terms of the output fyg, Fx (6) is the Fisher information in terms

of the input fx g,

By [Fyix(0)] = [ Frin(0)fxole)do(a), 189)

Fy|;(0) is the Fisher information in terms of the channel fy|y ¢ given X = z, and the matrix inequality A < B
means that B — A is positive-semidefinite (see Sec. B.13).

J.7.6. Convexity. Following Sec. J.7.5, if the input fx|y does not depend on 0, then Fx = 0 and we obtain
the convexity property:

Fy(8) < Eg [Fyx(0)]- (J.86)

J.7.7. Data-processing inequality. Following Sec. J.7.5, if the channel fyx ¢ does not depend on 6, then
Fy|x = 0 and we obtain the data-processing inequality

Fy(0) < Fx(6). (1.87)

J.8. Proofs

We will make extensive use of the Cauchy-Schwarz inequality (CSI)

(A, B)|* < (A, A) (B, B) (J.88)

for an inner product. If A or B is zero, then equality holds obviously. Otherwise equality is achieved if and only if
A = ¢B for a scalar c.
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Proor of THE GILL-LEvIT BOUND (J.20). Start with the divergence theorem, assuming o(6)v(6) = 0 on the
boundary of O:

/ v. o(0)]dP0 = 0, (1.89)
where 6(6) is the bias defined by Eq. (J.59). Wite
V- 560)20)0(60)] = [ V- {[5a) - B(6)] folw)e(0)v(6) }dor (o) (1.90)
— [ G-P)V- (evyiota) - [ (fev- VB)do(a) @91
- [ - ﬁ)v'(f@”fda(x) - VB (1.92)
=Ey [(B — ﬂ)v(];f@v)] —ov- VB, (J.93)
so that Eq. (J.89) becomes
E(v-VpB) = [(5 A) }"; Qv)} (J.94)
The CSI for the inner product (A, B) = E(AB) yields
[E(v-VB)2 <E [(B - ,6)2] E { [V'J(j;g”)] 2}. (J.95)
This is the Gill-Levit bound given by Eq. (J 20); our last task is to simplify the last term:
J(f;‘”’) Vinf+ v (o) =v-Vinf +div,v, (1.96)
E { [v-}({é@] 2} —E {(v VIn f)? + (div, v)? + 2(div,v)v - v1nf} 1.97)

—E{vTE, [(v In f) (VT In f)} v+ (div,v)? + 2(div,v)v - Eg (VInf) & (1.98)

———
=0 by Eq. (J.62)

=F by Eq. (J.24)

_E [UTFU + (div, U)Q] . (1.99)
g
ProoF oF THE oPTIMAL GILL-LEvIT BOoUND (J.28) AND (J.29). The product rule for the divergence gives
V- [(divyv)ov] = ov - V(div,v) + (div,v)V - (gv). (J.100)
Since gv = 0 on the boundary of ©, [(...)dPd of the first term vanishes, and we can write
E [(div,v)?] = /(divg V)V - (ov)dPO = — / ov - V(div,v)dP8 = (v, Dv), (J.101)
Dv=—V(div,v), (v,u)= / 0(0) - u(0)]o(0)d0. 1.102)

Now the Gill-Levit bound (J.20) can be expressed as

(v,V3)?
(v, Tv) "’

Gv) = (1.103)
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where T' = F + D is an operator. Notice that 7" is self-adjoint and positive-semidefinite, since (T'v,u) = (v, T'u)
for any u, v and the denominator of the Gill-Levit bound is nonnegative for any v. Assume, furthermore, that V3
is in the range of 7. Then T ~°*V 3 is defined for s > 0, V3 = T*T~°V 3, and we can write

(v, V) = <T1/2U,T_1/2VB>. (J.104)
Now use the CSI to obtain
(0, VB2 < <T1/21;,T1/2v> <T‘1/2VB,T‘1/2VB> = (0, Tv) (VB,T"'VB) . (J.105)
Equality is achieved if and only if
T2y = ¢T71/2v3, Tv =V} (J.106)
for a nonzero constant c¢. There is no loss of generality if we set ¢ = 1, and Eq. (J.28) results. Plugging the
right-hand side of Eq. (J.105) into the numerator of Eq. (J.103) yields Eq. (J.29). ]
Proor oF Eq. (J.73). Since 5(0) = Ey(6) = Eg[Eq(3)] = Eg [5( )], Eg[B — B(6)] = 0, and we can write
v(0) - VEq [6—B(O)] = v(0) -V — B(O)] fo()do(x) =0, (1.107)
[ 1606)- V56 fa@do(@) = [ [3a) - B)])o(0) - Vsala)ldo(a), 1.108)
v-VB=Eg[(B—B)(v-VInf)]. (J.109)
The CSIin terms of (A, B) = Eg(AB) yields
(v- VB)* <o [(B—B)"| B (v VIn 1)?| = Vo(B) (v Fo), (1.110)
. v-Vpj3 2
Vo(B) > (UTFU) @.111)

Now rewrite the dot product as an inner product and assume that V5 is in the range of F' so that F'~*V 3 is defined
for s > 0and V3 = F*F~V 3. We obtain

v VB =(v,V8) = (F'/%, F7/2V3). (1.112)
Use the CSI again:
(v VB)* < (P20, FV20) (F~Y/2v8, F7/298) = (vTFo) [(v8) F'Vg]. (1.113)
Equality is achieved if and only if
Fl/QU:cF_l/QVB, Fv=cVj J.114)

for a nonzero constant c. Plugging the right-hand side of Eq. (J.113) into the numerator of Eq. (J.111) gives
Eq. (J.73). O
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Solutions to Selected Problems

Exercise 3.17.

(1)
.4, ZZ /// // Wi (k, ) Win (K, ') [a(k, 5), 6T (K, )| a* kK’
=S5 ] ] i ot 05 e
:Z//Wz (k. )W (k. 5)dk.
(2) Forl = m

Z///|Wl(k:,s)]2d3k =1.
Z// \Wi(k, s)]*d°k = 2651/ )| 2dks /ZyY(ky)Pdky/Zc?rect (kx;ko)dkz

ko+l€/2
= / C?dk, = C%k = 1.
k

0—kK/2

Hence

1
C—ﬁ.

1 ko+l€/2
Z// Wi (k, s)Wp(k, s)dk = / exp|—ik, (21 — 2m)]dk
k

0—k/2
iko(21—zm) P[0 (21 — 2m) /2] — explir(z — 2m)/2]
—ik(z; — zm)

— etko(zi—2zm) sinfr (2 — 2m)/2] = etho(z=2m) gine [i(zl - Zm)}
/i(Zl - Zm)/2

sinc(l —m) = dy.

=€

— eiko (z1—2m)

(4) Eq. (3.121) is an inverse Fourier transform. The forward Fourier transform is then

a(k,s) = 27T3/2///6Xp —ik - r)A(r, s)dr

(K.1)

(K.2)

(K.3)

(K.4)

(K.5)

(K.6)

(X.7)

(K.8)

(K.9)

(K.10)

(K.11)

(K.12)
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®)

A(r,s), AT(r',s") 27r //////exp (ik-r— ik - )[A(k:,s),dT(k',s’)]d3kd3k’
= W //////exp (ik-r — ik )6 (k — K')osy d°kd® K’
= 04 (21)3 ///exp [zk: (r— r’)]dBk

= 8503 (r — 7).
b = Z//ers r,s) T—Z//MTS[2W3/2//]GXI)Z’CT (k,s)d>k|d>r
:Z/// [W// I/T/l*(r,s)exp(ik:'r)d?’r}&(k,s)d?’k.

Comparing with Eq. (3.115), we should have

Wi (k,s) = 23/2//Wflrsexpzkr)d
)

1
Wik, s) 27r)3/2// Wi(r, s) exp(—ik - r)dr

~ 1

Wi(r,s) = (CoEE // Wi (k, s) exp(ik - r)d°k.

W; and VT/I are Fourier-transform pairs.
(7) Because W, is the Fourier transform of W;, we obtain

Wi(r,s) = X (2)X (y) Z(2),

~ 1 o0
X(z) = Nors exp(ikyz) X (ky)dk,,
N 1 [ ‘
Y(y) = E exp(ikyy)Y (ky)dky,
- 1 o0 .
Zi(z) = E exp(ik,z)Z;(k,)dk,
k0+l-€/2
explik,(z — z;)]dk,
\/27?/-@ ko—r/2 ( )]
L ko= gipe [ (4 —
= 27m6 sinc {27T(z zl)].

Exercise 3.18.

(1) It’s too tedious to put hats on operators here, so I omit them.
<b:ml,...,mJ]b:m,...,nJ>

1

n \/ml‘mJ'nl'nJ'
1

n \/ml‘mJ'nl'nJ'

(vac| b" ... bZ”bInl - b |vac)

(vac| (BTbI™) ... (BB |vac) . ([bj,b]] = 0if j # 1)

226

(K.13)

(K.14)

(K.15)

(K.16)

(K17

(K.18)

(K.19)

(K.20)

(K.21)

(K.22)

(K.23)

(K.24)

(K.25)

(K.26)

(K.27)

(K.28)

(K.29)
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m;
J
look at bb™ first. Using the commutation relation [b, b'] = 1, we can write

We would like to simplify b b}nj . Let’s omit the subscripts for now, and look at 5”b!". Actually let’s

bbi™ = bbb = (b1 4 1)1 = pTpp™ =1 4 pin =t (K.30)
This is actually a recursive relation:
boim = bt ppinl pinTl = pf (bTbbT"—2 + bT"—2) + bt (K.31)
——
apply Eq. (K.30)
_ pi2 tn—2 fn—1 _
b bb +2b e (K.32)

apply Eq. (K.30)

Eventually we obtain

bbi™ = b™p + nbfn L, (K.33)
Now we consider
prptn — gt pptn = el (bT"b + annfl) — plptng 4o tptn—t, (K.34)
~~
apply Eq. (K.33)
This is also a recursive relation.
b = b 0 P = b 4 (BB (n— 1) PRI | = (K35)
— ~—
apply Eq. (K.34) apply Eq. (K.34)

Everytime we apply Eq. (K.34), we create a new term (... )b with the annihilation operator b at the end,
plus a term oc b"~™b =™ Eventually we obtain

Vb = (L. )b+ nlbbl = ()b +nl(bTb+1) = (...)b+n!, (K.36)

where (... ) is a long list of terms in front of the annihilation operator b.
Remember that each b; is a linear combination of annihilation operators {a; }, such that

bj [vac) = Z Ujiay |vac) = 0. (K.37)
!

It follows that

b;-’b;m [vac) = [(...)b; + n!]|vac) = n!|vac) . (K.38)

We are lucky that b; [vac) = 0 so we don’t have to write out the terms (... ) in front of b;.
If m > n, we can use similar algebra to show that

m>n: b = (L) 4 nlb™ T, b;-”b;-n [vac) = 0. (K.39)

(This makes sense, since b}" creates 1 photons in the state and b7" annihilates m > n photons, but still we
needed to prove this by algebra.) If m < n, we write

m<n: b = ("™, (vac| bT'bI" = (b7bI™ |vac))T = 0, (K.40)

where the last step uses the result in Eq. (K.39). Applying these results to Eq. (K.29) gives us
(b:my,....mylb:ni,...,n5) =miny - - Omyn,, (K.41)

which implies that the set {|b : ny,...,ny) : eachn; = 0,1,2,... } are orthonormal.
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We still have to show that the set is a basis, i.e., any [1) € H can be expressed as a linear combination of
the set. We already know that {|a : n1,...,ns)} in terms of the original modes is an orthonormal basis,
so if we can prove that every normal-mode number state

dJ{nl dTJnJ
a:imng,...,njy) = vac K.42
la:m 7) T Ui |vac) (K.42)
can be expressed as a linear combination of the new number states {|b : n1,...,ns)}, then we are done.
Recall
aj =Y Wb, (K.43)
l
which means
AT il
aj = Wbl (K 44)
!

We now prove that Eq. (K.42) is a linear combination of the new number states by induction. First note

that |[vac) = |b: 0,...,0) is a new number state. If we apply one d;r- with any j to any linear combination
of the new number states {|b : n1,...,ns)}, we obtain
Wt " Copny i,y =3 Cy, Wbl b, ) (K.45)
ni..nj [ ni.ny
l;lT |b:ni,...,nz) o |b:ny,...,n;+1,...,ny) is proportional to a new number state, so the right-hand
side of Eq. (K.45) is another linear combination of the new number states {|b : n1,...,ns)}. Hence, by
induction, with the application of multiple &}’s to |vac) in Eq. (K.42), the end result |a : nq,...,n) must
still be a linear combination of the new number states {|b : n1,...,nz)}.

Exercise 4.17.

(1

2

D(a) = exp (adT — a*d) = exp [a((j —ip)/V2 — a* (G + zﬁ)/\/ﬂ (K.46)
= exp{il(a — a*)/(V2)]q — il(a+ )/ V)5 }. (K.47)
Hence
1 o 1 o
§—E(a—a)—\/§Ima, n= 2(a+a)—\@Rea. (K.48)
BCH formula:
(exp A)(exp B) = exp (A + B+ [A,B] + %[A, [A, B]] - %[B, (A, B]] + .. ) (K.49)
Let
A=i¢4, B=—inp, (K.50)
[A, B] = &nld, p] = in, (K.51)
exp(i€q) exp(—inp) = exp(i&q — inp + i&n). (K.52)
Similarly,
A=—inp, B=i&q, (K.53)
[A, B] = &nlp, 4] = —in, (K.54)

exp(—inp) exp(i&q) = exp(i&q — inp — i&n). (K.55)



K. SOLUTIONS TO SELECTED PROBLEMS 229

Hence
|exp(i€G — inp) = exp(—i&n) exp(i€4) exp(—inp) = exp(i¢n) exp(—inp) exp(icq). | (K.56)
3)

ﬁ(a) lg=2) = eied—inp g = ) (K.57)
= e MPeitd | = g) (using previous results)  (K.58)
= e MP T |0 — 1) (g = z) is eigenstate of %9)  (K.59)

, NP | o
— ing—inpifr / eYip=y)dy (write|g=2z)intermsof {{p=1y)}) (K.60)
V2T J
, 1 oo : -
— eilatn) _— / e "Me T |p=y)dy (|lp = y) is eigenstate of e ")  (K.61)
\ﬁ
— i(@+n) / e~ @) 1y — 1\ d K.62
T p=1y)dy (K.62)

— | gié(z+n) lg=z+1n), (K.63)

where ¢ and 7 are given by Eqs. (K.48). The phase factor ¢®(+") is not very important. The important
point is that D(«) shifts the |¢ = x) state to the |¢ = x + 7)) state with a new eigenvalue x + 7, where
n = V2 Re a is the displacement. Similarly,

D(a)|p=y) = e “1elle P |p = y) = e~V |p = y) (K.64)
ST | S
— o ¥ngikd ,—iny / eV g = x) dx K.65
NN lq =) (K.65)
= e*iinef@'nyi /Oo i(y+&)z T|qg=2)dz (K.66)
V2T
— | e~ in(y+8) p=y+&). (K.67)

(4) To verify Eq. (4.6), write

(nla) = (ne7oF/2 3 \C/“i' Im) (definition of |a)) (K.68)
— v/m/!
_ €_|a|2/2a; ((n|m) = 6pm) (K.69)
Then
5 2n
|(n|oy|? = 71 ‘O;l! (K.70)

To verify Eq. (4.7), consider

(¢ = zla) = (¢ = 2| D() |0) = (D¥(a) | = 2))T[0) = (D(~a) g = 2))T|0). (K.71)

Now use the previous result to obtain

D(—a)lg=1z) =€’ |¢g=2—V2Re a> , (K.72)
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where 6 is an unimportant phase. Hence
(g=zla) =¥ <q =z — \/§Rea’0>

a1 1 2
_ —1i0 _ - _ i
= e " exp { 5 (x \/§Rea) } , (using Eq. (4.1))

o =alo)l® = —zex [—(x - \@Reaﬂ.

The derivation of Eq. (4.8) is similar.

Exercise 4.26.

(1) This is very similar to the Heisenberg picture of a. The trick is to do a 9/980:

a(6)
a9

~ A~

= inRY(0)aR(9) — iR (0)aR(0)n = —iR'(0)[a, A]R(H) = —ia(0).

This differential equation has the solution

It follows that

§(6) = \}51%*(9)(@ +ahR(0) = \2 [aexp(~i) + af exp(if)]
5(0) = \/152 [aexp(~i6) — af exp(i0)|.
(2)
Q(0)R"(9) g = z) = R'(0)dR(O)RY(0) |q = z)
= R'(0)G|q=z) (R is unitary)
= R'(0)x|q = z) = zR1(0) |¢ = 2)
Similarly,
POYRI(O) [p = y) = RI(O)PRO)R'(6) |p = )
=RIO)plp=y) =RI(O)ylp=y) =yR'(O)Ip=1y).
(3)
<q(9) = x‘q(@) = x’> = (q = = R(G)]%T(H) ‘q = a:'> (by definition of |¢(0) = x))
q

= (¢g=zlg=2') (R is unitary)
= §(z — ). (Eq. (3.22))
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(K.73)

(K.74)

(K.75)

(K.76)

(K.77)

(K.78)

(K.79)

(K.80)

(K.81)
(K.82)
(K.83)

(K.84)
(K.85)

(K.86)
(K.87)
(K.88)
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= / h RI(0) |q = z) (¢ = z| R(0)dx (by definition of |¢(6) = z))
= R1(9) [ h lg = 2) (¢ = x| dz | R(0) (operators are linear)
= RY(0)IR(0) (Eq. (3.24))
= RI(0)R(0) = I. (R is unitary)

The derivation for the () eigenstates is similar.
(4) From previous results, we can write

a0 = [ " 14(6) = 2) (q(0) = 2] dz = / " 19(6) = ) (q(6) = 2| da

— [ wla®) = ) ta(0) = o] da-

The diagonal form of p(#) can be derived similarly.

&)
s,
(6)
a(®) = o) ? = [{a = 2| B(O) o) = (4 = afaec)|
= ;7? eXp{— [# = V2Re(ac )] 2}_
Similarly

[(p(8) =yl = ’(p = y| R(0) W‘Q = ’<p = y‘o‘€7w>’2

_ \/17? exp{— [y - \/ilm(ae—w)r}.

(7) Use Glauber’s formula:

(q(0) = x[plq(0) = x) = //q’(a)l(Q(@) = ala)[*d*a.
Let
u = V2Re(ae ), v =v2Im(ae ).

Convince yourself that

dudv = 2(dRea)(dIm «), d’a = (dRea)(dIma) = %dudv.
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(K.89)

(K.90)

(K.91)
(K.92)

(K.93)

(K.94)

(K.95)

(K.96)

(K.97)

(K.98)

(K.99)

(K.100)

(K.101)

(K.102)

(K.103)
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In terms of the new variables,

B(a) = %exp<—|o‘ﬁ’2> - 7T1ﬁexp< “ ;T:L” > (K.104)
(g(8) = z]a)|? = \/17? exp{— [~ V2Re(ac 19)]2} - \/1% exp|~(z — u)?]. (K.105)
Hence

(q(0) =x|plq0) =) = / / s exp( UQ;;LUQ> \/17? exp [—(a: - u)ﬂ dudv (K.106)

= [/OO N eXp(—i)dv} /Z 217m exp<—;;> \/17? exp [—(x - u)Q] du
(K.107)

1 z?

a 2m(n + 1/2) P {_2(71 + 1/2)} ' (109

This is a Gaussian distribution with zero mean and variance equal to 7 4+ 1/2. Similarly,

(0(6) = 91 7 1p(0) = v) = | —— {—y} (K.109)
P = P =0 =t 1/2) L 2+ 1/2)) '

Exercise 4.28. Let the photon-number random variable be n. Let « be another random variable with probability
density ®(«). The probability mass function of n is

// o) 2d?a. (K.110)

This formula is consistent with probability theory if we regard
P(n|a) = | (n|a)|? (K.111)

as the probability mass function of n conditioned on a value of o. By the law of total variance, the variance of n is
given by

V(n) = E[V(n|a)] + V[E(n|a)]. (K.112)
P(n|a) is Poisson, so we know that
E(n|a) = |af?, V(nla) = |al?. (K.113)
It follows that
V(n) =E (Jaf?) + V (Jaf?), (K.114)

where E(|a|?) and V(]a|?) can be computed using ® as the probability density. Now notice that the mean photon
number is given by

n= ZnP // n| (n|a) Pd*a = // a)|a)*d*a =E (|af?). (K.115)
Hence

V(n) =n+V (o). (K.116)

The variance of a random variable is always nonnegative, so V(|a|?) > 0, and we must have V(n) > 7.
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Exercise 6.5. We know that, for normal modes,
dj (t) = &j exp(—iwjt), (K117)
so the V'(¢) matrix is simply the diagonal matrix:

Viu(t) = 051 exp(—iw;t). (K.118)

Exercise 6.8. Given Egs. (6.65) and (K.118), the amplitude of the coherent state |V (¢)cx) at time ¢ is simply

a;(t) = a; exp(—iw;t) o< 0510,00k,09(k-) exp(—ik,z1) exp(—iw;t). (K.119)
Remember that w; = c|k|. «;(t) is nonzero only when k, = 0, k, = 0, and k. > 0. We can then assume
w; = clk| = clk;| = cks. (K.120)
Hence
j(t) o< 0510,00k,09(k-) exp(—ik.z0) exp(—ick.t) (K.121)
= 0510k,00k,09(k-) exp[—ik. (21 + ct)]. (K.122)

This (k, s)-space amplitude corresponds to a pulse with center at z; + ct.

Exercise 6.10.
(1) A unitary V satisfies VVT = I. In the index notation,

> ViV = Oim, (K.123)
J
which implies
D VeV = [Vai? = [Var [+ [Vaol* + - = 1, (K.124)
J J
S oViVi =Y IVl = VP + Vi + - =1, (K.125)
J J
Z V3V = VaVy + Ve Vs +--- = 0. (K.126)
J
If we assume Eq. (6.85), then
Va1 |* + | Vao|* = 1, Var|? + |Vael? = 1, Vi Vi, + Vo Vi = 0. (K.127)
These equations imply that
Va1 Vao\ (V5 Vi 10
SSt — 3L C4l) — =1, K.128
<V41 Vi J\Vsy Vip 01 (K.128)

so ST = S~1, meaning that S is unitary.
Conversely, if S'is unitary, S'S t = I, and we have

Va1 |* + | Vol = 1, Var|? + |Vae|? = 1, Vi Vi, + Vaa Vi = 0. (K.129)
Plug these into Eqs. (K.124) and (K.125) to obtain
J J J
D VP = Va4 [Vaol* + ) [V [P =14 > V> =1, > IVy* =0, (K.130)
j j=3 j=3 J=3
J J J
S Vil =Vl + Vil + > VP =14 [Vl =1, > Ivyl* =o. (K.131)
j j=3 j=3 J=3
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A sum of nonnegative numbers is equal to 0 if and only if all the numbers are zero. Hence
|‘/3j|2:oand‘V4j‘2:O7 j:3747"’7 (K132)

which implies Eq. (6.85).
(2) A unitary V also satisfies VIV = I. Then

> ViiVim = Sim, (K.133)
j
SVl =ValP+ValP+ > Val =1, (K.134)
j J#3 and j#4
S Vil = Vel + VielP + > Vil =1, (K.135)
J j#3 and j#4
N ViV =VaVa+ViVe+ Y. ViVip=0. (K.136)
J j#3 and j#4

Eq. (6.88) implies that all the > j£3 and j£ 4(...) terms above are zero, leading to
Var|? + |V |* = 1, Vaal? + [Vao|* = 1, Vi Vas + Vi1 Via = 0. (K.137)

These equations imply that STS = I, which implies ST = S~!, meaning that S is unitary. The converse
is very similar to the converse proof in part (1).

Exercise 6.11. One trick is to write

al(T)as(T) + al(T)aa(T) = (A:T,)(T) dZ(T)) (ZigD (K.138)
a3(T)\ _ o a1(0)
() =5(5x0) 1
(af(r) al) = (al) ab())s", (K.140)
so that
) (T)as(1) + al(T)an(T) = (al(0) al(o)) sfs@%) = (a0 ajo) (Z;%) (K.141)
= al(0)a1(0) + @l (0)as(0). (K.142)
Exercise 6.13. Consider the J-input-.J-output relation
a;(T) =Y Vyeu(0). (K.143)
l

Since V' is unitary, we have this energy conservation:

Yol (TP =" ViVimai (0)am(0) = D 61mai (0)arm (0) (K.144)
J J,lm I,m
=> Jay(0). (K.145)
l

Now let’s set all the input amplitudes «;(0) to be zero for all [ except mode 1 and 2. Then energy conservation
implies

> g (TP = |ax (0)* + |a2(0)]%. (K.146)

J
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We also know that the output energy in mode 3 and 4 must be smaller than the total output:

s (1) + Jaa(T)* < Y oy (1)
j

Hence

las(T) | + laa(T)* < |ar (0) + |az(0)]*.

Exercise 8.2.

235

(K.147)

(K.148)

(1) Because the state |1)) ® |az) for the two input modes is a tensor product, the average of a product of any
two operators A1 and Ag, where A1 is an operator for the first mode and Ag is an operator for the second

mode, can be factorized as

(Ardz) = (A1 @ Az) = (0] © (02] A1 @ Az [9) ® loz) = (W] © (oa] (A1 ) @ Az [an))

= (] A1 [) {az] Ag |ag) = <A1> <A2>.

So
(0%) = (0% + (alar ).

Now the variances are given by

(A0%) = (0%) = (0 = (07) + (alar ) = (0) = (20?) + (alar).

(3) Let a normalized quadrature operator be

1 N
g \/§<619+4a2 T—FHC) O/:\/§|Oé2’(j.

If the first input is a coherent state |«),

(afar) = |af?,
<AO’2> = 2|ay|? <Aq2> = |2

It follows that the difference between <AO2> and <AO’ 2> is negligible when

(alar) = |of? < (AO?) = ||

(K.149)

(K.150)

(K.151)

(K.152)

(K.153)
(K.154)

(K.155)

(K.156)

(K.157)

(K.158)

(K.159)
(K.160)

(K.161)
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Exercise 8.7.

(1
Xm = % Re ((Re a + i Im o) (cos ¢y, — i sin ¢p,)) (K.162)
= % Re ((Re @) cos ¢p, + (Im ) sin gy, +i(...)) =4/ %(Rea) cos ¢, + (Im @) sin ¢y, (K.163)
(2)
M—-1 M— M—1
1+ cos 2¢m M 1 26
2 cos? mZ:: =5 +7 (WLZ:O ei2om 4 c.c.> . (K.164)

Now we evaluate the sum of complex exponentials:

M—-1 M—-1 M—-1 1 e—i27rL
2¢m _ i2(po—Qtm) __ _i2¢ —i2rLm/M __ _i2¢ -
E e = E e'\vo = "0 E e =e 01_€—i27rL/M’ (K.165)

m=0 m=0 m=0

where the last step comes from the geometric series (https://en.wikipedia.org/wiki/Geometri
c_series). Since L is an integer, e "L = 1, the numerator is zero. With |L| < M, e=*7L/M js not
equal to 1, so the denominator is not zero. Eq. (K.165) is then zero, c.c. in Eq. (K.164) is also zero, and
we arrive at M /2 for Eq. (K.164).

The other identities are similar:

sm2¢m: Z (l—cosngm) =M — cos2¢m:M—%:%. (K.166)
m=0 m=0 m=0 2 2
M—1 | M1 | M1 | M-l
> sin g oS ¢y = 5 D Sin(2pm) = 5 > sin(2¢y) = o (e2fm —cc.) = 0. (K.167)
m=0 m=0 m=0 m=0

(3) Y1 and Y5 are linear combinations of Gaussian random variables, so they are also Gaussian random
variables. Now we can use the previous results to compute their expected values:

E(Y1) =4/ — ZE ) COS Gy, = Vi Z (Re accos ¢y, + Im avsin ¢y, ) cOS ¢y, (K.168)

=+ Z (Re avcos? ¢y, + Im arsin ¢y, cos ¢y, (K.169)
m

2 9 )
=1/ (Rea ; cos” ¢, + Ima ; sin ¢, cos gi)m) = Rea. (K.170)
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E(Y3) is similar. To compute the variance of Y], we can subtract its mean first:

Y —E(Y) = ,/%szcosgﬁm, (K.171)
\/ 2 Y z 2 (K.172)
i a 'm COS Oy .

V(i) = E{[Yi ~E(V)P} =E

2 2
= E z; Zn Ly COS Py COS G p = i Z; E(ZnZ;) cos ¢, cos ¢y (K.173)
2 1 1 1
= z; §6Ml COS @y, COS P = i %;cos2 Om = 3 (K.174)
V(Y2) is similar. For the covariance,
2 .
COV (Y3, Y2) = E{[Y ~ EM)|[Y ~ E(¥2)]} = - E (; Zncostn 3 Zusin @) (K.175)
—EZE(Z Z1) €OS ¢y, Sin @ —1215 COS Py, SIN @ (K.176)
_Mml mél m S1 Z—Mml2ml m S Qf :
_ 21 B S By = 0 (K.177)
_M2mCOS m Sin ¢, = 0. )

Two Gaussian random variables have zero covariance if and only if they are independent. Hence, we can
write their probability density as a product of Gaussian probability densities:

flyr,92) = \% exp [—(y1 — Rea)?] \}7? exp[—(y2 — Ima)?]. (K.178)

(4) We can use the factorization theorem (https://en.wikipedia.org/wiki/Sufficient_statist
ic). Write the probability density of the M outcomes as

2
f ocexpl — Z [xm - \/ERe(ae—wm)] (K.179)

= exp {— > [x?n - 2xm\/g Re(ae™9m) 4 J\24[Re(aei¢m)]2] } (K.180)
= exp (— Zx%) exp {Z [2xm\/gRe(aei¢m) — ]\24[Re(aei¢m)]2] } (K.181)

Notice that we can write

\/ % Z T Re(ae*i‘z’m) =1/ % Z Tm(Re a cos ¢, + Im asin ¢y, (K.182)

=y Rea+ y2Ima, (K.183)

so f can be expressed as

f o< exp (— Zx%) exp{2(yl Rea + y2 Im«)

When the probability density is in this form, the factorization theorem says that y; and y» are sufficient
statistics.

- ]\Z[Re(ae_wm)]Z}. (K.184)
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Exercise 9.6.
(1) Define a c-number

|
=1 _ K.185
\/§ (¢1 ¢2) ( )
so that we can write
O—_C+OQ. (K.186)

Oy is a quadrature operator for the dark-port input. By Exercise D.6, their orthonormal eigenstates are
related by

O=X)=]02=X-0C). (K.187)
The probability density of O is then
Jo\) = (0 =X[plO=X\) = (O = A~ C|p|0z = A~ C). (K.188)

The dark-port input is the vacuum state. We know that the probability density for any quadrature
(Exercise 4.26) is
1

(O = 2| p|Og = z) = 77 P (—=?), (K.189)
i.e., it is a Gaussian probability density with zero mean and variance equal to 1/2. fo(\) is hence
. 1
foA) = (Os =A—C|p|Os =X — C) = —— exp [—()\ - 0)2] (K.190)
NZS

This is a Gaussian probability density with mean equal to C' = %(% — ¢2) and variance equal to 1/2.
(2)

ol V2
EO)=C=—(¢1 — ¢2), —E(O) = ¢1 — ¢9, K.191
(0) \/5(¢1 $2) o] (0) = ¢1— ¢2 ( )
SO
VY — @O (K.192)
|al
is unbiased estimator of ¢; — ¢a.
3)
2 2 1 1
E(Y)=¢1 — VY)=—V(0)=—=-=—. K.193
Hence
[E(Y))? 2 2
R= = — . K.194
(4) With a coherent-state input, the mean of Og becomes
_ L —iovie
(0s) = 7 (e B+ c.c.), (K.195)
and the variance is still 1/2. The probability density is still Gaussian:
1
(Og =\ p|Oy = \) = N [—(A = (02))?]. (K.196)
The probability density of O becomes
1
fo(N) = —=exp [-(N — C — (02))?], (K.197)

VT
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so O is still a Gaussian random variable, the variance is still 1/2, but the mean is now C' + (O3).

E(0) = ’\%’((ﬁl — ¢2) +(02), ﬁ[E(O) —(02)] = ¢1 = ¢o. (K.198)
So
Y = ﬁ(O —(02)) (K.199)
is an unbiased estimator.
E(Y) = ¢1 — ¢o, V(Y) = |a2|2V(O) = |a1’2 SNR = |a?(¢1 — ¢2)2. (K.200)
The SNR is exactly the same.
Exercise 9.8. The probability density of a quadrature is
(O =Ap|O=2) = /@(a)\(O — Aa)Pda. (K.201)

We know |(O = A|a)|? is a Gaussian distribution with some mean and variance equal to 1/2. Since ®(a) is a
probability density, we can think of « as a random variable and use the law of total variance (see Eq. (C.48)):

V(0) =E[V(O|a)] + V[E(Ola)]. (K.202)
V(Olw) is the variance of O given o, which can be computed from |(O = A|a)|?. The result is
1
V(Ola) = 5. (K.203)

We also know that the variance V [E(O|«)] must always be nonnegative, as long as ® is a probability density so
that « is a classical random variable. Hence

1 1 1
V(O)=E (2) + V[E(Ola)] = 3 + V[E(O|a)] > 3 (K.204)
Exercise 11.1. Note that the main-text definition is equivalent to
. . 1 o .
W(z,y) = tr [pW(x,y)}, W) = 5 // i) +inb=y) ge gy (K.205)
™
The alternative definition is
. < 1 [~ . A A
W(z,y) = tr [ﬁW'(m,y)}, W'(z,y) = / eMlg=a+ )Y (qg=2—Z|d\ (K.206)
o | 2 2
We need to show that W (z,y) = W’ (x,y). Use BCH formula to write
eé(G—z)+in(p—y)
— M(B—y)/2i&(q—x) yin(p—y)/2 (BCH) (K.207)
= / eMP=Y)/268A=2) 10— \) (g = A| P92\ (diagonal form of ¢) (K.208)
_ > in(—y)/2 i€X—z) | _y _ T _ M| Jin(—y)/2 mp/2 | — )\) — ) —\_1
/Ooe e qg=A 2><q )\—|—2 e dA (e lg=A) =|g= A 2>> (K.209)
— = —iny i€A\—x) | _ y _ " — ﬂ’
/_Ooe ¢ g=A 2><q A+ 3| dx. (K.210)
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Now W (z, ) is equal to
W(z,y) EE // (@=2)+mP=v) ge dp (K.211)
)
il =iy S\ — —\_" - ﬂ‘ * iE-a) - _
. /e 5(A x)‘q A 2><q A+ 2| drdn (/Ooe d¢ = 276(\ — )
(K212)
1 [ Ul n
= — my = — = = —
5 | ¢ ‘q . 2><q x+2‘dn (K.213)
R S A B A oy ) B
_QW/_OO q= a:+2>< =z 2'd)\—W(m,y). (substitute A = —n)
(K.214)
Exercise 11.4. Rewrite x(&,7) as
x(&,m) = tr{pexp{i&[§(0) cos§ — p(0) sinb] + in[G(0) sin O + p(h) cos O]} } (K.215)
= tr {pexp[ig'q(0) +in'p(0)] } = X' (&' ), (K.216)
where
¢ = ¢cosh+nsinb, n = —&sinf + ncosb. (K.217)
Now do a change of variables in the following integral:
W(x,y) n) exp(—ix — iny)d&dn (K.218)
= " exp[—i(¢ cos§ — i sin )z — i(¢' sin 6 + ' cos )y |d&’dn’ (K.219)
(=i —in'v)d'dn, (K.220)
where
u=xcost + ysinb, v=—xsinf + ycosb. (K.221)
It follows that
1
W(x,y) = W (u,v) = on)? //X’(f’,n’) exp(—i&'u — in'v)d¢'dn’. (K.222)
i
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Now consider

/ W (u,v)dv

= (27]_;_)2 // X/<§/7 77/) eXp(—ZEIU) 27['(5(7]/)d§/d?7l </ eimlvd'l) _ 27T5(77/)>
- (K.223)
- % X (€,0) exp(~i'u) e’ (K.224)

= % tr{pexp[i€'q(6)] } exp(—if'u)d¢’ (from Eq. (K.216))
R (K.225)

1 0 0 X . - . )

=5 / / (a(0) = Al plg(0) = A) exp(i&'\) dA exp(—i¢'u)d¢’ (used diagonal form of §(6))
o (K.226)

= % ) (q(0) = A plq(0) = A) 2w6(X — w)dA (/Oo € O ge! — 9 5(A — u)>
h - (K.227)
= (q(0) = u[plq(0) = u). (K.228)

The derivation of [* W’(u,v)du = (p(#) = v| p|p(f) = v) is similar.

Exercise B.39. For any AonH A,

tr {Atr B [(I ® B) O] } —tr [(A ® f) (f ® B) O} (definition of partial trace) (K.229)
:tr[(i@é) (A@f)é} (Aol I B]=0) (K.230)
— tr [(A ® f) o(ie B)} (cyclic property of trace) (K.231)
—tr {A trp [O (f ® B } } (definition of partial trace) (K.232)

tr [21211 (trB O) Ag} — tr [AQAAl (tr 5 O)} (cyclic property)  (K.233)
_ { [(AQAﬁl) ® f} O} (definition of partial trace)  (K.234)
— tr [( i® f) (211 ® f) O (Ag ® I)} (cyclic property)  (K.235)
— tr {A trp [(Al ® f) O(4Ay® I)} } (definition of partial trace)  (K.236)
Exercise D.6.
(1) Apply B to |[A = \):
BIA=)) = (aA+Db)|JA=X) = (aA+b)|[A=)\). (K.237)

It follows that | A = )) is an eigenstate of B with eigenvalue v = (a\ + b). Then we know that
|IB=u) x|A=(u—>0)/a). (K.238)
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Let |B = u) = z|A = (u — b)/a), where z is a complex c-number. The orthonormality requires

(B=u|B=1u')=|z* (A= (u—0b)/a|A = (u—1b)/a)
= |z*6(u/a — u'/a) = |2|*|ald(u — u') = §(u — o).
It follows that we must have |z| = 1/4/]a|, and

eilz
[B=u)=—=I[A=(u—-"b)/a),

Vlal

where Zz can be set as any real number. Now derive the completeness condition:

/OO B =) (B = ul du

—0o0

=1 [ 1A= (= 0)/a) (A= (u—)/a] du

—00

1 [T A= (A= Aad\, a>0 o
_m{fo;“AzmA:AadA, a<0 (A= (w=b)a)
= /OO A=) (A= \dx=1. ({|A = \)} is complete)

2

fB(u) = (B = uly)|* = |z (A= (u—0b)/aly)|* = é‘fA((u —b)/a).

242

(K.239)
(K.240)

(K.241)

(K.242)

(K.243)

(K.244)

(K.245)

This is the same as the probability density after a change of the random variable from A to B = aA + b.



APPENDIX L

List of Common Symbols and Notations

(1) We assume SI units, unless otherwise stated.
(2) We use Greek letters a lot; see https://en.wikipedia.org/wiki/Greek_alphabet.
(3) Symbols will be recycled a lot. For example,
(a) the symbol A may denote the vector potential, a matrix, or an operator.
(b) B may refer to the inverse temperature or a complex amplitude.
(c) T may refer to the temperature or a time.
(d) P may be a probability distribution, a polarization field P(r,t) in classical EM, or a quadrature

operator P.
Symbol/Notation Explanation Examples
= is equal to
= is defined as Ul(t) = exp (—%flt)
< less than or equal to 0<0,0<1
> greater than or equal to 0>0,1>0
< strictly less than
> strictly greater than
TaBLE 1. Basics.
Symbol/Notation Explanation Examples
R All real numbers 0,1, —-1,e,m
C All complex numbers 1=+/—1
Np All natural numbers including 0 0,1,2,...
Z All integers e —2,-1,0,1,2,...
{ .} Unordered set ("N by Jen) : each ¢, € C}
(...) ordered set or row vector (k,s)
{..}x{...} Cartesian product of sets RxR={(z,y):z € Randy €
R}
set” Cartesian power RE=RxRxR
€ belongs to a set ) € H
v “for all” or “for any” (Y]¢) = (o[¥)" VIY),|¢) € H

TABLE 2. Sets.
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Symbol/Notation Explanation
O, = {1’ ne=m Kronecker delta
0, n#m
" (u) n-dimensional Dirac delta
|z magnitude of a complex number
Lz phase of a complex number, z = |z| exp(i£z)

Rez=(z+2%)/2

real part

imaginary part

c.c. complex conjugate

1, |X|<1/2
rect X =< x| < 1/ rectangle

0, |X|>1/2

sin(wX)
sinc X = X X70, sinc

1, X =0
cosh X = %(eX +e X ) hyperbolic cosine
sinh X = %(eX —e X ) hyperbolic sine

TaBLE 3. Common functions.
Symbol/Notation Explanation Examples
bold symbol vector in real 3D space k,r
tilde ~ unit vector z, Y,z
u-v dot product k-r
u X v cross product ExB
V. divergence V-E
V x curl Vx E
dBr 3D volume element d3r = dedydz, Pk = dkydk,dk,
TaBLE 4. Vector calculus.
Symbol/Notation Explanation Examples
bold symbol column vector or row vector o= (a1> ,m = <n1>
a9 no
T a
T transpose (a b) = <b>
dagger t conjugate transpose ol = (off a§)
star * entry-wise complex conjugate o = <Zi)
2

inverse A~T matrix inverse r-t

absolute sign | . .. |

vector norm

TaBLE 5. Matrix algebra
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Symbol/Notation Explanation
T=2xT+ Yy + 22 3D position vector
k=kx+ky+k.z wavevector

€k.s

polarization vector

E(r,t) electric field

B(r,t) magnetic field

A(r,t) vector potential

p(r,t) charge density

J(r,t) current density

P(r,t) polarization field

D(r,t) displacement field

€0 free-space permittivity

1o free-space permeability

c=1/ /o0 speed of light

Jj=(k,s) label of a normal mode for free EM fields

TaBLE 6. Electromagnetism.

Symbol/Notation Explanation Examples

ket |...) Vector in Hilbert space |1)

bra (.. .| Adjoint of ket (]

bra-ket (...|...) Inner product (V|o)

(cooyee)or (oo, ol) Inner product (mathematicians’ no- | (¢, ¢), (¥, ¢)
tation)

ket-bra |...) (.. .| Operator in ket-bra form A=>"  Apmlen) (eml

hat " Operator A a

dagger t adjoint AT, (| = |[9)T

[A,B] = AB — BA Commutator [a,af] =1

c-number

classical numbers that commute
with everything

C, 60, h’ wja k’ Anm

H Hilbert space {27]1\[:1 Yy, |en) : each ¢, € C}

® Tensor product ) @ |¢), Ha @ Hp, A® B

@ Direct sum a@bz(i),A@Bz(A B)
H.c. Hermitian conjugate adl —Hec. = aal — a*a

1 identity operator on ‘H

I = identity operator on H I ponHpg

~ Isomorphic relation Hi1 @ Ho ~Ho @ Hy

A>0 A is positive-semidefinite 0,1

A>B A — B is positive-semidefinite

TaBLE 7. Hilbert space and the bra-ket notation.
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Symbol/Notation Explanation
h=h/(2m) Planck constant divided by 27
H Hamiltonian operator
U(t) = exp (—%ﬁ t) unitary operator
p density operator
(A) = tr(Ap) expected value

variance

Z partition function
B =1/kgT inverse temperature

TaBLE 8. Quantum.
Symbol/Notation Explanation
a annihilation operator
n=ala number operator
Gg=(a+a)/Vv2 g-quadrature operator
p=(a—al)/(v2i) p-quadrature operator
|n) eigenstate of 1 with eigenvalue n
lg = x) eigenstate of ¢ with eigenvalue x
lp=1v) eigenstate of p with eigenvalue y

|a) (with greek letter o, 3, . . .

as argument)

coherent state, « € C

D(«) displacement operator

d*a (dRe ) (dIm «v)

d(w) Sudarshan representation, also called P function
TaBLE 9. Single-mode algebra.

Symbol/Notation Explanation

|o) multimode coherent state, o« € C”

D(a) multimode displacement operator

& [17_,(dReq;)(dIma;)

o(a) Sudarshan representation, also called P function

aj, g, i, Pj Operators for mode j

g = =) eigenstate of {¢;}, ¢j l[¢ = x) =z |q¢ = x)

p=y) eigenstate of {p;}, p;|p = y) = yjlp = y)

In) = |ni,...,ny) multimode number state

TaBLE 10. Multimode algebra.
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Symbol/Notation Explanation

Q sample space

ForFE event space

(Q,F,P) probability space

Px ® Py product measure

iid. independent and identically distributed

pen tensor product of n identical meaures P for i.i.d. vari-
ables

Px,... x,(T1,..., %) joint probability distribution

fxi o xn (@1, ..., 2p) joint probability density

P[A|B] conditional probability

E(X) expected value of a random variable X

V(X)=E {[X _ E(X)]2} — E(X2) — [E(X)]2 variance

COV(X,Y) = E{[X-EX)|[Y-E(®)]} = covariance

E(XY) — [E(X)][EY)]

C(7) covariance function

S(w) power spectral density

% (x) Radon-Nikodym derivative

TasLE 11. Probability.

Symbol/Notation Explanation

p density operator

11 projection-valued measure (PVM)

M positive operator-valued measure (POVM)

completely positive (CP) map

hybrid state

p
ps = F(S)p/ tr(numerator) posterior state

TaBLE 12. Open quantum systems.

Symbol/Notation Explanation
T T . .
S = (r’ T,) scattering matrix
xM linear optical susceptibility
x@ second-order optical susceptibility

TaBLE 13. Optics.
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Symbol Concept Other names

feco parameter hypothesis

) parameter space

{Py:0€c0} statistical model

fo(z) = %(aﬁ) probability density Radon-Nikodym derivative

Eq Expectation with respect to Py

6 decision rule estimator

1(0,0) loss function error function, cost function
R(6,0) =Eq [1(0,0)] error expected loss, risk function

T prior probability measure

R(0) = [ R(0,0)dr(0)

average error

average risk

OBayes = arg ming R, (6)

Bayes rule

Bayes estimator

Rpayes(m) = ming R.(¢) = | Bayes error Bayes risk

R7T (eBayes)

maxgpeo R(6,0) Worst-case error worst-case risk

0 minimax = | minimax rule minimax estimator

arg min; maxpee R(0,0)

ming maxgee R(6,0)

maXgpee R ( 9, eminimax )

minimax error

minimax risk

TaBLE 14. Statistics.

Concept

Other names

Neyman-Pearson error given toler-
ance level o

likelihood ratio

Radon-Nikodym derivative

log-likelihood ratio

likelihood-ratio test with threshold
Tort

Kolmogorov distance

w(s) =InEg(A®)

Chebyshev exponent

C = maxocsc1[—p(s)]

Chernoff distance

Chernoff exponent

D1 Po)

relative entropy

Kullback-Leibler divergence

B= —u(1/2)

Bhattacharyya distance

(closely related to Hellinger dis-
tance)

TaBLE 15. Binary hypothesis testing.
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Concept Other names
key parameter parameter of interest
Gill-Levit bound Bayesian Cramér-Rao bounds, Van

Trees inequalities

gradient with respect to 6

Fisher information information
) Cramér-Rao bound (CRB) information inequality
(x), (x) maximum-likelihood (ML) estima-

tor

bias

likelihood function

log-likelihood function

TaBLE 16. Parameter estimation.
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