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CHAPTER 1

Why Study Quantum Optics?

I’ll tell you the elephant in the room upfront: No major industry, apart from the academia and a few startups
(e.g., https://www.idquantique.com/, https://www.xanadu.ai/, https://www.psiquantum.com/),
currently requires their employees to know quantum optics.

Classical optics, together with some rules of thumb, such as the quantization of electromagnetic energy and
the existence of spontaneous emission, are enough to describe every major optical technology that exists today
(e.g., cameras, light-emitting diodes, solar cells, photodetectors, lasers, optical communications, photolithogra-
phy). In other words, if you won’t be doing physics for research, it is enough to stick with Maxwell’s equations
and the early quantum theory invented by Planck (E = nhν) and Einstein (the phenomena of absorption,
stimulated emission, and spontaneous emission) [1]. A lot of quantum effects, even the photoelectric effect [2],
can be explained without quantizing the EM fields.

If you will be doing research, however, then studying quantum optics is a no-brainer, as it is a gateway to
many fields of physics at the graduate level:

(1) Quantum optics is an important example of quantum field theory. According to the standard model,
everything in physics (bar gravity) is a quantum field, and quantum optics, i.e., the quantum theory of
electromagnetic fields, is the first example you will likely learn.

(2) Many important experiments in quantum information and quantum foundations rely on quantum
optics. For example, you need quantum optics to describe how quantum key distribution works and
experiments there are all based on quantum optics.

Quantum optics experiments have also been used to test some fundamental properties of physics,
as recognized by the 2012 and 2022 Nobel prizes (https://www.nobelprize.org/prizes/phys
ics/2012/summary/ and https://www.nobelprize.org/prizes/physics/2022/summary/).

A founder of quantum optics, Roy Glauber, has won a Nobel prize as well (https://www.nobe
lprize.org/prizes/physics/2005/summary/).

(3) Quantum measurement theory and open quantum system theory are often studied in conjunction
with quantum optics because examples in those theories are most commonly demonstrated with
quantum optics experiments—see, again, the 2012 Nobel prizes for example (https://www.nobelp
rize.org/prizes/physics/2012/summary/).

(4) Gravitational-wave detectors are giant Michelson optical interferometers that detect tiny movements
in the mirrors due to gravitational waves, and they are now so sensitive that they are limited by the
fundamental quantum fluctuations of the light beams. A quantum technique called optical squeezing
is now being used to reduce the quantum fluctuations (https://www.ligo.org/science/Publi
cation-SqueezedVacuum/).

In general, the study of sensors at the fundamental quantum level is called quantum metrology,
and it is often studied in conjunction with quantum optics because optical sensors are arguably the most
important application of quantum metrology (gravitational-wave detection, telescopes, microscopes,
etc.). The probabilistic nature of quantum mechanics place fundamental limits to the sensor precision,
and we need a quantum theory of light if we want to derive those fundamental limits and find out how
the sensors can be improved in the presence of quantum effects.

(5) In deep-space optical communication (https://www.nasa.gov/mission/deep-space-optic
al-communications-dsoc/), the received optical signal on earth or satellite is so weak that one
must design the system and the measurement carefully in accordance with quantum optics to minimize
quantum sources of noise [3].

(6) Most quantum experiments in research with atoms, ions, or superconducting circuits, e.g., for quantum
computing, use optical beams or microwaves as probes to measure and control the systems, and a
quantum theory of light is often needed to make the theory of light-matter interaction consistent.
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1. WHY STUDY QUANTUM OPTICS? 7

Experiments on light-atom interactions have won a few Nobels as well (https://www.nobelp
rize.org/prizes/physics/1997/summary/, https://www.nobelprize.org/prizes/phys
ics/2012/summary/).

(7) Besides atoms, ions, and superconducting circuits, people have also proposed the use of photonics
(optical devices) for quantum computing (see, e.g., https://www.xanadu.ai/, https://www.ps
iquantum.com/).

Will any of these quantum technologies become a major force in the future industry? I don’t know and I
cannot promise anything. The economic factor should not be the main reason you study quantum optics anyway.
Apart from research, here are some noble reasons why one may want to study quantum optics:

(1) You like optics and just want to learn more about it.
(2) You are deeply annoyed that classical electromagnetism is unable to predict the quantization of

electromagnetic energy.
(3) You are deeply curious how electromagnetism can be generalized and combined with the quantum

theory invented by Schrödinger and Heisenberg. You want your physics unified under one formalism
and don’t want just a bunch of seemingly arbitrary rules, like the early quantum theory by Planck and
Einstein.

(4) You want a taste of quantum field theory, quantum measurement theory, and open quantum system
theory.

In other words, curiosity should be your reason. If you have it, I welcome you to this course.
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https://www.xanadu.ai/
https://www.psiquantum.com/
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CHAPTER 2

Classical Electromagnetism (EM)

2.1. Classical EM and what’s wrong with it

Classical electromagnetism (EM) is specified by four Maxwell’s equations:

∇ ·E =
ρ

ϵ0
, ∇ ·B = 0, ∇×E = −∂B

∂t
, ∇×B = µ0J + µ0ϵ0

∂E

∂t
. (2.1)

All quantities here E,B,J , ρ are functions of the three-dimensional position vector
r = xx̃+ yỹ + zz̃ (2.2)

and a time variable t ∈ R, where (x, y, z) ∈ R3 are the three Cartesian coordinates and
{x̃, ỹ, z̃} (2.3)

are unit vectors in three orthogonal directions. The electric field E(r, t), the magnetic field B(r, t), and the
current density J(r, t) are vector fields, i.e., each vector field prescribes a three-dimensional vector at each
point (r, t) in space and time, while the charge density ρ(r, t) is a scalar field, i.e., it prescribes a real number at
each (r, t). ϵ0, a real positive constant, is called the free-space permittivity, and µ0, also a real positive constant,
is called the free-space permeability.

Classical EM works fantastically well except for one “tiny” problem: in the study of blackbody radiation,
the physics doesn’t seem right unless we assume that the energy of an EM mode can exist only in discrete
quanta:

Energy in a mode = nhν, n = 0, 1, 2, . . . (2.4)

where ν is the frequency of the EM mode in Hertz, h is the Planck constant given by

h = 6.626 · · · × 10−34 Joule sec. (2.5)
and n is a nonnegative integer. This is disturbing because nowhere in classical EM says that energy has to be
discrete.

2.2. Sinusoidal modes of free EM fields

Before we go into quantum, we need to learn the concept of modes in classical EM. Modes are the
fundamental degrees of freedom in EM. Each mode has a specific solution for its EM fields, and an arbitrary
solution can be expressed as a linear combination of the mode fields.

To be concrete, we begin by assuming that there are no sources (ρ = 0, J = 0), so only EM fields in free
space are present. They should obey the source-free Maxwell equations

∇ ·E = 0, ∇ ·B = 0, ∇×E = −∂B
∂t

, ∇×B =
1

c2
∂E

∂t
, (2.6)

where

c ≡ 1
√
µ0ϵ0

≈ 3× 108 m/s (2.7)

is the speed of light. Think of the dynamics as an initial-value problem: given some EM fields at t = 0, what
are the fields at a later time t?

There are a few other assumptions we can make to simplify the math: consider EM fields in a box, each
side with length L, and periodic boundary conditions on all sides of the box. In other words, we assume

x ∈
[
−L
2
,
L

2

]
, y ∈

[
−L
2
,
L

2

]
, z ∈

[
−L
2
,
L

2

]
, (2.8)
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2.2. SINUSOIDAL MODES OF FREE EM FIELDS 9

and the EM fields at x = −L/2 are equal to the fields at x = L/2, the fields at y = −L/2 are equal to the fields
at y = L/2, etc. To model EM fields in infinite space, we’d take the limit L→ ∞, but we won’t do that for now
to simplify the math.

The periodic boundary condition doesn’t sound physical, but it simplifies the math and we care about the
solution only as an approximation of L → ∞ anyway, when the boundary condition shouldn’t matter. If you
want, you can assume other boundary conditions, e.g., the walls of the box are perfect conductors; the result
will be the same in the L→ ∞ limit.

One approach of solving the Maxwell’s equations in free space that will also work in quantum optics is to
write the fields at initial time t = 0 as

E(r, 0) =
∑
j

[
αjuj(r) + α∗

ju
∗
j (r)

]
, (2.9)

B(r, 0) =
∑
j

1

ωj
k ×

[
αjuj(r) + α∗

ju
∗
j (r)

]
. (2.10)

A simpler way of writing these expressions is

E(r, 0) =
∑
j

[αjuj(r) + c.c.], (2.11)

B(r, 0) =
∑
j

1

ωj
k × [αjuj(r) + c.c.]. (2.12)

where c.c. denotes the complex conjugate of the first term in the square bracket. Each term in the sum is the E
field or the B field of a mode, labeled by the mode index j. Let’s examine the expressions in detail:

(1) The central quantity in these expansions is the mode functionuj(r). It is a complex vector field given
by

uj(r) =
1

L3/2
ẽj exp(ik · r). (2.13)

This corresponds to a complex sinusoidal wave in EM. Each sinusoidal wave is a mode.

Remark 2.1. In both classical and quantum optics, it is extremely convenient, and indeed standard, to
regard the electric field as complex, i.e., we omit the complex conjugate (c.c.) in a lot of discussions
of the electric field. If you see a complex electric field in any discussion, just assume that the electric
field in reality is the complex solution + c.c.

(2) Each mode index j of the mode function uj(r) is really a shorthand for a set of quantities

j = (k, s) (2.14)

that specify the mode, where

k = kxx̃+ kyỹ + kzz̃ (2.15)

is a real vector called the wavevector of the mode. The length of k, denoted as |k| or k, is the
wavenumber given by

k ≡ |k| =
√
k2x + k2y + k2z . (2.16)

Define the unit vector of k as

k̃ ≡ k

k
, (2.17)

and assume that it is one of the three axes of another Cartesian coordinate system. Let ẽ1 and ẽ2 be
the other unit vectors for the other two axes; see Fig. 2.1. Then k̃ · r is the coordinate of r along the
k̃ axis, ẽ1 · r is the coordinate of r along the ẽ1 axis, etc. we can write r as

r = (k̃ · r)k̃ + (ẽ1 · r)ẽ1 + (ẽ2 · r)ẽ2. (2.18)
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The sinusoidal function exp(ik · r) = exp
[
ik(k̃ · r)

]
is periodic with respect to the coordinate k̃ · r

along the k̃ axis but doesn’t depend on the other two coordinates. This means that if we look at
any point in space and move in any direction along ẽ1 or ẽ2, the function stays constant in the plane
perpendicular to k. A sinusoidal wave is thus an example of a plane wave.

Figure 2.1. Let k̃ ≡ k/|k| be the unit vector pointing in the direction of k. We can write
k · r = k(k̃ · r). When we take the dot product of the position vector r with a unit vector k̃,
k̃ · r is the coordinate of the position r along the k axis. In other words, exp(ik · r) depends
on only the position coordinate along the k axis. If we think of k̃ as one of the three axes of
another Cartesian coordinate system, then exp(ik · r) does not depend on the other coordinates
along the other directions ẽk,1 and ẽk,2. For example, if k = kz̃, then exp(ik · r) = exp(ikz)
is periodic with respect to the z coordinate but stays constant along x and y.

Only sinusoids with certain discrete values of the wavevector can satisfy the periodic boundary
conditions. To be specific, each wavevector has three real components chosen from the following
possible values

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

, nx, ny, nz = 0,±1,±2, . . . (2.19)

It is often useful to denote each wavevector of a mode as a point in k space, as shown in Fig. 2.2. If
we assume an infinitely big box L → ∞, then the three components would become three continuous
real variables, i.e., (kx, ky, kz) ∈ R3, and k can be an arbitrary real vector.

Figure 2.2. Each dot denotes a possible wavevector k of an EM mode inside a box with lengths
all equal to L. The set of all wavevectors form a rectangular lattice in k space. Two adjacent
wavevectors are separated by a distance of 2π/L.
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(3) The second quantity s in the mode index j = (k, s) denotes the polarization of the mode. There are
two possible values for s and we usually write

s ∈ {1, 2}, (2.20)
denoting the two possible polarizations of each sinusoidal wave given a wavevector k. ẽj = ẽk,s
is the unit polarization vector of the mode—ẽk,1 is one polarization vector and ẽk,2 is the other
polarization vector. We can write it as

ẽk,s = exx̃+ eyỹ + ezz̃ (2.21)
where ex, ey, ez are complex numbers that are also functions of (k, s). They may be complex numbers
in case we want to assume circular polarizations. Often it is too tedious to write down ẽk,s explicitly
and it suffices to know that it obeys the properties
k · ẽk,s = 0 (polarization is perpendicular to wavevector) (2.22)

ẽ∗k,s · ẽk,s′ = δss′ ≡

{
1, s = s′

0, s ̸= s′
(unit length, orthogonal polarizations) (2.23)

ẽk,1 × ẽk,2 = k̃. (right-hand rule for ẽk,1, ẽk,2, k̃) (2.24)
δ is called the Kronecker delta. The complex conjugate ∗ operation on a vector ẽk,s means that we
take the complex conjugate of each of its Cartesian components.

(4) The sum
∑

j is really
∑

k

∑
s, i.e., we sum over all possible values of the wavevector k of the modes

according to Eq. (2.19) and all possible polarizations s of the modes according to Eq. (2.20).
(5) ωj is the natural frequency of the mode j (angular, with the unit radian/sec). It is a function of the

wavevector k only and given by
ωj = c|k|, (2.25)

where c is the speed of light given by Eq. (2.7).
(6) The mode functions here are orthonormal, in the sense that˚

box
u∗
j (r) · ul(r)d

3r = δjl ≡

{
1, j = l,

0, j ̸= l.
(2.26)

The operation on the left-hand side is called an inner product between two vectoral functions uj(r)
and ul(r). The integral is over the whole 3D space of the box. The Kronecker delta means that, if we
take the inner product of a mode function with itself, we get 1 (i.e., the mode function is normalized),
and if we take the inner product of one mode function with another mode function, we get 0 (i.e., the
mode functions are “orthogonal” to one another).

(7) Each αj is a complex number that we call the amplitude of mode j. The amplitudes are determined by
the initial conditions, such as E(r, 0) and ∂E(r,t)

∂t

∣∣∣
t=0

, although we won’t need to know how exactly.

In principle, if an experimenter has total control of the initial conditions, they will be free to set the amplitude
αj of each mode to be an arbitrary complex number. This is why we call each mode a degree of freedom: its
initial condition in terms of αj can be arbitrary and is not required to depend on the initial conditions of other
modes. (A proof of this fact is too tedious and we take it as given here.)

Side note. You may think of the mode functions as a basis for the fields, i.e., any EM fields can be expressed as
a linear combination of the mode functions, and the algebra of vector fields, e.g., inner product, is very similar
to the linear algebra described in Appendix B, even though we are still working with classical physics.

Here’s the neat thing about Eqs. (2.11) and (2.12): once we’ve found the amplitudes {αj} from the initial
conditions, the fields at a later time t are simply given by

E(r, t) =
∑
j

[αj exp(−iωjt)uj(r) + c.c.]. (2.27)

B(r, t) =
∑
j

1

ωj
k × [αj exp(−iωjt)uj(r) + c.c.], (2.28)
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Everything looks exactly the same as Eqs. (2.11) and (2.12), except that we multiply each mode amplitude by
exp(−iωjt). Each mode of the EM fields has a very simple time dependence: it simply oscillates at the natural
frequency ωj = c|k|. When the modes have this simple time dependence, we call the modes the normal modes
of the fields.

Remark 2.2. The word “normal” is definitely way overused in physics and mathematics. It means different
things in different contexts, so be careful.

You can check that Eqs. (2.27) and (2.28) satisfy the source-free Maxwell’s equations at all times. Notice
also that

αj exp(−iωjt)uj(r) ∝ ẽk,sαj exp(ik · r − ic|k|t), (2.29)

which is the sinusoidal plane-wave solution of EM fields that we know and love. αj is the complex amplitude of
the wave; it tells us how strong each sinusoidal wave is (via its magnitude |αj |) and also the phase of the wave
(via its phase ∠αj).

2.3. Energy of EM modes

Another neat thing about the normal-mode expansion of the EM fields is that the total energy at any given
time becomes very simple:

total energy = 2ϵ0
∑
j

|αj |2, (2.30)

where ϵ0 is the free-space permittivity. Each mode has energy

energy in mode j = 2ϵ0|αj |2, (2.31)

and the total energy is simply the sum of all the energies of all the modes. Remember αj is any complex
number, so |αj |2 can be any nonnegative number, and the energy of each mode can be any nonnegative number
in classical EM.

2.4. Each normal mode is a harmonic oscillator

We now come to a crucial viewpoint that will help us quantize EM fields: Think of each normal mode as
a harmonic oscillator. Remember that αj is a complex amplitude that models the oscillation of each normal
mode. As a function of time t, the complex amplitude for each mode is simply

αj(t) = αj exp(−iωjt). (2.32)

Define the “position” variable as

qj(t) ≡
1√
2

[
αj(t) + α∗

j (t)
]
, (2.33)

and the “momentum” variable as

pj(t) =
1√
2i

[
αj(t)− α∗

j (t)
]
. (2.34)

Then we find that
dqj(t)

dt
= ωjpj(t),

dpj(t)

dt
= −ωjqj(t), (2.35)

qj(t) = qj(0) cos(ωjt) + pj(0) sin(ωjt), pj(t) = −qj(0) sin(ωjt) + pj(0) cos(ωjt). (2.36)

These are the same as the equations of motion for a harmonic oscillator with natural frequency ωj . Moreover,
notice that each normal mode is, by definition, uncoupled to the other normal modes: the equations of motion
for each normal mode depend only on the variables of that mode, and any motion of the other modes does not
bother it at all.

Remark 2.3. Other problems, e.g., in mechanics, may define the “position” and “momentum” variables
differently with different constants in front, but we can always get the versions here by a simple rescaling.
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A useful picture of the harmonic-oscillator dynamics in a phase space is shown in Fig. 2.3. In EM and
optics, the qj(t) and pj(t) variables are also called quadratures. We will call qj(t) the q-quadrature and pj(t)
the p-quadrature to avoid confusion with the position vector r and the wavevector k, which are apples and
oranges.

Remark 2.4. It is important to stress that the quadratures here determine the oscillations of the EM fields in
each mode; they are not the position and momentum of any object moving in real space. qj(t) and pj(t) merely
behave like position and momentum mathematically; they are called generalized coordinates in Hamiltonian
mechanics.

Side note. The terminology “quadratures” comes from communication theory (https://en.wikipedia.o
rg/wiki/Quadrature_amplitude_modulation).

Figure 2.3. In the phase space, we think of the q-quadrature qj and the p-quadrature pj as
two orthogonal axes. It’s useful to visualize (qj(t), pj(t)) as a phase-space trajectory. For a
harmonic oscillator, the trajectory is a clockwise circular path.

A strategy of quantizing the EM fields is now at hand: assume that each normal mode is a quantum harmonic
oscillator, and the real and imaginary parts of the complex amplitude become “position” and “momentum”
operators. This is indeed what Dirac did when he wrote down the first fully quantum theory of EM [4].

Most importantly, we know that the energy of a quantum harmonic oscillator is quantized, so we are able
to prove the quantization of the EM energy of each mode using Dirac’s theory.

With the concept of normal modes, we can already derive the spectrum of blackbody radiation following
Planck; see Appendix A.

Exercise 2.1. Verify Eq. (2.26).

Exercise 2.2. What is the wavelength of each sinusoidal mode, given k? How is it related to ωj and the
frequency in Hertz νj ≡ ωj/(2π)?

Exercise 2.3. Check that exp(ik · r) satisfies the periodic boundary condition along x, y, z.

Exercise 2.4. Suppose that we write the wavevector k in the spherical coordinate system as

k = k(sin θ cosϕx̃+ sin θ sinϕỹ + cos θz̃). (2.37)

Show that

ẽk,1 = cos θ cosϕx̃+ cos θ sinϕỹ − sin θz̃, (2.38)
ẽk,2 = − sinϕx̃+ cosϕỹ (2.39)

satisfy Eqs. (2.22)–(2.24).

https://en.wikipedia.org/wiki/Quadrature_amplitude_modulation
https://en.wikipedia.org/wiki/Quadrature_amplitude_modulation
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Exercise 2.5. Suppose that

k = kz̃, ẽk,1 =
1√
2
(x̃+ iỹ). (2.40)

Find ẽk,2 so that Eqs. (2.22)–(2.24) are satisfied. If the electric field at a certain position is given by
E(0, t) ∝ ẽk,1 exp(−iωjt) + ẽ

∗
k,1 exp(iωjt), (2.41)

Describe how the electric-field vector changes as a function of time. Do the same if
E(0, t) ∝ ẽk,2 exp(−iωjt) + ẽ

∗
k,2 exp(iωjt). (2.42)

Exercise 2.6. Using Eqs. (2.37)–(2.39), show that the following formula holds:∑
s

eu(k, s)ev(k, s) = δuv −
kukv
k2

, (2.43)

where u, v ∈ {x, y, z} and eu(k, s) is the component of ẽk,s along the ũ axis. Do the same for the vectors in
Exercise 2.5. Also try to derive this formula just from Eqs. (2.22)–(2.24).

Exercise 2.7. Verify that Eqs. (2.27) and (2.28) obey the source-free Maxwell’s equations in free space.

Exercise 2.8. The EM energy density (energy per unit volume) is given by

E(r, t) = ϵ0
2
E(r, t) ·E(r, t) +

1

2µ0
B(r, t) ·B(r, t). (2.44)

Use this equation and Eqs. (2.27) and (2.28) to verify Eq. (2.30).



CHAPTER 3

Quantization of Free EM Fields

Chapter 2 shows that there are many normal modes for EM fields in a box. Each mode is labeled by

j = (k, s) (3.1)

in terms of the wavevector k and the polarization s. Each mode oscillates in time at a frequency

ωj = c|k|, (3.2)

and the equations of motion for each mode are uncoupled from those of all other modes. These facts are hints
that we may treat each mode as a quantum harmonic oscillator. Simply put, quantum EM is nothing but a
large number of quantum harmonic oscillators.

We will be using the abstract Hilbert-space theory with the bra-ket notation, as reviewed in Appendix B.

3.1. Quantum harmonic oscillator

Let us focus on just one mode for now and review the theory of one quantum harmonic oscillator using the
language of quantum optics. We begin by assuming that the Hilbert space H possesses an orthonormal basis

{|n⟩ : n ∈ {0, 1, 2, . . . }} (3.3)

where each |n⟩ models the state of the mode with an integer photon number n ∈ {0, 1, 2, . . . }. We call each
|n⟩ a number state. The number states are orthonormal in the sense that

⟨n|m⟩ = δnm ≡

{
1, n = m,

0, n ̸= m.
(3.4)

To express the fact that the number states are a basis of the Hilbert space, we use the completeness condition

Î =
∞∑
n=0

|n⟩ ⟨n| , (3.5)

where Î is the identity operator, defined by Î |ψ⟩ = |ψ⟩ for any |ψ⟩ ∈ H. This relation says that any |ψ⟩ can be
written as

|ψ⟩ = Î |ψ⟩ =
∞∑
n=0

|n⟩ ⟨n|ψ⟩ , (3.6)

which is a linear combination of {|n⟩}. Orthonormality + completeness together imply that the set {|n⟩} is an
orthonormal basis.

Any quantum state can be expressed as a superposition of the number states:

|ψ⟩ =
∞∑
n=0

ψn |n⟩ , (3.7)

where ψn = ⟨n|ψ⟩ as a function of n is the wavefunction in the number basis. If the state is normalized, we
assume

⟨ψ|ψ⟩ = 1. (3.8)

This implies that the wavefunction should also be normalized as
∞∑
n=0

|ψn|2 = 1. (3.9)

15
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Define an annihilation operator â and a creation operator â†, which is the adjoint of â. They are so called
because the effect of applying â on each number state is to reduce the number as follows:

â |0⟩ = 0, â |n⟩ =
√
n |n− 1⟩ , n = 1, 2, . . . (3.10)

while the effect of applying â† on each number state is to increase the number as follows:

â† |n⟩ =
√
n+ 1 |n+ 1⟩ . (3.11)

The annihilation and creation operators satisfy the commutation relation[
â, â†

]
= Î . (3.12)

The number operator is defined as

n̂ ≡ â†â, (3.13)

and each number state is an eigenstate of n̂, with eigenvalue n:

n̂ |n⟩ = n |n⟩ . (3.14)

We can then write n̂ in the diagonal form

n̂ =
∞∑
n=0

n |n⟩ ⟨n| . (3.15)

To represent the quadratures of the mode, we define the Hermitian operators

q̂ ≡ 1√
2

(
â+ â†

)
, (3.16)

p̂ ≡ 1√
2i

(
â− â†

)
. (3.17)

Mathematically, these really behave like the position and momentum operators we know and love in elementary
quantum mechanics; different people may put different constants in front of these formulas but we’ll stick to our
definition here.

Our quadrature operators obey the commutation relation

[q̂, p̂] = iÎ. (3.18)

We often write

[â, â†] = 1, [q̂, p̂] = i, (3.19)

by replacing Î with 1. This is slightly sloppy, since a commutator of two operators is supposed to give another
operator, but it is a harmless abbreviation since Î and 1 act on everything in exactly the same way.

Another basis of the Hilbert space can be constructed from the q-quadrature eigenstates

{|q = x⟩ : x ∈ R}. (3.20)

They are defined by

q̂ |q = x⟩ = x |q = x⟩ , (3.21)〈
q = x

∣∣q = x′
〉
= δ(x− x′), (3.22)

such that the diagonal form of q̂ is

q̂ =

ˆ ∞

−∞
x |q = x⟩ ⟨q = x| dx, (3.23)
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and the completeness condition is

Î =

ˆ ∞

−∞
|q = x⟩ ⟨q = x| dx. (3.24)

Similarly, for the p-quadrature operator p̂,

p̂ |p = y⟩ = y |p = y⟩ ,
〈
p = y

∣∣p = y′
〉
= δ(y − y′), (3.25)

p̂ =

ˆ ∞

−∞
y |p = y⟩ ⟨p = y| dy, Î =

ˆ ∞

−∞
|p = y⟩ ⟨p = y| dy. (3.26)

Remark 3.1. Do not confuse the x, y here (eigenvalue of |q = x⟩ or |p = y⟩) with the coordinates of the position
vector r = xx̃+ yỹ+ zz̃! They are completely unrelated things. Unfortunately we have to recycle symbols for
different uses a lot, as is often the case in physics.

To relate the two sets of eigenstates, we have the following relations

⟨q = x|p = y⟩ = 1√
2π

exp(iyx), (3.27)

|p = y⟩ = 1√
2π

ˆ ∞

−∞
exp(iyx) |q = x⟩ dx, (3.28)

|q = x⟩ = 1√
2π

ˆ ∞

−∞
exp(−iyx) |p = y⟩ dy. (3.29)

The preceding discussion can be applied to a lot of quantum systems with infinite-dimensional Hilbert
spaces, not just harmonic oscillators. What makes the system a harmonic oscillator is its Hamiltonian

Ĥ = ℏωâ†â = ℏωn̂, (3.30)

where
(1) we have made the harmless assumption that the ground-state energy is zero,
(2)

ℏ ≡ h

2π
(3.31)

is Planck’s constant divided by 2π (we’ll be using ℏ mostly rather than h).
(3) ω is the natural frequency of the mode (the frequency at which the harmonic oscillator oscillates in

classical physics).
The eigenvalues of Ĥ = ℏωn̂ are 0, ℏω, 2ℏω, . . . , and if we measure Ĥ in a von Neumann measurement, the
outcome is always one of the eigenvalues. This is one key reason that we model EM fields as quantum harmonic
oscillators—to make it fit with evidence from blackbody radiation that the EM energy of each mode is quantized.

Another way to see that the harmonic-oscillator model is the right one is to look at its equations of motion
in the Heisenberg picture. Define the unitary operator

Û(t) ≡ exp

(
− i

ℏ
Ĥt

)
. (3.32)

The Heisenberg picture of an operator Ô is defined as

Ô(t) ≡ Û †(t)ÔÛ(t), (3.33)

which obeys the equation of motion

dÔ(t)

dt
= − i

ℏ

[
Ô(t), Ĥ

]
= − i

ℏ
Û †(t)

[
Ô, Ĥ

]
Û(t). (3.34)
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Assume that â(0) = â, q̂(0) = q̂, p̂(0) = p̂ are operators at t = 0 in the Heisenberg picture. Define the
Heisenberg-picture operators as

â(t) ≡ Û †(t)âÛ(t), q̂(t) ≡ Û †(t)q̂Û(t), p̂(t) ≡ Û †(t)p̂Û(t). (3.35)

Then it is straightforward to show that

dâ(t)

dt
= −iωâ(t), â(t) = â exp(−iωt), (3.36)

q̂(t) =
1√
2

[
â(t) + â†(t)

]
, p̂(t) =

1√
2i

[
â(t)− â†(t)

]
, (3.37)

dq̂(t)

dt
= ωp̂(t),

dp̂(t)

dt
= −ωq̂(t). (3.38)

These Heiseberg equations agree with the classical ones in Sec. 2.4.

Exercise 3.1. Derive the formulas

â =
1√
2
(q̂ + ip̂), â† =

1√
2
(q̂ − ip̂), (3.39)

Exercise 3.2. Prove the following:

|n⟩ = (â†)n√
n!

|0⟩ . (3.40)

Exercise 3.3. Compute

⟨n| q̂ |n⟩ , ⟨n| p̂ |n⟩ , ⟨n| q̂2 |n⟩ , ⟨n| p̂2 |n⟩ , ⟨n| q̂p̂ |n⟩ , ⟨n| p̂q̂ |n⟩ (3.41)

for a number state |n⟩.

Exercise 3.4. The variance of a Hermitian operator Â is defined as〈
∆A2

〉
≡ ⟨ψ| Â2 |ψ⟩ −

(
⟨ψ| Â |ψ⟩

)2
. (3.42)

The uncertainty relation for the quadratures would then be given by〈
∆q2

〉 〈
∆p2

〉
≥ C, (3.43)

where C is a certain constant. Use the uncertainty relation you learned from quantum mechanics to find C.
Compute

〈
∆q2

〉
and

〈
∆p2

〉
for a number state |n⟩ and confirm that the uncertainty relation is satisfied.

Exercise 3.5. Define the Heisenberg picture of annihilation and creation operators as

â(t) ≡ Û †(t)âÛ(t), â†(t) ≡ Û †(t)â†Û(t), (3.44)

where Û is an arbitrary unitary operator (not necessarily that for a harmonic oscillator). Prove that the equal-time
commutation relation remains [

â(t), â†(t)
]
= Î . (3.45)

(This fact is important, as it means that, even if we change the Hamiltonian to model more complicated light-
matter interactions, this commutation relation must remain the same at all times in the Heisenberg picture. If
your calculation violates this relation somehow, it’s wrong.)

Exercise 3.6. Write the ket-bra form of â with respect to the number basis {|n⟩ : n = 0, 1, . . . }, i.e., write

â =

∞∑
n=0

∞∑
m=0

anm |n⟩ ⟨m| (3.46)

and find the matrix entries anm. Do the same for â†, q̂, and p̂.
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Exercise 3.7. Numerical exercise: The matrix representation of q̂ with respect to the number basis has infinite
entries. Approximate q̂ by the finite sum

q̂ ≈
N−1∑
n=0

N−1∑
m=0

qnm |n⟩ ⟨m| (3.47)

and find the eigenvalues of the right-hand side for N = 5, 10, 20, . . . using a numerical software. Are they all
real? How do they behave when you increase N?

Exercise 3.8. Define the q-quadrature wavefunction as

ψq(x) ≡ ⟨q = x|ψ⟩ (3.48)

and the p-quadrature wavefunction as

ψp(y) ≡ ⟨p = y|ψ⟩ . (3.49)

(1) Find the normalization conditions for the wavefunctions.
(2) Find the relation between the two wavefunctions.

3.2. Quantization of multiple normal modes

Now we take all the normal modes discussed in Chapter 2 and assume that each normal mode is a quantum
harmonic oscillator. Recall that each normal mode is labeled by j = (k, s), and we denote the Hilbert space
for the normal mode j as Hj . We set the Hilbert space for all the normal modes to be the tensor product (see
Sec. B.8) of all the individual Hj’s, in accordance with how multiple degrees of freedom are treated in quantum
mechanics.

Strictly speaking, we have an infinite number of normal modes, but I will assume for now that there are
only J normal modes so that the math looks less scary. To simplify the notation even more, I will denote the J
normal modes by j = 1, 2, . . . , J . When I write j = 1 I mean it’s the first normal mode, and when I write j = 2
I mean it’s the second normal mode, etc., and we don’t worry about the (k, s) properties of the modes for now.

We write the Hilbert space for the J harmonic oscillators as the tensor product

H = H1 ⊗H2 ⊗ · · · ⊗ HJ . (3.50)

The important property of this big Hilbert space is that it has an orthonormal basis constructed by the number
states for each Hj :

|n1, n2, . . . , nJ⟩ ≡ |n1⟩ ⊗ |n2⟩ ⊗ · · · ⊗ |nJ⟩ , each nj = 0, 1, 2, . . . (3.51)

In other words, |n1, n2, n3, . . .⟩ denotes the quantum state with n1 photons in mode 1, n2 photons in mode 2,
etc. Each state in H in general can be expressed as the superposition

|ψ⟩ =
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nJ=0

ψn1n2...nJ |n1, n2, . . . , nJ⟩ , (3.52)

ψn1n2...nJ = ⟨n1, n2, . . . , nJ |ψ⟩ . (3.53)

Note that each sum
∑∞

nj=0 is an infinite sum, and there are J such sums. The wavefunction ψn1...nJ now
depends on J photon-number variables (n1, . . . , nJ).

We can write the annihilation operator for mode j as âj . It is now defined by

âj |. . . , nj−1, 0, nj+1, . . .⟩ = 0, (3.54)
âj |. . . , nj−1, nj , nj+1, . . .⟩ =

√
nj |. . . , nj−1, nj − 1, nj+1 . . .⟩ . (3.55)

In other words, it acts on mode j in the same way as before, while leaving all the other modes alone. Mathe-
matically, âj is an abbreviation of

âj = Î1 ⊗ · · · ⊗ Îj−1 ⊗ â⊗ Îj+1 ⊗ · · · ⊗ ÎJ , (3.56)

where each Îj is the identity operator on mode j. The identity operators do nothing to all the other modes,
while â on the right-hand side acts on the Hilbert space Hj in the usual way.
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With âj , we can now define the creation operator â†j , the photon-number operator

n̂j ≡ â†j âj , (3.57)

and the quadrature operators

q̂j ≡
1√
2

(
âj + â†j

)
, p̂j ≡

1√
2i

(
âj − â†j

)
, (3.58)

all of which act on the jth mode only and do nothing on the other modes. The important commutation relations
are now given by

[âj , âl] = 0,
[
â†j , â

†
l

]
= 0,

[
âj , â

†
l

]
= δjl, (3.59)

[q̂j , q̂l] = 0, [p̂j , p̂l] = 0, [q̂j , p̂l] = iδjl. (3.60)

As before, we have [âj , â
†
j ] = 1 and [q̂j , p̂j ] = i for the same mode. The new feature here is that each operator

for a mode commutes with any operator for all the other modes, so, for example, [âj , â†l ] = 0 if j ̸= l. Again,
these definitions are pretty general for a quantum system with multiple degrees of freedom; what makes them
harmonic oscillators is the Hamiltonian:

Ĥ =

J∑
j=1

ℏωjn̂j =

J∑
j=1

ℏωj â
†
j âj , (3.61)

where ωj is the natural frequency of mode j. The Heisenberg-picture equation of motion for each mode is now
given by

Û(t) ≡ exp

(
− i

ℏ
Ĥt

)
,

dâj(t)

dt
= −iωj âj(t), âj(t) ≡ Û †(t)âjÛ(t) = âj exp(−iωjt), (3.62)

which agrees with the classical version.
If your whole world consists of EM fields only, then there’s nothing more you need to model it. A basic

quantum-optics experiment consists of preparing some state |ψ⟩ for the J normal modes at t = 0, let time pass,
and then measure the modes—the probability distribution of the outcomes follows Born’s rule. If you need
to refresh your memory, probability theory is reviewed in Appendix C and quantum mechanics is reviewed in
Appendix D.

Exercise 3.9. The vacuum state is defined as
|vac⟩ ≡ |0, 0, . . . , 0⟩ , (3.63)

i.e., no photon in all modes. Each number state can be written as

|n1, n2, . . . , nJ⟩ = Â |vac⟩ (3.64)

in terms of the vacuum state and a certain operator Â. Find Â.

3.3. Maxwell’s equations

We still have to show that the formalism is consistent with Maxwell’s equations, and the easiest way is to
assume that Ê(r, t) and B̂(r, t) are operators in the Heisenberg picture. We replace Eqs. (2.11) and (2.12) with

Ê(r, 0) =
∑
j

(
ℏωj

2ϵ0

)1/2[
iâjuj(r)− iâ†ju

∗
j (r)

]
, (3.65)

B̂(r, 0) =
∑
j

(
ℏ

2ϵ0ωj

)1/2

k ×
[
iâjuj(r)− iâ†ju

∗
j (r)

]
. (3.66)

where the complex amplitudeαj has been replaced by the annihilation operator iâj times (ℏωj/2ϵ0)
1/2, whileα∗

j

has been replaced by −iâ†j times the same constant. The extra i is a convention that is explained in Appendix E.
The factor (ℏωj/2ϵ0)

1/2 is introduced so that the energy of each mode computed from Ê and B̂ becomes
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ℏωj(â
†
j âj+1/2), to make it consistent with the Hamiltonian of a harmonic oscillator. These equations are often

abbreviated as

Ê(r, 0) =
∑
j

(
ℏωj

2ϵ0

)1/2

[iâjuj(r) + H.c.], (3.67)

B̂(r, 0) =
∑
j

(
ℏ

2ϵ0ωj

)1/2

k × [iâjuj(r) + H.c.], (3.68)

where H.c. denotes the Hermitian conjugate (i.e., adjoint) of the first term in the square brackets.

Remark 3.2. Beware that, on the right-hand side of Eqs. (3.67) and (3.68), âj (and â†j in the H.c.) are the only
quantities that are operators; the rest remain c-numbers. Keep in mind that

(1) The kets, the bras, and the operators (anything with a hat) are abstract quantities that we may call
Q-numbers. Examples include |ψ⟩, ⟨ψ|, âj , and â†j . They follow the abstract Hilbert-space theory
outlined in Appendix B.

(2) Anything else without a hat is called a c-number. Examples include r, t, k, ẽj , and uj(r). By
definition, a c-number commutes with any Q-number, i.e., we are free to exchange the order of a
Q-number and a c-number in a product.

(3) The divergence ∇·, the curl ∇×, and the time derivative ∂/∂t are applied to functions of r and t in
the usual sense. Do not confuse them with the abstract operators.

For example, âj in Eq. (3.67) is an abstract operator, and âjuj(r) is simply a product of the Q-number âj with
the c-number uj(r). If we want, we can write it as uj(r)âj because they commute, and âj is not an operator
acting on uj(r). Think of the Q-numbers as snobs that live in their own abstract world and play with themselves
only; they can pass through any c-number in a product.

Now that we have clarified the algebra, it is straightforward to show that the Heisenberg equations of motion
become

Ê(r, t) ≡ Û †(t)Ê(r, 0)Û(t) =
∑
j

(
ℏωj

2ϵ0

)1/2

[iâj exp(−iωjt)uj(r) + H.c.], (3.69)

B̂(r, t) ≡ Û †(t)B̂(r, 0)Û(t) =
∑
j

(
ℏ

2ϵ0ωj

)1/2

k × [iâj exp(−iωjt)uj(r) + H.c.]. (3.70)

These operators obey the same Maxwell equations given by Eqs. (2.6) for free space with no source. They
imply, for example, that, given an initial state |ψ⟩, the averages

⟨ψ| Ê(r, t) |ψ⟩ , ⟨ψ| B̂(r, t) |ψ⟩ (3.71)

obey Maxwell equations, so classical EM holds on average (you are asked to show this in Exercise 3.10). The
average of a Heisenberg-picture annihilation operator

⟨ψ| âj exp(−iωjt) |ψ⟩ (3.72)

is the average complex amplitude of mode j as it oscillates in time, and

⟨ψ| ℏωj â
†
j âj |ψ⟩ (3.73)

is the average energy in mode j. In general, we should treat the EM variables that we measure as random
variables, the probabilistic properties of which come from the quantum theory.

Exercise 3.10.

(1) Derive Eqs. (3.69) and (3.70) from Eqs. (3.67) and (3.68).
(2) Show that Ê(r, t) and B̂(r, t) obey Eqs. (2.6).
(3) Show that ⟨ψ| Ê(r, t) |ψ⟩ and ⟨ψ| B̂(r, t) |ψ⟩ obey Eqs. (2.6).

Hint: The Q-numbers âj , â†j , |ψ⟩, and ⟨ψ| do not depend on the position vector r, while ∇· and ∇× are
applied to functions of r.
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3.4. Continuum of modes

So far we’ve assumed EM fields inside a box and periodic boundary conditions. This assumption is a bit
artificial, and to model EM fields in infinite space, i.e., (x, y, z) ∈ R3, we should take the L→ ∞ limit. There
are two ways of doing it: stick with the box formalism and take the L→ ∞ limit at the end of a calculation, or
take the limit for the box formalism before starting a calculation. We will discuss the second approach in this
section.

The first thing to note is that the wavevector no longer takes discrete values as per Eq. (2.19); with L→ ∞,
k = kxx̃+ kyỹ + kzz̃ can now be an arbitrary vector, and Eq. (2.19) becomes

(kx, ky, kz) ∈ R3. (3.74)

In other words, we no longer have a discrete set of modes; we say that we have a continuum of modes.
Recall that the sum

∑
j =

∑
k

∑
s is over the discrete set of wavevectors and the two polarizations

s ∈ {1, 2}. With (kx, ky, kz) ∈ R3,
∑

k =
∑

kx

∑
ky

∑
kz

is not really well defined, but we can turn it into an
integral. To do so, we

(1) define

∆k ≡ 2π

L
, (3.75)

which is the spacing between adjacent values of kx, ky, kz ,
(2) define a scaled annihilation operator as

â(k, s) ≡ 1

∆k3/2
âj , (3.76)

(3) rewrite the mode function uj(r) given by Eq. (2.13) as

uj(r) =
1

(2π)3/2

(
2π

L

)3/2

ẽk,s exp(ik · r) = 1

(2π)3/2
∆k3/2ẽ(k, s) exp(ik · r). (3.77)

Then we can rewrite the electric field given by Eq. (3.67) as

Ê(r, 0) =
1

(2π)3/2

∑
kx,ky ,kz

∑
s

(
ℏωj

2ϵ0

)1/2

[iâ(k, s)ẽ(k, s) exp(ik · r) + H.c.] (∆k)3. (3.78)

Now we take the L→ ∞ limit, which is the same as the ∆k → 0 limit, and the triple sum
∑

kx,ky ,kz
(. . . )(∆k)3

is a Riemann sum that becomes the triple integral:

Ê(r, 0) =
1

(2π)3/2

∑
s

˚ (
ℏωk

2ϵ0

)1/2

[iâ(k, s)ẽk,s exp(ik · r) + H.c.]d3k, (3.79)

ωk = c|k|, (3.80)˚
(. . . )d3k ≡

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
(. . . )dkxdkydkz. (3.81)

The important new feature is that the new annihilation operator defined by Eq. (3.76) is now a function of
continuous variables (kx, ky, kz) ∈ R3 and obeys the commutation relation[

â(k, s), â†(k′, s′)
]
=

1

(∆k)3
δjj′ → δ3(k − k′)δss′ , (3.82)

where δ3 is the three-dimensional Dirac delta function given by

δ3(k − k′) ≡ δ(kx − k′x)δ(ky − k′y)δ(kz − k′z). (3.83)

The magnetic field given by Eq. (3.68) likewise becomes

B̂(r, 0) =
1

(2π)3/2

∑
s

˚ (
ℏ

2ϵ0ωk

)1/2

k × [iâ(k, s)ẽk,s exp(ik · r) + H.c.]d3k. (3.84)
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In the Heisenberg picture,

â(k, s, t) ≡ Û †(t)â(k, s)Û(t) = â(k, s) exp(−iωkt), (3.85)

and the EM fields become

Ê(r, t) =
1

(2π)3/2

∑
s

˚ (
ℏωk

2ϵ0

)1/2

[iâ(k, s)ẽk,s exp(ik · r − iωkt) + H.c.]d3k, (3.86)

B̂(r, t) =
1

(2π)3/2

∑
s

˚ (
ℏ

2ϵ0ωk

)1/2

k × [iâ(k, s)ẽk,s exp(ik · r − iωkt) + H.c.]d3k, (3.87)

which obey the free-space source-free Maxwell’s equations, just as before.
We have succeeded in taking the L → ∞ limit by using calculus. Instead of assuming a discrete set of

modes, we now have a continuum of modes, where k is a vectoral continuous variable, while the polarization
labeled by s remains discrete. Instead of a sum

∑
j over the discrete set, we now have

∑
s

˝
(. . . )d3k,

and instead of the Kronecker delta δjl, we now use δ3(k − k′)δss′ . We no longer need to refer to a box; L
has disappeared completely from the equations. The price to pay is that the new annihilation and creation
operators now obey a fancier commutation relation given by Eq. (3.82), and we don’t have the simple picture
of a discrete set of harmonic oscillators anymore. For example, â†(k, s)â(k, s) is not a photon number exactly
but a photon-number density, and we get a photon-number operator only if we integrate it in k-space like this:

n̂(V, s) =
˚

V
â†(k, s)â(k, s)d3k, (3.88)

which corresponds to the total photon number in all the modes with wavevector k inside a k-space volume V .
The Hilbert space in the continuum case also becomes very difficult to write down, unlike the discrete case
where we have the number states {|n1, . . . , nJ⟩} as an orthonormal basis. We will have to wait until Sec. 5.6
to show how.

3.5. Transformation of modes

Recall that the normal modes are sinusoidal waves. The EM fields of a sinusoidal wave remain nonzero
even if we go to the ends of the universe (x → ±∞ or y → ±∞ or z → ±∞), so a sinusoidal wave by itself
is actually not a physical solution to Maxwell’s; it is, at best, an approximation. It is thus often convenient in
optics to use a different set of modes that are a bit closer to reality.

The math is simpler if we assume a discrete set of modes, so let’s come back to the box formalism. The
standard way of defining a different set of modes is to express the normal-mode annihilation operators {âj} in
terms of a new set of annihilation operators {b̂l} as

âj =
∑
l

Wjlb̂l, (3.89)

where W is a unitary matrix with complex-number entries. To see a physical meaning of Eq. (3.89), plug it in
Eq. (3.67) to obtain

Ê(r, 0) =
∑
j

(
ℏωj

2ϵ0

)1/2
[
i
∑
l

Wjlb̂luj(r) + H.c.

]
=

(
ℏ
2ϵ0

)1/2∑
l

[
ib̂lvl(r) + H.c.

]
, (3.90)

where I have defined a new mode function vl(r) as

vl(r) ≡
∑
j

ω
1/2
j Wjluj(r) ∝

∑
k,s

ω
1/2
k W(k,s)lẽk,s exp(ik · r), (3.91)

which is a superposition of sinusoidal waves. Each b̂l is the annihilation operator of a new optical mode with
mode function vl(r). In particular, the average ⟨ψ| b̂l |ψ⟩ determines the average complex amplitude in front of
vl(r) in the average electric field ⟨ψ| Ê(r, 0) |ψ⟩.

Wjl as a function of j = (k, s) determines the weight of each sinusoidal wave in the expansion of vl(r)
given by Eq. (3.91), which resembles a Fourier series. We call Wjl the (k, s)-space amplitude of the new
mode l.
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This method is consistent with how we define modes in classical optics, where we define an optical mode
as a superposition of sinusoidal waves.

Because W is unitary, Eq. (3.89) implies[
b̂l, b̂m

]
= 0,

[
b̂l, b̂

†
m

]
= δlm, (3.92)

so these operators behave the same way as the standard annihilation/creation operators for harmonic oscillators,
and we can also think of the new modes as a set of oscillators. The new feature of these new modes is that they
may not be normal modes any more. To compute the Heisenberg picture of b̂l, first write each b̂l in terms of
the normal-mode {âj} as

b̂l =
∑
j

(W−1)lj âj =
∑
j

W ∗
jlâj , (3.93)

where the last step uses the fact that W is unitary so W−1 = W † and (W †)lj = W ∗
jl. Then the Heisenberg

picture is

b̂l(t) ≡ Û †(t)b̂lÛ(t) =
∑
j

W ∗
jlÛ

†(t)âjÛ(t) =
∑
j

W ∗
jlâj exp(−iωjt) (3.94)

=
∑
j

W ∗
jl

[∑
m

Wjmb̂m

]
exp(−iωjt) =

∑
m

Vlm(t)b̂m, (3.95)

Vlm(t) ≡
∑
j

W ∗
jlWjm exp(−iωjt). (3.96)

We see that the Heisenberg equations of motion for the new modes are coupled (except in special cases), so we
should consider the new set of modes as coupled oscillators.

Remark 3.3. Beware that † on a c-number matrix, such as W here, means the conjugate transpose, so that

(W †)lj =W ∗
jl, (3.97)

where ∗ denotes the entry-wise conjugate. On the other hand, † on an abstract operator, such as â, means the
adjoint; see Appendix B. We use the same symbol † to denote the two different operations depending on the
context, but there should be no ambiguity because here we always put hats on operators and resort to the index
notation for matrices when clarity is needed. For example, the adjoint of Eq. (3.89) is given by

â†j =

(∑
l

Wjlb̂l

)†

=
∑
l

(Wjlb̂l)
† =

∑
l

W ∗
jlb̂

†
l , (3.98)

where we need to take the conjugate of each c-number Wjl to pull it out of the adjoint.

Exercise 3.11. Verify Eqs. (3.92), given Eq. (3.89) and the fact that W is a unitary matrix.

Exercise 3.12. Show that ∑
l

b̂†l b̂l =
∑
j

â†j âj . (3.99)

This equation says that the total photon number is conserved regardless of the mode set.

Exercise 3.13. Rewrite the Hamiltonian in terms of {b̂l} and {b̂†l }. Rederive Eqs. (3.95) and (3.96) from this
Hamiltonian.

3.5.1. Example: two polarization modes. For a simple concrete example, let’s look at two normal modes
with the same k = kz̃, with s = 1, 2. These are sinusoidal plane waves propagating in the z̃ direction with two
polarizations. Suppose that

ẽk,1 = x̃, ẽk,2 = ỹ, (3.100)
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so the first mode is x̃-polarized, and the second mode is ỹ-polarized. Write the annihilation operators for these
two modes as â1 and â2, respectively. We can define an alternative set of polarization modes by assuming

W =
1√
2

(
1 1
1 −1

)
=W †, b̂1 =

1√
2
(â1 + â2), b̂2 =

1√
2
(â1 − â2). (3.101)

The mode function for the first new mode with annihilation operator b̂1 becomes

v1(r) ∝
∑
j

Wj1uj(r) =W11u1(r) +W21u2(r) (3.102)

∝ 1√
2
ẽk,1 exp(ik · r) + 1√

2
ẽk,2 exp(ik · r) = 1√

2
(x̃+ ỹ) exp(ikzz), (3.103)

which is also linearly polarized, with a new polarization vector 1√
2
(x̃+ ỹ). Similarly,

v1(r) =
∑
j

Wj2uj(r) =W12u1(r) +W22u2(r) (3.104)

∝ 1√
2
(x̃− ỹ) exp(ikzz). (3.105)

Thus, we have obtained a new set of linear polarization modes with polarization vectors 1√
2
(x̃+ ỹ) and

1√
2
(x̃− ỹ), as illustrated by Fig. 3.1.

Figure 3.1. Given one wavevector k = kz̃ and two polarization modes with polarization
vectors ẽk,1 = x̃ and ẽk,2 = ỹ, one can define an alternative set of polarization modes with
polarization vectors (x̃+ ỹ)/

√
2 and (x̃− ỹ)/

√
2.

This example demonstrates the fundamental fact that there is a lot of freedom in choosing the polarization
vectors of the two polarization modes. Using the unitary W matrix, we are free to redefine the polarization
modes with polarization vectors that are convenient for a given problem.

Exercise 3.14. If

W =
1√
2

(
1 1
i −i

)
, (3.106)

what are the new polarizations?

Exercise 3.15. Suppose that two polarization modes have the same k = kz̃ and polarization vectors
ẽk,1 = x̃, ẽk,2 = ỹ. (3.107)

Let their annihilation operators be â1 and â2, respectively. If we would like to define two new polarization
modes with the same k but with polarizations

ẽk,1 = (cos θ)x̃+ (sin θ)ỹ, ẽk,2 = (− sin θ)x̃+ (cos θ)ỹ, (3.108)

find the annihilation operators b̂1 and b̂2 for the new modes in terms of â1 and â2.

Exercise 3.16. If two polarization modes have the same k and two new polarization modes are defined using
the formalism in Sec. 3.5.1 with an arbitrary unitary 2× 2 matrix W , show that the new modes remain normal
modes.
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3.5.2. Example: pulse mode. For another example, we focus on the mode function vl(r) for a specific
new mode l and choose Wjl to be nonzero only for j = (k, s) with kx = 0, ky = 0, and s = 1. Then vl(r)
is a superposition of sinusoidal waves with the same polarization and all propagating in the z̃ direction, since
k = kzz̃. Assume that s = 1 is the polarization with ẽkz z̃,1 = x̃, and we know that ω1/2

j =
√
c|k| =

√
c|kz|.

Then we can write

Wjl = δs1δkx0δky0wl(kz), (3.109)

where wl(kz) is some function of kz , and the mode function becomes

vl(r) ∝ x̃
∑
kz

√
c|kz|wl(kz) exp(ikzz). (3.110)

The sum
∑

k,s =
∑

kx

∑
ky

∑
kz

∑
s has been simplified to a single sum

∑
kz

, which is a simple Fourier series,
and in the L→ ∞ limit it is an inverse Fourier transform. For example, suppose that wl(kz) looks like

wl(kz) ∝ rect

(
kz − k0
κ

)
exp(−ikzzl), rectX ≡

{
1, |X| ≤ 1/2,

0, |X| > 1/2,
(3.111)

where κ, k0, zl are all real numbers. In other words, wl(kz) is a rectangle with center at kz = k0 and width
equal to κ, multiplied by a phase factor exp(−ikzzl) with a certain constant zl that depends on the mode index
l. If

κ≪ k0, (3.112)

then wl(kz) is a very sharp function centered at kz = k0, and we may approximate√
c|kz|wl(kz) ≈

√
c|k0|wl(kz). (3.113)

By the inverse Fourier transform of a rectangle function, the mode function in real space would look like

vl(r) ∝ x̃ sinc
[ κ
2π

(z − zl)
]
exp[ik0(z − zl)], sincX ≡ sin(πX)

πX
. (3.114)

This function in real space is localized along z with center at z = zl and width ∝ 1/κ—a simple model for an
optical pulse, also called a wavepacket sometimes. See Fig. 3.2 for plots of the rect and sinc functions. The
phase factor exp[ik0(z − zl)] models the fact that an optical pulse has rapid oscillations along the z direction
under the sinc envelope.

Figure 3.2. Functions with rect and sinc envelopes.

In general, we don’t have to use the rectangle function for the (k, s)-space amplitude. The important point
of this example is that the (k, s)-space amplitude Wjl determines the electric field of a new mode through a
Fourier series.

Side note. Eq. (3.112) comes from the slowly-varying envelope approximation commonly made in optics, when
there are many oscillations under the envelope, i.e., exp(ik0z) oscillates rapidly and sinc[ κ

2π (z−zl)] is relatively
slowly varying along z.
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Exercise 3.17. Assume the continuum-mode formalism in Sec. 3.4. Define new mode annihilation operators as

b̂l =
∑
s

˚
W ∗

l (k, s)â(k, s)d
3k, (3.115)

where each Wl(k, s) is a (k, s)-space amplitude of the mode, generalizing Wjl in the discrete case.
(1) Find the condition on the functions {Wl(k, s)} such that {b̂l} obey the commutation relation given by

Eq. (3.92). Prove that ∑
s

˚
W ∗

l (k, s)Wm(k, s)d3k = δlm. (3.116)

(2) Let

Wl(k, s) = δs1X(kx)Y (ky)Zl(kz), (3.117)

Zl(kz) = C rect

(
kz − k0
κ

)
exp(−ikzzl), (3.118)

where X(kx) and Y (ky) are some functions that satisfyˆ ∞

−∞
|X(kx)|2dkx = 1,

ˆ ∞

−∞
|Y (ky)|2dky = 1. (3.119)

Find the positive real constant C.
(3) Show that, if

zl = z0 +
2π

κ
l, (3.120)

where l is an integer, then Eq. (3.116) is satisfied.
(4) Define

Â(r, s) ≡ 1

(2π)3/2

˚
exp(ik · r)â(k, s)d3k. (3.121)

(5) Find â(k, s) in terms of Â(r, s).
(6) Find [Â(r, s), Â†(r′, s′)].
(7) Let

b̂l =
∑
s

˚
W̃ ∗

l (r, s)Â(r, s)d
3r. (3.122)

Find the relation between W̃l and the Wl in Eq. (3.115). Prove that∑
s

˚
W̃ ∗

l (r, s)W̃m(r, s)d3r = δlm. (3.123)

(8) Given Eqs. (3.117) and (3.118), find W̃l(r, s).
(This exercise gives a precise definition of pulse modes in the continuum formalism, without all the ≈ signs

and unknown constants. The definition in terms of Â(r, s) shows that one can just as well define modes using
amplitude functions {W̃l(r, s)} in real space.)

3.5.3. Decomposition of Hilbert space in terms of the new modes. Once we have a new set of modes
with annihilation operators {b̂1, b̂2, . . . }, we can define a new orthonormal basis of the Hilbert space. A number
state with respect to the new set of modes is defined as

|b : n1, . . . , nJ⟩ ≡
(b̂†1)

n1

√
n1!

. . .
(b̂†J)

nJ

√
nJ !

|vac⟩ , each nl = 0, 1, 2, . . . , (3.124)

where b : in the ket emphasizes that it is defined in terms of the b̂ operators. Physically, |b : n1, . . . , nJ⟩
represents a quantum state with n1 photons in the first new mode, n2 photons in the second new mode, etc.
Exercise 3.18 asks you to prove that this set is also an orthonormal basis of the multimode Hilbert space.
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(Note that the orthonormality of the basis relies on the standard commutation relations given by Eqs. (3.92),
which follow from our assumption that the W matrix is unitary. This section wouldn’t work at all if W weren’t
unitary!)

We learned earlier in Sec. 3.2 that the multimode Hilbert space H is constructed from a tensor product of
Hilbert spaces H1 ⊗ · · · ⊗ HJ of the normal modes. It turns out that we can just as well regard the multimode
Hilbert space as a tensor product of Hilbert spaces {H′

l} in terms of the new modes. The mathematical procedure
is as follows:

(1) Let H′
l be a Hilbert space for one new mode labeled by l, with an orthonormal basis denoted as

{|bl : n⟩ : n ∈ {0, 1, 2, . . . }}. An annihilation operator b̂ for this mode is defined in the usual way by

b̂ |bl : n⟩ =
√
n |bl : n− 1⟩ . (3.125)

(2) Associate each |b : n1, . . . , nJ⟩ state in the multimode Hilbert space H with a product state in H′
1 ⊗

· · · ⊗ H′
J like this:

|b : n1, . . . , nJ⟩ = |b1 : n1⟩ ⊗ |b2 : n2⟩ ⊗ · · · ⊗ |bJ : nJ⟩ . (3.126)

This association is just like Eq. (3.51): it gives a one-to-one mapping between each |b : n1, . . . , nJ⟩ ∈
H and a product state |b1 : n1⟩⊗ · · · ⊗ |bJ : nJ⟩ ∈ H′

1⊗ · · · ⊗H′
J . The one-to-one mapping between

the two orthonormal bases implies that the two Hilbert spaces are isomorphic, and we write
H = H′

1 ⊗H′
2 ⊗ · · · ⊗ H′

J . (3.127)
(Isomorphic is just a fancy word to say they are the same thing; see Sec. B.9 for a precise definition.)

(3) Since each b̂l acts on one new mode only and does nothing to all the other modes, i.e.,

b̂l |b : . . . , nl, . . .⟩ =
√
nl |b : . . . , nl − 1, . . .⟩ , (3.128)

we can associate each b̂l on the multimode Hilbert space H with a single-mode annihilation operator
b̂ on H′

l as follows:

b̂l = Î ′1 ⊗ · · · ⊗ Î ′l−1 ⊗ b̂⊗ Î ′l+1 ⊗ · · · ⊗ Î ′J , (3.129)

just like Eq. (3.56), where each Î ′l is the identity operator on H′
l.

Physically, the modes are the degrees of freedom for EM, and this section says that we are free to choose any
set of modes as the degrees of freedom as long as Eq. (3.89) holds with a unitary W as we change from one
set to another. We can define a new tensor-product decomposition H′

1 ⊗ · · · ⊗ H′
J for the multimode Hilbert

space, such that the new operators {b̂l} act on the new decomposition H′
1 ⊗ · · · ⊗ H′

J in the same way as the
old operators {âj} act on the original decomposition H1 ⊗ · · · ⊗ HJ . Normal modes are special only because
the Hamiltonian in terms of them is simple.

I stress that there is nothing mysterious about changing the degrees of freedom; we do that all the time
in classical physics. For example, consider a particle with Cartesian position coordinates (x, y) ∈ R2 in 2D.
We may change the coordinates to, say, u = (x + y)/

√
2 and v = (x − y)/

√
2, which are Cartesian position

coordinates in their own right. A preferred alignment of the coordinate system emerges only if we consider the
dynamics, e.g., a force may act on the particle in the (x̃+ ỹ)/

√
2 direction, in which case (u, v) are convenient.

For a 2D quantum particle, we have two position operators x̂ and ŷ on a tensor-product Hilbert space
H = H1⊗H2, and the change of our Cartesian coordinate system mentioned earlier would lead to new position
operators û = (x̂ + ŷ)/

√
2 and v̂ = (x̂ − ŷ)/

√
2. The physics can’t care less how we define our Cartesian

coordinate system, so the Hilbert space H should remain the same, while there should exist a new decomposition
of H as H′

1 ⊗H′
2 such that û and v̂ act on them the same way x̂ and ŷ act on H1 ⊗H2.

The transformation of EM modes follows the same principle; we just have a lot more of them.

Exercise 3.18.

(1) Prove that the set
{|b : n1, . . . , nJ⟩ : each nl = 0, 1, 2, . . . } (3.130)

is orthonormal, i.e., they obey
⟨b : m1, . . . ,mJ |b : n1, . . . , nJ⟩ = δm1n1δm2n2 . . . δmJnJ . (3.131)



3.5. TRANSFORMATION OF MODES 29

(2) Prove that Eq. (3.130) is also a basis of the Hilbert space H, meaning that any |ψ⟩ ∈ H can be
expressed as a linear combination of the set, i.e., for any |ψ⟩ ∈ H, there exists a wavefunction Ψn1...nj

such that
|ψ⟩ =

∑
n1,...,nJ

Ψn1...nj |b : n1, . . . , nJ⟩ . (3.132)

Exercise 3.19. Suppose that there are just two polarization modes, and follow Sec. 3.5.1. Let

|a : n1, n2⟩ ≡
â†n1
1√
n1!

â†n2
2√
n2!

|vac⟩ . (3.133)

Assume that W is given by Eq. (3.101).
(1) Write each |b : n1, n2⟩ in terms of {|a : n1, n2⟩}, for total photon number n1 + n2 up to 2.
(2) Write each |a : n1, n2⟩ in terms of {|b : n1, n2⟩} for total photon number up to 2.
(3) Repeat (1) and (2) if W is given by Eq. (3.106).

Exercise 3.20. The most general way of defining new modes is to take the new mode annihilation operators {b̂l}
to be

b̂l = Û †âlÛ , l = 1, . . . , J, (3.134)

where Û is a unitary operator that doesn’t depend on l.
(1) Show that the new annihilation operators {b̂l} still obey Eqs. (3.92).
(2) The new vacuum state |vac′⟩ is defined by

b̂l
∣∣vac′

〉
= 0 ∀l. (3.135)

Find a relation between |vac′⟩, Û , and the old |vac⟩.
(3) The new number states are defined by

|b : n1, . . . , nJ⟩ ≡
b̂†n1
1 . . . b̂†nJ

J√
n1! . . . nJ !

∣∣vac′
〉
. (3.136)

Show that they are an orthonormal basis.
(4) Find a unitary operator Û such that we retrieve the transformation given by Eq. (3.89) as a special

case. (This problem requires Chapter 6.)
(5) The so-called Bogoliubov transformation gives

b̂l =
∑
j

(
Clj âj + Slj â

†
j

)
. (3.137)

Find the conditions on theC andS matrices so that the new annihilation operators still obey Eqs. (3.92).
(6) Find a unitary operator Û that gives the Bogoliubov transformation.
(7) Find âj in terms of {b̂l} for the Bogoliubov transformation.



CHAPTER 4

Single-Mode States

There are three fundamental ingredients of quantum mechanics/quantum optics:
(1) The initial state modeled by |ψ⟩ or the density operator ρ̂ (see Sec. D.6).
(2) The dynamics governed by the Hamiltonian Ĥ .
(3) The measurement.

This chapter and the next will study some common quantum states assumed in quantum optics. To be gentle,
this chapter considers only one EM mode, which may be a normal mode or a general mode in the sense of
Sec. 3.5. We will follow the notation of Sec. 3.1, i.e., the annihilation operator is â, the creation operator is â†,
the number operator is n̂ = â†â, the q-quadrature operator is q̂ ≡ (â+ â†)/

√
2, and the p-quadrature operator

is p̂ ≡ (â− â†)/(
√
2i).

4.1. Number states

The number states |n⟩, n ∈ {0, 1, 2, . . . } have been discussed in Sec. 3.1. The set of all number states
{|n⟩ : n ∈ {0, 1, 2, . . . }} is an orthonormal basis of the single-mode Hilbert space, i.e., they are orthonormal
(⟨m|n⟩ = δnm) and complete (Î =

∑
n |n⟩ ⟨n|). We also know that each |n⟩ is an eigenstate of the photon-

number operator n̂ ≡ â†â with eigenvalue n (n̂ |n⟩ = n |n⟩). |0⟩, in particular, is called the vacuum state. We
use a letter n or m to denote a number state |n⟩ usually. It is also called a Fock state sometimes.

Recall that |q = x⟩ is an eigenstate of the q-quadrature operator q̂ ≡ (â+ â†)/
√
2 with eigenvalue x. The

q-quadrature wavefunction of each number state turns out to be

⟨q = x|n⟩ = 1√
2nn!π1/4

Hn(x) exp

(
−x

2

2

)
, (4.1)

which is a Hermite-Gaussian function and Hn is the Hermite polynomial of degree n (https://en.wikiped
ia.org/wiki/Hermite_polynomials), as is well known from kindergarten quantum mechanics.

The problem with number states is that it is extremely difficult to observe or prepare them in a real experiment
and they are just a terrible model of the quantum state of light from any common light source (sun, stars, LEDs,
lasers, etc.). For example, if we measure the photon number in an optical mode generated by a common
light source, we would always find a random outcome following some probability distribution, e.g., Poisson or
exponential. The result of measuring the photon number of a number state |n⟩, on the other hand, will always
be deterministic and exactly equal to n.

Another problem is that a number state always gives zero mean fields, so it is difficult to reproduce classical
EM with number states. From Exercise 3.3, you should have found that ⟨n| q̂ |n⟩ = 0 and ⟨n| p̂ |n⟩ = 0. These
results would mean that ⟨n| â |n⟩ = 0 and ⟨n| â† |n⟩ = 0, and the average EM fields for the optical mode
⟨n| Ê |n⟩ and ⟨n| B̂ |n⟩ would also be zero.

Exercise 4.1. Assume a number state |n⟩.
(1) Find the probability distribution of the photon number n̂.
(2) Find the probability density of q̂.
(3) Find the probability density of p̂.

(The probability distribution of an observable Â is defined as the probability distribution of the outcome if
a von Neumann measurement of Â is performed; see Appendix D for a quick review.)

4.2. Coherent states

To make quantum optics agree with classical EM, the simplest quantum state one can assume is a coherent
state. It is commonly denoted by |α⟩ with a greek letter α or β, where α ∈ C is a complex parameter that
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determines all the properties of the state. We call α the amplitude of the coherent state. In terms of the number
states {|n⟩ : n = 0, 1, 2, . . . }, it is defined as

|α⟩ ≡ exp

(
−|α|2

2

) ∞∑
n=0

αn

√
n!

|n⟩ . (4.2)

An interesting and useful property of a coherent state is that it is an eigenstate of the annihilation operator â and
the eigenvalue is α:

â |α⟩ = α |α⟩ . (4.3)

Conversely, any eigenstate of â is a coherent state with amplitude equal to the eigenvalue. Since â is not a
Hermitian operator, a von Neumann measurement of â is undefined, but we can measure the quadratures, and
the expected values of q̂ and p̂ are given by

⟨q⟩ ≡ ⟨α| q̂ |α⟩ = 1√
2
(α+ α∗) =

√
2Reα, (4.4)

⟨p⟩ ≡ ⟨α| p̂ |α⟩ = 1√
2i
(α− α∗) =

√
2 Imα. (4.5)

These relations are reminiscent of the relation between the quadratures and the complex amplitude for an optical
mode in classical optics, as discussed in Chapter 2, except that here the relations hold for the expected values
of q̂ and p̂. Unlike a number state, we can get any values of ⟨q⟩ and ⟨p⟩ for a coherent state by choosing its
complex paramater α. By assuming a coherent state for each mode (|α⟩ =

⊗
j |αj⟩), we can get back classical

EM if we look at the mean fields ⟨α| Ê |α⟩ and ⟨α| B̂ |α⟩.

Side note. The coherent states were first proposed by Schrödinger, but the importance of coherent states to
quantum optics was first recognized by Glauber, who won a Nobel prize for that insight.

An important feature of quantum mechanics is that a measurement outcome is random usually, so we
shouldn’t just look at its mean, we should study the probability distribution as well. A nice property of coherent
states is that it gives simple probability distributions for common measurements.

(1) The probability distribution of the photon number n̂ is given by

|⟨n|α⟩|2 = exp
(
−|α|2

) |α|2n
n!

, (4.6)

which is a Poisson distribution with mean number |α|2. See the top row of Fig. 4.1 for some plots.
(2) The probability density of the q-quadrature operator q̂ is

|⟨q = x|α⟩|2 = 1√
π
exp

[
−
(
x−

√
2Reα

)2]
, (4.7)

which is a Gaussian probability density with mean
√
2Reα and variance 1/2 (see Sec. C.6 for a

quick review).
(3) Similarly, the probability density of the p-quadrature operator p̂ is

|⟨p = y|α⟩|2 = 1√
π
exp

[
−
(
y −

√
2 Imα

)2]
. (4.8)

We can no longer think of a quantum coherent state as just a single point in phase space in the classical picture
(Fig. 2.3). There are uncertainties in both quadratures if we measure them.

The Poissonian or Gaussian noise modeled by these probability distributions for a coherent state is commonly
called the quantum shot noise.

Exercise 4.2. Verify that Eq. (4.2) is normalized, i.e., ⟨α|α⟩ = 1.

Exercise 4.3.
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(1) Show that a coherent state |α⟩ with α = 0 is identical to the vacuum state |n⟩ with n = 0, so no
confusion arises if we write |0⟩.

(|q = 0⟩ and |p = 0⟩, on the other hand, are different, so we need the notation q = and p = to be
clear.)

(2) Find the photon-number distribution | ⟨n|α⟩ |2 and show that, as α → 0, it is the same as the photon-
number distribution | ⟨n|0⟩ |2 for the vacuum state.

Exercise 4.4. Verify Eqs. (4.3)–(4.5).

Exercise 4.5. Derive Eq. (4.2) from Eq. (4.3). This means that Eq. (4.3) can also be used as a definition of a
coherent state.

Exercise 4.6. Find the variance of the photon number if the probability distribution is given by Eq. (4.6).

Exercise 4.7. Compute the variances〈
∆q2

〉
≡ ⟨α| q̂2 |α⟩ − (⟨α| q̂ |α⟩)2,

〈
∆p2

〉
≡ ⟨α| p̂2 |α⟩ − (⟨α| p̂ |α⟩)2 (4.9)

directly, without using Eqs. (4.7) and (4.8). Your answers should agree with the variances of the probability
densities given by Eqs. (4.7) and (4.8). Show that the variances obey the uncertainty relation〈

∆q2
〉 〈

∆p2
〉
≥ C, (4.10)

where C is a constant you should derive.

Exercise 4.8. Let the fractional variance of an observable be
〈
∆O2

〉
/ ⟨O⟩2. Compute the fractional variance

of n̂, q̂, and p̂ for a coherent state |α⟩ and show that it approaches 0 as Reα → ∞ and Imα → ∞, i.e., the
observables are increasingly deterministic for large α. (We get back classical EM with no noise in this limit.)

Exercise 4.9. A quantum covariance of two observables Â and B̂ can be defined as

COV(Â, B̂) ≡ ⟨ψ| Â ◦ B̂ |ψ⟩ −
(
⟨ψ| Â |ψ⟩

)(
⟨ψ| B̂ |ψ⟩

)
, (4.11)

where ◦ is called the Jordan product, defined as

Â ◦ B̂ ≡ 1

2

(
ÂB̂ + B̂Â

)
. (4.12)

Compute COV(q̂, p̂) for a coherent state |α⟩.

Exercise 4.10. Compute the expected value of the photon number

⟨n⟩ ≡ ⟨α| n̂ |α⟩ (4.13)

for a coherent state and the variance, defined as〈
∆n2

〉
≡ ⟨α| n̂2 |α⟩ − (⟨α| n̂ |α⟩)2. (4.14)

Answer: for the variance, you should obtain 〈
∆n2

〉
= ⟨n⟩ . (4.15)

Exercise 4.11. Given two coherent states |α⟩ and |β⟩, compute ⟨α|β⟩.

Exercise 4.12. Show

Î =
1

π

¨
|α⟩ ⟨α| d2α, d2α ≡ (dReα)(d Imα). (4.16)

d2αmeans that we treat any function of α as a function of two real variables: Reα and Imα, and the integration
is over the 2D complex plane.

(This identity means that any state can be expressed as a linear combination of coherent states given by

|ψ⟩ = Î |ψ⟩ = 1

π

¨
|α⟩ ⟨α|ψ⟩ d2α, (4.17)

so {|α⟩ : α ∈ C} is a complete vector set of the Hilbert space, even though the elements are not orthogonal to
each other.)
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Exercise 4.13. Let the Hamiltonian be the harmonic-oscillator Hamiltonian
Ĥ = ℏωâ†â. (4.18)

If the initial state is a coherent state |α⟩, find the state in the Schrödinger picture after time t, i.e., compute

exp

(
− i

ℏ
Ĥt

)
|α⟩ . (4.19)

4.3. Displacement operator

There’s a lovely way of writing the coherent state in terms of the so-called displacement operator D̂(α) and
the vacuum state |0⟩:

|α⟩ = D̂(α) |0⟩ , (4.20)

D̂(α) ≡ exp
(
αâ† − α∗â

)
. (4.21)

The displacement operator is very useful in itself. You should convince yourself that D̂(α) is unitary, and

D̂†(α) = D̂(−α). (4.22)
It is called a displacement operator mainly because of what it does to â in the Heisenberg picture:

D̂†(α)âD̂(α) = â+ α. (4.23)
Then it’s easy to show

D̂†(α)q̂D̂(α) = q̂ +
√
2Reα, (4.24)

D̂†(α)p̂D̂(α) = p̂+
√
2 Imα. (4.25)

In other words, the displacement operator is a special unitary that displaces the quadrature operators in the
Heisenberg picture by c-numbers, depending on the α parameter. Another useful property is

D̂(α)D̂(β) = ei Im(β∗α)D̂(α+ β). (4.26)

The exponential factor ei Im(β∗α) is an unimportant c-number phase factor that won’t show up in the Heisenberg
picture, i.e.,

D̂†(α)D̂†(β)ÂD̂(β)D̂(α) = D̂†(α+ β)ÂD̂(α+ β), (4.27)
so the total effect of two displacements is the same as the effect of one net displacement.

We will see throughout this book that the displacement operator is very handy when doing math concerning
a coherent state.

Exercise 4.14. Show that D̂(α) is unitary. Verify Eq. (4.22).

Exercise 4.15. Use the Baker-Campbell-Hausdorff (BCH) formula (https://en.wikipedia.org/wiki/Ba
ker%E2%80%93Campbell%E2%80%93Hausdorff_formula) to show

D̂(α) = e−
1
2
|α|2eαâ

†
e−α∗â = e

1
2
|α|2e−α∗âeαâ

†
. (4.28)

Exercise 4.16. Verify Eqs. (4.20), (4.23)–(4.25).

Exercise 4.17. A displacement operator can also be expressed as
exp(iξq̂ − iηp̂), (4.29)

where ξ and η are real numbers.
(1) If we want to write this as D̂(α), find ξ and η in terms of α.
(2) Using the BCH formula, one can write

exp(iξq̂ − iηp̂) = c exp(iξq̂) exp(−iηp̂) = d exp(−iηp̂) exp(iξq̂). (4.30)
where c and d are complex numbers. Find c and d.

(3) Find
D̂(α) |q = x⟩ , D̂(α) |p = y⟩ . (4.31)

https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula
https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula
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(4) Verify Eqs. (4.6)–(4.8).

Exercise 4.18. Let

q̂′ ≡ D̂†(α)q̂D̂(α) (4.32)

be the Heisenberg picture of q-quadrature operator q̂ after displacement. Show that the variance of q̂′ remains
the same, i.e., 〈

∆q′2
〉
≡ ⟨ψ| (q̂′)2 |ψ⟩ −

(
⟨ψ| q̂′ |ψ⟩

)2 (4.33)

is the same as
〈
∆q2

〉
for any state |ψ⟩.

4.4. Thermal states

We need to use a density operator ρ̂ (see Sec. D.6) to describe the thermal state. Quantum thermodynamics
tells us that, when a system is in thermal equilibrium with some bath and only energy is exchanged with the
bath, the quantum state of the system (excluding the bath) is given by the Gibbs state

ρ̂ =
1

Z
exp
(
−βĤ

)
, β ≡ 1

kBT
, Z ≡ tr

[
exp
(
−βĤ

)]
, (4.34)

where Ĥ is the Hamiltonian of the system, kB is Boltzmann constant, T is the temperature, tr is the operator
trace (see Appendix B for the definition), and Z is called the partition function if we regard it as a function of
β. For example, if we have a resonator and we leave it alone at some temperature, then the EM modes in the
resonator should be in the thermal state. We may think of Z as just a constant to normalize the density operator
(tr ρ̂ = 1). For one normal mode with natural frequency ω, Ĥ = ℏωn̂, so ρ̂ can be expressed as

ρ̂ =
1

Z
exp(−βℏωn̂), Z = tr [exp(−βℏωn̂)]. (4.35)

Recall that we can write the number operator n̂ in the diagonal form (Appendix B)

n̂ =

∞∑
n=0

n |n⟩ ⟨n| . (4.36)

Any function of n̂ is then defined as

f(n̂) =
∞∑
n=0

f(n) |n⟩ ⟨n| , (4.37)

and the trace of such a function becomes

tr[f(n̂)] =

∞∑
n=0

f(n). (4.38)

It follows that another way of writing ρ̂ for a thermal state is

ρ̂ =
∞∑
n=0

1

Z
exp(−βℏωn) |n⟩ ⟨n| =

∞∑
n=0

Pn |n⟩ ⟨n| . (4.39)

We can think of this ρ̂ as a mixture of photon-number states, and the mixing probability distribution Pn is the
exponential distribution

Pn =
1

Z
exp(−βℏωn). (4.40)

With the thermal state, the probability distribution of n̂ coincides with Pn:

⟨n| ρ̂ |n⟩ = Pn. (4.41)

In particular, the mean photon number is

⟨n⟩ ≡ tr (n̂ρ̂) =
∞∑
n=0

n ⟨n| ρ̂ |n⟩ =
∞∑
n=0

nPn =
1

exp(βℏω)− 1
, (4.42)
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which agrees with Bose-Einstein statistics. In terms of ⟨n⟩, ρ̂ and Pn can also be expressed as

ρ̂ =
1

⟨n⟩+ 1

(
⟨n⟩

⟨n⟩+ 1

)n̂

, Pn =
1

⟨n⟩+ 1

(
⟨n⟩

⟨n⟩+ 1

)n

. (4.43)

See the bottom row of Fig. 4.1 for some plots.

Figure 4.1. Plots of the Poisson distribution for coherent states (top row) and the exponential
distribution for thermal states (bottom row) for some mean photon numbers ⟨n⟩.

A fundamental result discovered by Glauber is that the thermal state can also be expressed as a mixture of
coherent states:

Glauber’s formula: ρ̂ =

¨
Φ(α) |α⟩ ⟨α| d2α, d2α ≡ (dReα)(d Imα), (4.44)

where the mixing probability density is a Gaussian given by

Φ(α) =
1

π ⟨n⟩
exp

(
−|α|2

⟨n⟩

)
, (4.45)

so we can also think of a thermal state as a noisy coherent state, where the complex amplitude α is a zero-mean
complex Gaussian random variable.

One nice thing about Glauber’s formula is that the quadrature probability densities

⟨q = x| ρ̂ |q = x⟩ , ⟨p = y| ρ̂ |p = y⟩ (4.46)

become simple to compute for a thermal state.

Exercise 4.19. Convince yourself that

Z =

∞∑
m=0

exp(−βℏωm) =
1

1− exp(−βℏω)
= ⟨n⟩+ 1. (4.47)

Exercise 4.20.
(1) Find the photon-number distribution Pn for a thermal state as βℏω → ∞ (infinite ω or zero tempera-

ture).



4.4. THERMAL STATES 36

(2) Show that, as βℏω → ∞, the thermal state approaches the vacuum state, viz.,

lim
βℏω→∞

ρ̂→ |0⟩ ⟨0| . (4.48)

Exercise 4.21. Find the variance of the photon number for a thermal state in terms of ⟨n⟩. The variance is
defined as 〈

∆n2
〉
≡ tr

(
n̂2ρ̂
)
− [tr (n̂ρ̂)]2. (4.49)

Answer: you should obtain 〈
∆n2

〉
= ⟨n⟩+ ⟨n⟩2 . (4.50)

This is larger than the variance of the coherent state given by Eq. (4.15), meaning that a thermal state is “noisier”
than a coherent state with the same mean photon number ⟨n⟩. When ⟨n⟩ ≪ 1, however, this variance is close
to the Poissonian variance ⟨n⟩.

Exercise 4.22. Let T = 300 K (room temperature). Find the mean photon number ⟨n⟩ and the probability
P [n ≥ 1] that the photon number is nonzero for a thermal state if

(1) ν = 2.4 GHz (microwave frequency)
(2) Free-space wavelength λ = 1, 550 nm (typical wavelength for optical fiber communication).

Conversely, if we desire ⟨n⟩ = 0.01, find the temperature T for each case above.
(The low average photon number and low P [n ≥ 1] at optical frequencies at typical temperatures is the

main reason why we can usually assume a vacuum initial state in quantum optics.)

Exercise 4.23. Compute the probability that the measured photon number is equal to 2 for a coherent state
with mean photon number ⟨n⟩. Do the same for a thermal state with the same mean photon number. Expand
each result in Taylor series for ⟨n⟩ ≪ 1 and show that the probability of measuring two photons in a thermal
state is approximately twice the probability of measuring two photons in a coherent state. This effect is called
bunching.

Side note. In the 1950s, people were really confused that weak thermal light doesn’t show Poissonian photon-
counting statistics exactly and the probability of counting two photons in one mode is higher than expected.
The bunching effect was explained first by Leonard Mandel [5] using semiclassical optics, and then Glauber
estalished the quantum formalism to explain bunching [6].

Exercise 4.24. Verify that
˜

Φ(α)d2α = 1, so that Φ is really a probability density function.

Exercise 4.25. Compute the probability densities given by Eqs. (4.46) for a thermal state. Use them to find the
means and variances of the quadratures:

⟨q⟩ ≡ tr (q̂ρ̂), ⟨p⟩ ≡ tr (p̂ρ̂), (4.51)〈
∆q2

〉
≡ tr

(
q̂2ρ̂
)
− [tr(q̂ρ̂)]2,

〈
∆p2

〉
≡ tr

(
p̂2ρ̂
)
− [tr(p̂ρ̂)]2. (4.52)

Exercise 4.26. Define a unitary operator as

R̂(θ) ≡ exp(−in̂θ), (4.53)

where θ is a real number.
(1) Find

â(θ) ≡ R̂†(θ)âR̂(θ), q̂(θ) ≡ R̂†(θ)q̂R̂(θ), p̂(θ) ≡ R̂†(θ)p̂R̂(θ) (4.54)

in terms of â and θ. q̂(θ) and p̂(θ) are also called quadrature operators.
(2) Show that

|q(θ) = x⟩ ≡ R̂†(θ) |q = x⟩ (4.55)

is an eigenstate of q̂(θ) with eigenvalue x, and

|p(θ) = y⟩ ≡ R̂†(θ) |p = y⟩ (4.56)

is an eigenstate of p̂(θ) with eigenvalue y.
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(3) Show〈
q(θ) = x

∣∣q(θ) = x′
〉
= δ(x− x′),

〈
p(θ) = y

∣∣p(θ) = y′
〉
= δ(y − y′), (4.57)

and the completeness conditions

Î =

ˆ ∞

−∞
|q(θ) = x⟩ ⟨q(θ) = x| dx, Î =

ˆ ∞

−∞
|p(θ) = y⟩ ⟨p(θ) = y| dy. (4.58)

In other words, {|q(θ) = x⟩ : x ∈ R} is an orthonormal basis (in the sense of Dirac), and so is
{|p(θ) = y⟩ : y ∈ R}.

(4) Show that q̂(θ) and p̂(θ) have the diagonal forms

q̂(θ) =

ˆ ∞

−∞
x |q(θ) = x⟩ ⟨q(θ) = x| dx, (4.59)

p̂(θ) =

ˆ ∞

−∞
y |p(θ) = y⟩ ⟨p(θ) = y| dy. (4.60)

(Once we have the diagonal forms, we know that the outcome of a von Neumann measurement
of q̂(θ) would have probability density ⟨q(θ) = x| ρ̂ |q(θ) = x⟩, and the outcome of a von Neumann
measurement of p̂(θ) would have probability density ⟨p(θ) = y| ρ̂ |p(θ) = y⟩.)

(5) Compute

R̂(θ) |α⟩ . (4.61)

Your answer should be a coherent state with another complex amplitude.
(6) Find the probability density of q̂(θ) given a coherent state |α⟩, i.e., compute

|⟨q(θ) = x|α⟩|2. (4.62)

Do the same for p̂(θ).
(The point of this exercise is to show that any quadrature of a coherent state has a Gaussian

distribution with variance 1/2.)
(7) Find the probability density of q̂(θ) given a thermal state. Do the same for p̂(θ).

4.5. Sudarshan representation

In quantum optics, there exist many different definitions of whether a state is considered classical or
nonclassical. Since a coherent state gives results very close to classical EM (Gaussian statistics for quadratures,
Poisson statistics for photon number), it is considered a classical state by any definition. If a quantum state is
given by a mixture of coherent states, i.e.,

ρ̂ =

¨
Φ(α) |α⟩ ⟨α| d2α, (4.63)

where Φ(α) is a probability density (i.e., nonnegative for all α), then it is also commonly considered as a
classical state, since it’s just a noisy coherent state with a random amplitude α, and quantum calculations often
agree with classical optics.

Sudarshan discovered that, in general, given any ρ̂, it is always possible to derive a formula for Φ(α), so any
state can be written in the form of Eq. (4.63) in principle. Φ(α) is hence called the Sudarshan representation
of the quantum state (also called the Glauber-Sudarshan representation or the P function sometimes).

The important caveat is that, for certain quantum states, Φ(α) may go negative and very weird (consisting
of derivatives of the Dirac delta function; see https://en.wikipedia.org/wiki/Glauber-Sudarshan_P
_representation), so we can no longer regard Eq. (4.63) as a mixture of coherent states, and classical optics
no longer works as well. For this reason, a state is often called nonclassical whenever Φ(α) goes negative for
some value of α.

Side note. In this book, we always useP to denote a probability distribution. Since the Sudarshan representation
may go negative, we use the symbol Φ rather than P .

https://en.wikipedia.org/wiki/Glauber-Sudarshan_P_representation
https://en.wikipedia.org/wiki/Glauber-Sudarshan_P_representation
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For most common light sources, such as lasers, LEDs, lamps, stars, fluorescent particles, Eq. (4.63) with
a nonnegative Φ works very well, the noise due to Φ is often much stronger than the quantum shot noise, and
there is no good reason to use the quantum theory. An important exception is when photon counting that is
close to ideal can be performed. The probability distribution of the photon count becomes

Mandel’s formula : ⟨n| ρ̂ |n⟩ =
¨

Φ(α)|⟨n|α⟩|2d2α =

¨
Φ(α) exp

(
−|α|2

) |α|2n
n!

d2α. (4.64)

The measurement outcome must remain discrete, with n = 0, 1, 2, . . . . If Φ is nonnegative, Eq. (4.64) is
called a semiclassical formula, since we can regard the complex amplitude α as a classical random variable
with probability density Φ(α) and the Poissonian |⟨n|α⟩|2 as the probability distribution of the photon number
conditioned on α. In other words, if Φ is nonnegative, we can treat the EM fields as classical and stochastic,
and the discreteness of photon number appears only when a photon-number measurement is performed.

Exercise 4.27. Show that Φ(α) must obey ¨
Φ(α)d2α = 1, (4.65)

regardless of whether it’s a probability density.

Exercise 4.28. Let ⟨n⟩ ≡ tr(n̂ρ̂) be the mean photon number. Given Eq. (4.63) where Φ is a probability density,
show that the photon-number variance given by Eq. (4.49) must obey〈

∆n2
〉
≥ ⟨n⟩ . (4.66)

In other words, the variance cannot go below the variance of a Poisson random variable. If the variance goes
below ⟨n⟩, then it’s a smoking gun that Φ for the state cannot be a probability density. Use this fact to show that
Φ for a number state ρ̂ = |n⟩ ⟨n| with n > 0 cannot be a probability density.

Hint: use the law of total variance (see https://en.wikipedia.org/wiki/Law_of_total_variance
or Eq. (C.48)).

4.6. Normal ordering and optical equivalence theorem

Suppose that we are given an operator in the form
f(â†)g(â), (4.67)

where f(â†) is a function of â† only and g(â) is a function of â only. We call this a normally ordered operator,
with all the â† on the left and all the â on the right. Some examples:

â†â, â†â†ââ, exp
(
uâ†
)
exp(v∗â). (4.68)

Then it can be shown that

tr
[
f(â†)g(â)ρ̂

]
=

¨
Φ(α)f(α∗)g(α)d2α, (4.69)

where we replace â† in f(â†) by the variable α∗ and â in g(â) by α on the right-hand side. In other words, the
expected value of a normally-ordered operator can be computed by taking the average of the c-number function
f(α∗)g(α) using the Sudarshan Φ. Eq. (4.69) is called the optical equivalence theorem, which is a handy result
in quantum optics.

Exercise 4.29.

(1) Verify Eq. (4.69).
(2) Let

Â = n̂2 = â†ââ†a. (4.70)
Rewrite it in normal-ordering form (i.e., a sum of terms in the form of Eq. (4.67)) and compute
⟨A⟩ ≡ tr(Âρ̂) using the optical equivalence theorem for a coherent state and a thermal state.

(3) Compute ⟨A⟩ directly using the photon-number distributions of a coherent state (Poisson) and a thermal
state. Confirm that you obtain the same results as the previous part.

https://en.wikipedia.org/wiki/Law_of_total_variance
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Exercise 4.30.

(1) Show that the Poisson distribution can be expanded as a power series with respect to ⟨n⟩ given by

exp(−⟨n⟩)⟨n⟩
n

n!
=

1

n!

(
⟨n⟩n − ⟨n⟩n+1 + . . .

)
. (4.71)

(2) Show

⟨n = 1| ρ̂ |n = 1⟩ = tr
(
â†âρ̂

)
− tr

(
â†â†ââρ̂

)
+ . . . (4.72)

⟨n = 2| ρ̂ |n = 2⟩ = 1

2

[
tr
(
â†â†ââρ̂

)
− tr

(
â†â†â†âââρ̂

)
+ . . .

]
. (4.73)

(This is a way of computing ⟨n = 1| ρ̂ |n = 1⟩ and ⟨n = 2| ρ̂ |n = 2⟩ for weak light in any state,
generalizing Exercise 4.23.)



CHAPTER 5

Multimode States

EM fields have many modes, and the real fun starts in quantum optics when we consider many modes. This
chapter studies some common multimode states in quantum optics, generalizing Chapter 4.

5.1. Coherent states

5.1.1. Definition in terms of the displacement operator. Let’s consider J EM modes and denote each
mode by j = 1, 2, . . . , J . The annihilation operator for mode j is âj , as before. The easiest way to define a
coherent state for multiple modes is to first define a multimode displacement operator as

D̂(α) ≡ exp

∑
j

(
αj â

†
j − H.c.

), (5.1)

where

α ≡

α1
...
αJ

 ∈ CJ (5.2)

is a vectoral complex amplitude (each αj is a complex number) and H.c. denotes the Hermitian conjugate of the
first term αj â

†
j , i.e., α∗

j âj in this case. Because operators for different modes commute with one another (see
Eqs. (3.59)), the BCH formula says we can break D̂(α) into a product of single-mode displacement operators

D̂(α) = D̂1(α1) . . . D̂J(αJ), (5.3)

D̂j(αj) ≡ exp
(
αj â

†
j − H.c.

)
. (5.4)

Each D̂j(αj) is in terms of âj and â†j only, so it acts only on mode j and does nothing on all other modes.
A multimode coherent state can now be defined as

|α⟩ = D̂(α) |vac⟩ , (5.5)

where |vac⟩ is the multimode vacuum state (zero photon in all modes). The coherent state has some special
properties.

5.1.2. Separability. Let the Hilbert space for mode j be Hj and each number state in Hj be |nj⟩j ,
nj = 0, 1, 2, . . . . Recall that the vacuum state is a tensor product of {|0⟩j}:

|vac⟩ = |0⟩1 ⊗ |0⟩2 ⊗ · · · ⊗ |0⟩J . (5.6)

We see from Eq. (5.4) that each D̂j(αj) acts on Hj only and has no effect on all the other modes. So D̂(α) |vac⟩
becomes

|α⟩ = D̂(α1) |0⟩1 ⊗ D̂(α2) |0⟩2 ⊗ · · · ⊗ D̂(αJ) |0⟩J (5.7)

= |α1⟩ ⊗ |α2⟩ ⊗ · · · ⊗ |αJ⟩ . (5.8)

In other words, a multimode coherent state is a tensor product of single-mode coherent states.
40



5.1. COHERENT STATES 41

This separable property of the coherent state turns out to hold regardless of the set of modes we assume.
Recall from Sec. 3.5 that we can build our multimode Hilbert space using any set of modes, as long as the new
operators are related to the old operators by

âj =
∑
l

Wjlb̂l, b̂l =
∑
j

W ∗
jlâj , (5.9)

where W is a unitary matrix (W−1 =W †). Let’s plug this expression into Eq. (5.1) to obtain

D̂(α) = exp

[∑
l

(
βlb̂

†
l − H.c.

)]
, (5.10)

βl ≡
∑
j

αjW
∗
jl. (5.11)

Notice that the displacement operator has the same dependence on {b̂l} as it did on {âj}, except that the
amplitudes {βj} are transformed. To make the notation clearer, let’s write

D̂(a : α) ≡ exp

∑
j

(
αj â

†
j − H.c.

), D̂(b : β) ≡ exp

[∑
l

(
βlb̂

†
l − H.c.

)]
, β ≡

β1...
βJ

, (5.12)

to clarify the dependence of a displacement operator on the mode operators. In matrix notation, Eq. (5.11) can
be expressed as

β =W †α, (5.13)

so that Eq. (5.10) becomes

D̂(a : α) = D̂(b :W †α), (5.14)

and the coherent state can now be expressed as

|α⟩ ≡ D̂(a : α) |vac⟩ = D̂(b :W †α) |vac⟩ . (5.15)

We now follow Sec. 5.1.2 to write the multimode Hilbert space as H′
1 ⊗ · · · ⊗H′

J for the new modes. Write the
vacuum state in terms of the zero-number states in H′

1 ⊗ · · · ⊗ H′
J as

|vac⟩ = |b1 : 0⟩ ⊗ |b2 : 0⟩ ⊗ · · · ⊗ |bJ : 0⟩ (5.16)

according to Eqs. (3.124) and (3.126). Then decompose D̂(b : β) as

D̂(b : β) = D̂(b1 : β1) . . . D̂(bJ : βJ), D̂(bl, βl) ≡ exp
(
βlb̂

†
l − H.c.

)
, (5.17)

just like Eq. (5.3). The coherent state becomes

D̂(b : β) |vac⟩ = D̂(b1 : β1) . . . D̂(bJ : βJ) |b1 : 0⟩ ⊗ · · · ⊗ |bJ : 0⟩ (5.18)

= D̂(b1 : β1) |b1 : 0⟩ ⊗ · · · ⊗ D̂(bJ : βJ) |bJ : 0⟩ (5.19)

= |b1 : β1⟩ ⊗ · · · ⊗ |bJ : βJ⟩ , |bj : βj⟩ ≡ D̂(b : βj) |bj : 0⟩ , (5.20)

which is a tensor product of coherent states. This separable property is very special, since it says that the
multimode coherent state remains pure and a coherent state if we look at any set of modes, normal or not, or
any subset of the modes.

5.1.3. Single-mode excitation. Given a vectoral complex amplitude α, suppose that we define a special
set of modes such that the first new mode has an annihilation operator given by

b̂1 =
∑
j

W ∗
j1âj =

1

|α|
∑
j

α∗
j âj , (5.21)

Wj1 =
αj

|α|
, (5.22)
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where the norm of the vectoral amplitude α is defined by

|α|2 ≡ α†α =
∑
j

|αj |2. (5.23)

In other words, we choose a unitary matrix W such that its first column is equal to α/|α|. The normalization
1/|α| ensures that W can remain unitary and b̂1 obeys the standard commutation relation [b̂1, b̂

†
1] = 1. (It can

be shown using linear algebra that it’s always possible to fill the remaining columns of W to make it unitary.)
Then the displacement operator can be rewritten as

D̂(α) = exp
[
|α|
(
b̂†1 − b̂1

)]
, (5.24)

which is in terms of b̂1 only. In other words, in terms of this new special set of modes, D̂(α) displaces only the
first mode, while leaving all the other modes alone. For this reason, the coherent state

|α⟩ = D̂(α) |vac⟩ = exp
[
|α|
(
b̂†1 − b̂1

)]
|vac⟩ (5.25)

can also be considered as a state with excitation in one special mode only, while all the other modes remain
in vacuum. We call this special mode the excited mode of the coherent state.

If {âj} are operators for normal sinusoidal-wave modes in free space, recall from Sec. 3.5 that Wj1 is the
(k, s)-space amplitude that determines the mode function v1(r) for the excited mode. This means that the
excited mode has a (k, s)-space amplitude Wj1 determined by α through Eq. (5.22). For example, if α is the
(k, s)-space amplitude of an optical pulse, as discussed in Sec. 3.5, then Wj1 ∝ αj is also the (k, s)-space
amplitude of an optical pulse, and the excited mode is the optical pulse mode.

Exercise 5.1. Prove the following:
(1)

âj |α⟩ = αj |α⟩ . (5.26)

(2)

⟨α| â†j = α∗
j ⟨α| . (5.27)

(3)

D̂(α) = D̂†(−α). (5.28)

(4)

D̂(α)D̂(β) = exp
[
i Im(β†α)

]
D̂(α+ β), (5.29)

(5)

⟨α|β⟩ = exp
[
−i Im(β†α)

]
exp

(
−1

2
|β −α|2

)
. (5.30)

(6)

D̂(α) = e−
1
2
|α|2e

∑
j αj â

†
je−

∑
j α

∗
j âj = e

1
2
|α|2e−

∑
j α

∗
j âje

∑
j αj â

†
j . (5.31)

Exercise 5.2. Find the probability distribution of multimode photon counting for a coherent state, i.e.,

|⟨n|α⟩|2, (5.32)
where

n ≡

n1...
nJ

, |n⟩ ≡ |n1, . . . , nJ⟩ . (5.33)

Define the multimode quadrature eignstates as
|q = x⟩ ≡ |q1 = x1⟩ ⊗ · · · ⊗ |qJ = xJ⟩ , |p = y⟩ ≡ |p1 = y1⟩ ⊗ · · · ⊗ |pJ = yJ⟩ . (5.34)



5.2. CLASSICAL CURRENT SOURCE 43

where |qj = xj⟩ is an eigenstate of q̂j with eigenvalue xj and |pj = xj⟩ is an eigenstate of p̂j with eigenvalue
yj in the usual way. Find the probability density functions

|⟨q = x|α⟩|2, |⟨p = y|α⟩|2. (5.35)

5.2. Classical current source

We love the coherent state in quantum optics—its math is simple, and it’s easy to reproduce classical optics
by taking its averages. This section presents another reason: it has a very simple model for how it can be
generated.

Suppose that, in addition to the free EM fields, there exists a current density J(r, t) due to charged particles
that can be approximated as a c-number function. The approximation of observables as c-numbers is common
in quantum mechanics and valid whenever some degrees of freedom are little perturbed by any coupling to
quantum systems and can be approximated as classical. The Hamiltonian can be taken as

Ĥ(t) = Ĥeasy + η̂(t), Ĥeasy =
∑
j

ℏωj â
†
j âj , η̂(t) = −

˚
J(r, t) · Â(r)d3r, (5.36)

where

Â(r) =
∑
j

(
ℏ

2ϵ0ωj

)1/2

[âjuj(r) + H.c.] (5.37)

is the vector-potential operator. Appendix E explains the origin of Eq. (5.37) and shows that the Hamiltonian is
consistent with Maxwell’s equations in the presence of the current density. Going to the interaction picture (see
Sec. D.4), we find

η̂easy(τ) = −
˚

J(r, t) · Â(r, t)d3r, (5.38)

ÛI(t) ≡ T exp

[
− i

ℏ

ˆ t

0
η̂easy(τ)dτ

]
= T exp

∑
j

ˆ t

0

[
βj(τ)â

†
j − H.c.

]
dτ

, (5.39)

βj(τ) ≡ i

(
1

2ℏωjϵ0

)1/2˚
J(r, τ) · u∗

j (r) exp(iωjτ)d
3r. (5.40)

The time-ordered exponential looks scary, but remember that it is simply a product of exponentials with tiny
time steps:

ÛI(t) = lim
∆t→0

exp

∑
j

[
βj(t)â

†
j − H.c.

]
∆t

 exp

∑
j

[
βj(t−∆t)â†j − H.c.

]
∆t

 . . .

exp

∑
j

[
βj(2∆t)â

†
j − H.c.

]
∆t

 exp

∑
j

[
βj(∆t)â

†
j − H.c.

]
∆t

. (5.41)

Each exponential here is a displacement operator. Recall from Eq. (5.29) that the product of displacement
operators is just one displacement operator (with an unimportant phase factor), so ÛI(t) is in fact a displacement
operator, and the EM state resulting from ÛI(t) applied to an initial EM vacuum state |vac⟩ is a coherent state.
According to Eq. (5.29), the net displacement is the sum of all the tiny displacements, i.e.,

ÛI(t) ∝ D̂(α), (5.42)

αj =
∑
m

βj(m∆t)∆t→
ˆ t

0
βj(τ)dτ (5.43)

= i

(
1

2ℏωjϵ0

)1/2 ˆ t

0

˚
J(r, τ) · u∗

j (r) exp(iωjτ)d
3rdτ (5.44)

= i

(
1

2ℏωjϵ0L3

)1/2 ˆ t

0

˚
J(r, τ) · ẽ∗k,s exp(−ik · r + iωjτ)d

3rdτ. (5.45)
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This 4D integral can be regarded as an inner product of the current density with a mode functionuj(r) exp(−iωjτ)
with mode index j = (k, s). The integral also resembles an inverse Fourier transform of the current density,
if we take the limit t → ∞ and L → ∞. The resulting amplitude αj is the amplitude of the sinusoidal-wave
mode j = (k, s) generated by the current source.

Long story short, the Hamiltonian η̂easy(t) in the interaction picture is a linear function of {âj} and {â†j}, so
the interaction-picture unitary ÛI(t) is a displacement operator, and the interaction-picture state ÛI(t) |vac⟩ is a
coherent state. If we wish, we can turn the interaction-picture state back to the Schrödinger picture by applying
Ûeasy(t), since

Û(t) |vac⟩ = Ûeasy(t)Û
†
easy(t)Û(t) |vac⟩ = Ûeasy(t)ÛI(t) |vac⟩ , (5.46)

but it is straightforward to show that Ûeasy(t) applied to a coherent state is still a coherent state.

5.3. Thermal states

5.3.1. Definition. The quantum state at thermal equilibrium with a bath is given by Eq. (4.34) in general,
i.e., ρ̂ is an exponential of the Hamiltonian Ĥ . Recall that the Hamiltonian for many EM modes in free space is
given by Eq. (3.61). It follows that ρ̂ can be expressed as

ρ̂ =
1

Z
exp

−β
∑
j

ℏωjn̂j

, (5.47)

where n̂j is the photon-number operator for the normal mode labeled by j. Assume, for simplicity, that there
are J normal modes. The number operators all commute with one another ([n̂j , n̂l] = 0), so we can break the
exponential into a product of exponentials:

ρ̂ =
1

Z
exp(−βℏω1n̂1) exp(−βℏω2n̂2) . . . exp(−βℏωJ n̂J). (5.48)

It can be shown using linear algebra that the density operator can be expressed as the tensor product

ρ̂ =
1

Z
exp(−βℏω1n̂)⊗ exp(−βℏω2n̂)⊗ · · · ⊗ exp(−βℏωJ n̂), (5.49)

where each n̂ is now the number operator on the individual Hj for each mode. In other words, the normal
modes in a thermal state are independent. Another way of writing this expression is

ρ̂ =
1

Z

(
⟨n1⟩

⟨n1⟩+ 1

)n̂1

. . .

(
⟨nJ⟩

⟨nJ⟩+ 1

)n̂J

, (5.50)

Z =
J∏

j=1

(⟨nj⟩+ 1), (5.51)

where the average photon number in each mode can be expressed as

tr (n̂j ρ̂) = ⟨nj⟩ =
1

exp(βℏωj)− 1
, (5.52)

just as before.
Glauber’s formula for a thermal state in J modes is now

Glauber’s formula: ρ̂ =

ˆ
Φ(α) |α⟩ ⟨α| d2Jα, d2Jα ≡

J∏
j=1

(dReαj)(d Imαj), (5.53)

where the Φ distribution is given by

Φ(α) =
J∏

j=1

1

π ⟨nj⟩
exp

(
−|αj |2

⟨nj⟩

)
. (5.54)

Φ now coincides with the Gaussian probability density for J independent Gaussian complex random variables.

Exercise 5.3. Verify Eq. (5.51) from the fact that tr ρ̂ = 1.
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Exercise 5.4. Consider only modes with the same natural frequency ωj = ω. Define a new set of modes by
Eq. (3.89), where W is a unitary matrix.

(1) Prove ∑
j

â†j âj =
∑
l

b̂†l b̂l. (5.55)

(2) Let m̂l ≡ b̂†l b̂l. Show that the density operator of the thermal state can be expressed as

ρ̂ =
1

Z

(
⟨n⟩

⟨n⟩+ 1

)m̂1

. . .

(
⟨n⟩

⟨n⟩+ 1

)m̂J

, (5.56)

so any set of modes with the same frqeuency in the thermal state are independent.

Exercise 5.5. Repeat Exercise 5.2 for a thermal state, i.e., find
⟨n| ρ̂ |n⟩ , ⟨q = x| ρ̂ |q = x⟩ , ⟨p = y| ρ̂ |p = y⟩ (5.57)

for a thermal state ρ̂.

5.4. Sudarshan representation

Our earlier discussion of the Sudarshan representation applies essentially unchanged to the case of multiple
modes. For any density operator ρ̂, we can in principle write

ρ̂ =

ˆ
Φ(α) |α⟩ ⟨α| d2Jα. (5.58)

If Φ(α) is nonnegative for all α ∈ C2J such that it is a probability density, the state can be called classical.
Mandel’s formula in this case is

Mandel’s formula : ⟨n| ρ̂ |n⟩ =
ˆ

Φ(α)|⟨n|α⟩|2d2Jα, (5.59)

where

|⟨n|α⟩|2 =
J∏

j=1

exp
(
−|αj |2

) |αj |2nj

nj !
(5.60)

is a product of Poisson distributions. If Φ is nonnegative, we can think of the complex amplitudesα as classical
random variables with probability density Φ in Mandel’s formula, and the photon-number distribution | ⟨n|α⟩ |2
conditioned on α is that of independent Poisson random variables.

Exercise 5.6. Show that ˆ
Φ(α)d2Jα = 1. (5.61)

5.5. Optical equivalence theorem

The concept of normal ordering and optical equivalence theorem for multiple modes is essentially the same
as that discussed in Sec. 4.6. Suppose that we have a normally ordered operator

f(â†)g(â), (5.62)

where f(â†) is a function of {â†j} only and g(â) is a function of {âj} only. Some examples:

â†j âl, â†j â
†
l âj âl, exp

∑
j

uja
†
j

 exp

∑
j

v∗jaj

. (5.63)

Then the optical equivalence theorem is

tr
[
f(â†)g(â)ρ̂

]
=

ˆ
Φ(α)f(α∗)g(α)d2Jα, (5.64)
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where we replace each â†j by α∗
j in the f function and each âj by αj in the g function on the right-hand side.

The theorem allows us to evaluate the expected value of a normally ordered operator by taking the average of a
c-number with respect to the Φ function.

5.6. Fock representation

5.6.1. Discrete set of modes. When there are a discrete set of modes, a general state can be constructed
from the orthonormal number basis given by Eq. (3.51). If we assume a continuum of modes as per Sec. 3.4,
on the other hand, it’s trickier to construct the Hilbert space. The way forward is to use Fock’s method.

To introduce the method, we begin by considering a discrete set of J modes first, and we label the modes
by j = 1, . . . , J . We will be building our Hilbert space from the so-called Fock states, defined as

|Fock : j1, . . . , jN ⟩ ≡ 1√
N !
â†jN . . . â

†
j1
|vac⟩ . (5.65)

In other words, we construct this state by adding one photon to mode j1 via â†j1 , and then adding another photon
to mode j2 via â†j2 , etc. There are N photons in total in this state, and

j ≡ (j1, . . . , jN ) (5.66)

is a vector of mode labels for the N photons, with each jn ∈ {1, . . . , J}. In mathematics, j is called a
multi-index (https://en.wikipedia.org/wiki/Multi-index_notation). There are JN possible values
for the multi-index j:

j ∈ {1, . . . , J}N . (5.67)
A lot of the Fock states are equal to each other, since the creation operators in Eq. (5.65) all commute with one
another and we can interchange their order. The Fock state must therefore remain the same if we exchange any
two arguments, i.e.,

|Fock : . . . , j︸︷︷︸
nth photon

, . . . , j′︸︷︷︸
mth photon

. . . ⟩ = |Fock : . . . , j′︸︷︷︸
nth photon

, . . . , j︸︷︷︸
mth photon

. . . ⟩. (5.68)

To study the Fock states, we can write each in terms of a number state |n1, . . . , nJ⟩, since both can be written
as some creation operators applied to |vac⟩. Given the mode labels (j1, . . . , jN ) for the N photons, let us count
the number of photons in a certain mode l and call it nl(j1, . . . , jN ). This is done by counting the number of
jn’s that are equal to the given mode index l. An explicit formula is

nl(j1, . . . , jN ) ≡ δj1l + δj2l + · · ·+ δjN l. (5.69)
Then, recalling that a number state is given by

|n1, . . . , nJ⟩ =
â†n1
1 . . . â†nJ

J√
n1! . . . nJ !

|vac⟩ , (5.70)

we can rewrite Eq. (5.65) as

|Fock : j1, . . . , jN ⟩ =
[
n1(j)! . . . nJ(j)!

N !

]1/2
|n1(j), . . . , nJ(j)⟩ , (5.71)

which can be abbreviated as

|Fock : j⟩ =
(
N
n(j)

)−1/2

|n(j)⟩ , (5.72)

where (
N
n

)
≡ N !

n1! . . . nJ !
(5.73)

is the multinomial coefficient.

Side note. In the literature, any state with a definite photon number in each mode is also called a Fock state, so
|n⟩ would also be called a Fock state. To be precise in this section, however, I call only |Fock : j⟩ a Fock state
and I call |n⟩ a number state.

https://en.wikipedia.org/wiki/Multi-index_notation
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Using Eq. (5.72), we find that the inner product between two Fock states is given by〈
Fock : j

∣∣Fock : j′
〉
=

(
N
n(j)

)−1

δn(j),n(j′). (5.74)

This means that the Fock states are not exactly an orthonormal basis and a lot of the Fock states are actually
the same, as long as they lead to the same set of photon numbers n(j). Conversely, for a given set of photon

numbers n, there are
(
N
n

)
Fock states that are all equal to one another (https://www.statisticshowto.

com/multinomial-coefficient/).
To express any state in terms of the Fock states, let’s first consider the projection operator∑

j∈{1,...,J}N
|Fock : j⟩ ⟨Fock : j| =

∑
j∈{1,...,J}N

(
N
n(j)

)−1

|n(j)⟩ ⟨n(j)| . (5.75)

We can divide the set {1, . . . , J}N into subsets, where each subset of mode labels j for the N photons lead to
the same set of photon numbers n(j) =m:

{j : n(j) =m} = {(j1, . . . , jN ) : nj(j1, . . . , jN ) = mj for all j}. (5.76)

Then ∑
j∈{1,...,J}N

|Fock : j⟩ ⟨Fock : j| =
∑

j∈{1,...,J}N

(
N
n(j)

)−1

|n(j)⟩ ⟨n(j)| (5.77)

=
∑

m:
∑

j mj=N

∑
j:n(j)=m

(
N
n(j)

)−1

|n(j)⟩ ⟨n(j)| (5.78)

=
∑

m:
∑

j mj=N

|m⟩ ⟨m| . (5.79)

We know that the number states {|n⟩} form an orthonormal basis and thus obey the completeness condition

Î =
∑
n

|n⟩ ⟨n| =
∞∑

N=0

∑
n:

∑
nj=N

|n⟩ ⟨n| . (5.80)

Hence

Î =
∞∑

N=0

∑
j∈{1,...,J}N

|Fock : j⟩ ⟨Fock : j| . (5.81)

This is a completeness condition in terms of the Fock states, so that an arbitrary |ψ⟩ ∈ H can be expressed as

|ψ⟩ = Î |ψ⟩ =
∞∑

N=0

∑
j∈{1,...,J}N

|Fock : j⟩ ⟨Fock : j|ψ⟩ , (5.82)

which is a linear combination of the Fock states. Note, however, that we can’t just have any linear combination
of {|Fock : j⟩}; the wavefunction ⟨Fock : j|ψ⟩ for N photons must be symmetric with respect to any exchange
of two arguments because of Eq. (5.68):

⟨Fock : . . . , j︸︷︷︸
nth photon

, . . . , j′︸︷︷︸
mth photon

. . .|ψ⟩ = ⟨Fock : . . . , j′︸︷︷︸
nth photon

, . . . , j︸︷︷︸
mth photon

. . .|ψ⟩ . (5.83)

This symmetry for the wavefunctions means that the particles are bosons, and we have managed to show that a
set of quantum oscillators are equivalent to bosons. In the particle picture, each mode label j is associated with
the properties of a boson. When the label is j = (k, s), k is regarded as the momentum of a boson, and s is
regarded as the spin of a boson; two possible polarizations of an EM wave correspond to two possible spins for
a photon.

https://www.statisticshowto.com/multinomial-coefficient/
https://www.statisticshowto.com/multinomial-coefficient/


5.6. FOCK REPRESENTATION 48

A few other formalities: the operators defined as

Π̂N ≡
∑

n:
∑

j nj=N

|n⟩ ⟨n| =
∑

j∈{1,...,J}N
|Fock : j⟩ ⟨Fock : j| (5.84)

are projection operators that satisfy

Π̂N Π̂M =

{
Π̂N , N =M,

0, N ̸=M,
Î =

∞∑
N=0

Π̂N . (5.85)

The total photon number operator can be expressed as

N̂ ≡
∑
j

n̂j =
∑
N

NΠ̂N , (5.86)

and

PN = tr
(
Π̂N ρ̂

)
(5.87)

is the probability that there are N photons in all modes. A normalized N -photon wavefunction can be defined
as

ψN (j) ≡ 1√
PN

⟨Fock : j|ψ⟩ = 1√
PNN !

⟨vac| âj1 . . . âjN |ψ⟩ , (5.88)

and

|ψN (j)|2 = |ψN (j1, . . . , jN )|2 (5.89)

can be regarded as the probability distribution of random variables (j1, . . . , jN ), where j1 is the mode index
for the first photon, j2 is the mode index for the second photon, etc. The probability distribution also needs
to stay the same under any exchange of the arguments; we say that the random variables are exchangeable in
probability theory when the probability distribution has this permutation symmetry. In physics, we call such
particles indistinguishable.

Side note. It turns out that the Hilbert space for any kind of bosons can be constructed in this manner,
although the number of possible spins and the Hamiltonian may differ from those of photons. For fermions,
we need to use a different kind of operators with a different algebra. The reverse strategy of constructing
a quantum theory of fields from a theory of particles is sometimes called the second quantization (https:
//en.wikipedia.org/wiki/Second_quantization).

Exercise 5.7. Find PN and the wavefunctions {ψN} for the coherent state |α⟩.

Exercise 5.8. Let â1 be the annihilation operator for the mode with wavevector k = kz̃ and polarization vector

ẽ1 ≡
x̃+ iỹ√

2
. (5.90)

Let â2 be the annihilation operator for the mode with the same wavevector and polarization vector

ẽ2 ≡
ix̃+ ỹ√

2
. (5.91)

Let

|Fock : 1⟩ ≡ â†1 |vac⟩ , |Fock : 2⟩ ≡ â†2 |vac⟩ , (5.92)

where we’ve omitted the wavevector for brevity.
(1) Show that ẽ1 and ẽ2 obey Eqs. (2.22)–(2.24).
(2) Show that {|Fock : 1⟩ , |Fock : 2⟩} are orthonormal if [âj , âl] = 0 and [âj , â

†
l ] = δjl.

(3) A new one-photon state is defined as

|ψ⟩ = b̂† |vac⟩ = cos
θ

2
|Fock : 1⟩+ eiϕ sin

θ

2
|Fock : 2⟩ , (5.93)

where θ ∈ [0, π] and ϕ ∈ [0, 2π). Find b̂ in terms of â1 and â2 and find the polarization vector of the
photon.

https://en.wikipedia.org/wiki/Second_quantization
https://en.wikipedia.org/wiki/Second_quantization
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(4) A Bloch sphere is a representation of qubit states (https://en.wikipedia.org/wiki/Bloch_
sphere). Each point on the sphere with spherical coordinates (θ, ϕ) represents a certain state |ψ⟩ ⟨ψ|
with the θ and ϕ parameters.

Find the point on the Bloch sphere that represents a photon with each of the following polarizations:
1√
2
(x̃+ iỹ),

1√
2
(ix̃+ ỹ), x̃, ỹ,

1√
2
(x̃+ ỹ),

1√
2
(x̃− ỹ). (5.94)

Sketch your results by drawing a sphere and labeling each point with the polarization.

Exercise 5.9. Suppose that there are just two modes labeled by j ∈ {1, 2} with annihilation operators â1 and
â2, respectively. Suppose that a certain quantum state is expressed in the photon-number basis {|n1, n2⟩ :
each nj = 0, 1, 2, . . . } as

|ψ⟩ = C2,0 |2, 0⟩+ C1,1 |1, 1⟩+ C0,2 |0, 2⟩ , |C2,0|2 + |C1,1|2 + |C0,2|2 = 1. (5.95)

Find the two-photon wavefunction ψ2(j, l) in terms of the C coefficients. Show explicitly that your result is
symmetric, i.e.,

ψ2(j, l) = ψ2(l, j) for all j, l, (5.96)

and normalized, i.e., ∑
j,l

|ψ2(j, l)|2 = 1. (5.97)

Explain the physical meaning of |C2,0|2, |C1,1|2, and |C0,2|2. Explain the physical meaning of |ψ2(1, 1)|2,
|ψ2(2, 2)|2, |ψ2(1, 2)|2, and |ψ2(2, 1)|2. You should find that

|C1,1|2 = |ψ2(1, 2)|2 + |ψ2(2, 1)|2. (5.98)

Convince yourself that this is correct.

5.6.2. Continuum modes. Fock’s method seems unnecessarily complicated for a discrete set of modes,
since we could have just used the number states {|n⟩}, which form an orthonormal basis. When we have a
continuum of modes, however, Fock’s method is necessary if we want to write down an explicit construction of
the Hilbert space.

We start by assuming that there is a vacuum state |vac⟩ ∈ H with ⟨vac|vac⟩ = 1. In terms of the creation
operators {â†(k, s)}, a Fock state is now defined as

|Fock : j1, . . . , jN ⟩ ≡ 1√
N !
â†(k1, s1) . . . â

†(kN , sN ) |vac⟩ , jn ≡ (kn, sn). (5.99)

The inner product between two of them becomes〈
Fock : j1, . . . , jN

∣∣Fock : j′1, . . . , j
′
M

〉
=
δNM

N !

∑
P
δ(j1, j

′
P(1)) . . . δ(j1, j

′
P(N)), (5.100)

δ(j, j′) ≡ δ3(k − k′)δss′ , (5.101)

where

(P(1), . . . ,P(N)) (5.102)

is a permutation of (1, . . . , N) and
∑

P is the sum over all N ! permutations. For example, if N = 2, then there
are just N ! = 2 permutations:

(P(1),P(2)) = (1, 2), (P(1),P(2)) = (2, 1), (5.103)

and〈
Fock : j1, j2

∣∣Fock : j′1, j
′
2

〉
=

1

2

[
δ(j1, j

′
1)δ(j2, j

′
2) + δ(j1, j

′
2)δ(j2, j

′
1)
]

(5.104)

=
1

2

[
δ3(k1 − k′1)δs1s′1δ

3(k2 − k′2)δs2s′2 + δ3(k1 − k′2)δs1s′2δ
3(k2 − k′1)δs2s′1

]
.

(5.105)

https://en.wikipedia.org/wiki/Bloch_sphere
https://en.wikipedia.org/wiki/Bloch_sphere
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The completeness condition is now

Î =
∞∑

N=0

Π̂N , (5.106)

Π̂0 = |vac⟩ ⟨vac| , (5.107)

Π̂N =
∑

s1,...,sN

ˆ
|Fock : j1, . . . , jN ⟩ ⟨Fock : j1, . . . , jN | d3k1 . . . d3kN . (5.108)

In quantum optics, Fock’s method is useful when one needs to write down the quantum state for a continuum of
modes, or when there are few photons. For example, under spontaneous parametric down-conversion (SPDC)
in some crystal, the probability of generating N > 2 photons is negligible, and one can study the properties of
the entangled photons via the two-photon wavefunction.

Exercise 5.10. Let a one-photon state be b̂†l |vac⟩, where b̂l is given by Eq. (3.115). Find the one-photon
wavefunction ψ1(k, s).

Exercise 5.11. Let the continuum displacement operator be

D̂[α] ≡ exp

[∑
s

ˆ
α(k, s)â†(k, s)d3k − H.c.

]
|vac⟩ (5.109)

and the coherent state be |α⟩ ≡ D̂[α] |vac⟩. Find {PN} and the wavefunctions {ψN} defined as

ψN (j1, . . . , jN ) ≡ 1√
PNN !

⟨vac| â(k1, s1) . . . â(kN , sN ) |ψ⟩ . (5.110)



CHAPTER 6

Passive Linear Optics

6.1. Hamiltonian

Now that we have an idea of what quantum optical states look like, let’s study dynamics. In optics, EM
fields typically interact with matter so weakly that the equations of motion for the complex amplitudes are linear;
we call such optical systems linear optics. Examples are many and include propagation in free space and in
dielectric media, beam splitters, mirrors, polarizers, interferometers, optical fibers, optical resonators, etc. We
see nonlinear optical effects only when the EM fields are very intense in matter that interacts strongly with them,
e.g., with high-power lasers or in high-quality optical resonators. Linear optics forms a major part of optics.

The word “passive” refers to the fact that, apart from an initial state that is generated by some sources, the
optics at zero temperature does not add photons to the EM fields. It will be easier to understanding what this
means when we look at the Hamiltonian later.

In quantum optics, passive linear optics can be modeled by assuming that both the EM fields and the
interacting matter consist of coupled harmonic oscillators. This is an approximation, as matter ultimately
consists of atoms, electrons, nuclei, ions, etc. that are not exactly harmonic oscillators, but when the interactions
are weak, the matter would behave effectively like harmonic oscillators when interacting with the EM fields.
The best justification is perhaps the fact that the resulting equations of motion agree with those in classical
optics.

Let’s start with J EM modes. Assume that there are K other modes of harmonic oscillators in the matter
that interact with the EM fields. Let

(1) {âj : j = 1, . . . , J} be the annihilation operators for the EM modes on Hilbert space HEM,
(2) {b̂j : j = 1, . . . ,K} be the annihilation operators for the matter modes on Hilbert space Hmatter.

There are now J +K modes, and we label the annihilation operators for all the modes by {ĉj}. Using matrix
notation, we can write

ĉ ≡



â1
...
âJ
b̂1
...
b̂K


=

(
â

b̂

)
, â ≡

â1...
âJ

, b̂ ≡

 b̂1
...
b̂K

, (6.1)

so ĉ is a column vector of annhilation operators for the J +K modes, the first J entries are for the EM modes,
and the next K entries are for the matter modes. These modes don’t need to be normal modes, but we still
require them to satisfy the standard commutation relation

[ĉj , ĉ
†
l ] = δjl. (6.2)

When these modes may exchange particles with each other, a general Hamiltonian can be expressed as

Ĥ = ℏ
∑
j,l

Fjlĉ
†
j ĉl, (6.3)

where F is a matrix with complex c-number entries called the coupling matrix. A derivation of this Hamiltonian
from more physical assumptions will be given in Sec. 6.1.1 later, but for now we assume that Eq. (6.3) is given.
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To see what the Hamiltonian does in the dynamics, let’s look at the unitary operator with a tiny time step:

Û(∆t) = exp

−i
∑
j,l

Fjlĉ
†
j ĉl∆t

 ≈ Î − i∆t
∑
j,l

Fjlĉ
†
j ĉl. (6.4)

When this unitary is applied to a state |ψ⟩, each ĉl operator subtracts a boson from mode l, and then ĉ†j adds the
boson to mode j. When the mode is EM, the bosons are, of course, photons, but when the mode is a matter
mode, the bosons are stored physically as quanta of energy excitations in the matter; we just think of them as
effective particles behaving like bosons and don’t really care about them as much.

For longer times, remember that the unitary operator is just a product of the unitaries with tiny time steps
(Û(t) = Û(∆t) . . . Û(∆t)), so if we start with a definite total boson number, the total number of bosons in all
the modes will stay constant. This behavior agrees with the observation that, at zero temperature (corresponding
to the fact that the matter modes are in vacuum), many optical devices do not add photons to the EM fields
(hence the word “passive”).

Note that the optics may still take photons away and transfer them somewhere else to places we can’t access.
Thus, our model of passive linear optics can also model optical loss, which is physically the absorption of
photons by matter; see Chapter 7 later.

For the fundamental principles of quantum mechanics to hold, the Hamiltonian operator Ĥ must be
Hermitian. This means that the F matrix in Eq. (6.3) cannot be any matrix. Convince yourself that

Ĥ = Ĥ† ⇔ Fjl = F ∗
lj . (6.5)

In other words, the F matrix must be Hermitian.

Exercise 6.1. A fancier way of showing that the total photon number is conserved is to show that the total
boson-number operator

N̂ ≡
∑
j

ĉ†j ĉj (6.6)

commutes with the unitary: [
Û , N̂

]
= 0. (6.7)

(1) Show that Eq. (6.7) holds if and only if

Û †N̂Û = N̂ , (6.8)

i.e., N̂ is constant in the Heisenberg picture.
(2) If |ψN ⟩ is an eigenstate of N̂ , i.e.,

N̂ |ψN ⟩ = N |ψN ⟩ , (6.9)

and Eq. (6.7) holds, show that Û |ψN ⟩ is also an eigenstate of N̂ with the same eigenvalue N .
(3) If Û = exp

(
− i

ℏĤt
)

, it turns out that Eq. (6.7) holds if

[Ĥ, N̂ ] = 0. (6.10)
Show that Eq. (6.10) holds, given Eqs. (6.3) and (6.6).

Exercise 6.2.

(1) Show that Ĥ can always be expressed as

Ĥ = ℏ
∑
l

ωld̂
†
l d̂l (6.11)

for some real numbers {ωl}, if ĉj =
∑

lWjld̂l for some unitary matrix Wjl.
(2) Assume only two modes. Find {ω1, ω2} and the W matrix if

F =

(
Ω−∆/2 κ

κ∗ Ω+∆/2

)
. (6.12)
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(This exercise shows that, for passive linear optics, one can always define a set of normal modes, which
oscillate in time simply as

d̂l(t) = d̂l exp(−iωlt) (6.13)

in the Heisenberg picture. These normal modes are in general hybrid modes—each d̂l(t) =
∑

j W
∗
jlĉj(t) is

a combination of EM modes and matter modes oscillating together. The quanta associated with these normal
modes are called polaritons [7]. The normal modes in dielectrics, optical fibers, dielectric resonators, etc., are
polariton modes, strictly speaking; it’s merely semantics whether we want to call them polaritons or photons.)

Side note. In case you have seen papers talking about non-Hermitian Hamiltonians, they may refer to a few
different things:

(1) Dynamics for open quantum systems interacting with an environment, in which case the evolution
of a density operator is not described by a unitary operator but something more general (completely
positive maps, master equations, etc.).

(2) Classical waves (e.g., classical optics) as mere analogs of quantum mechanics. Their “Hamiltonian”
is not the Hamiltonian in quantum mechanics, just an analogous quantity. Fundamentally, the classical
waves must still obey quantum mechanics, and a proper quantization of the classical theory is still
needed. The true Hamiltonian must still be Hermitian.

(3) Novel generalizations of quantum mechanics (even though we have zero experimental evidence so far
that such generalizations are needed.)

For closed quantum systems, you’d break quantum mechanics if your Hamiltonian is not Hermitian (see
Exercise 3.5), so you can’t do that. Learn proper open quantum system theory before you attempt such a stunt.

6.1.1. Side note: Light-matter interaction. Here we go a little deeper into how Eq. (6.3) arises from a
model of light-matter interactions by adopting an approach by Hopfield [8]. Suppose that the full Hamiltonian
for light and matter is given by

Ĥ = Ĥmatter + ĤEM + η̂, (6.14)

where Ĥmatter is the matter Hamiltonian, ĤEM is the Hamiltonian for the free EM fields, and

η̂ = −
˚

Ĵ(r) · Â(r)d3r (6.15)

models their interaction through the current density Ĵ(r) and the vector potential Â given by Eq. (5.37). Just
like how we quantize the EM fields, we may assume that the matter modes are a set of harmonic-oscillator
modes with the Hamiltonian

Ĥmatter = ℏ
∑
l

ω′
lb̂
†
l b̂l, (6.16)

where b̂l is the annihilation operator of each matter normal mode and ω′
l is its natural frequency. The current

density created by the matter may be written as

Ĵ(r) =
∑
l

b̂lwl(r) + H.c., (6.17)

where wl(r) is a mode function that expresses how each normal mode contributes to the current density, just
like how the EM normal modes contribute to the EM fields Ê, B̂, and Â.

Physically, the matter modes may arise from some kind of energy excitations, the quanta of which are often
called quasiparticles. Examples include electron-hole pairs (excitons) and lattice vibrations (phonons). We
would need to go even deeper into the rabbit hole of condensed-matter physics, such as solid-state physics, to
derive Eqs. (6.16) and (6.17). We won’t do that here and take Eqs. (6.16) and (6.17) as given.

Given Eqs. (5.37) and (6.17), the interaction Hamiltonian given by Eq. (6.15) becomes a linear combination
of the following two types of terms:

η̂ = −
˚

Ĵ(r) · Â(r)d3r =
∑
j,l

(
Cjlâ

†
j b̂l + H.c.

)
+
∑
j,l

(
Djlâj b̂l + H.c.

)
, (6.18)
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where C and D are matrices of constants. The first type of terms in the form of â†j b̂l and âj b̂†l are what we want
and can be modeled by the passive-linear-optics Hamiltonian given by Eq. (6.3), while the second type in the
form of âj b̂l and â†j b̂

†
l cannot be modeled by Eq. (6.3).

It turns out that the second type of terms can be thrown away if we make the so-called rotating-wave
approximation (see Sec. D.5). We go to the interaction picture, where

η̂easy(t) =
∑
j,l

[
Cjlâ

†
j b̂le

i(ωj−ω′
l)t + H.c.

]
+
∑
j,l

[
Djlâj b̂le

−i(ωj+ω′
l)t + H.c.

]
. (6.19)

In the rotating-wave approximation, we throw away terms that oscillate quickly in time in the Hamiltonian,
because those terms average to zero over time and their net effects are negligible. So the âj b̂l and â†j b̂

†
l terms are

thrown away, because they oscillate as e±i(ωj+ω′
l)t. We may also throw away some of the â†j b̂l and âj b̂†l terms if

|ωj − ω′
l| is large, keeping only the terms with ωj − ω′

l ≈ 0. In any case, we are left with the first type of terms
in the form of â†j b̂l and âj b̂†l . We may now go back to the Schrödinger picture, and the total Hamiltonian would
be a linear combination of only terms in the form of

â†j âj , b̂†l b̂l, â†j b̂l, âj b̂
†
l , (6.20)

so that the Hamiltonian can be written in the form of Eq. (6.3).

6.2. Heisenberg picture

With the Hamiltonian given by Eq. (6.3), the equations of motion for each ĉj(t) in the Heisenberg picture
is simple to derive. Let

ĉj(t) ≡ Û †(t)ĉjÛ(t). (6.21)

Then the Heisenberg equations become
dĉj(t)

dt
= −i

∑
l

Fjlĉl(t). (6.22)

If we think of ĉ(t) as a column vector of annihilation operators, then we can also rewrite Eq. (6.22) in matrix
notation:

dĉ(t)

dt
= −iF ĉ(t), (6.23)

where F ĉ(t) is understood as the matrix F applied to the column vector ĉ(t).
The Heisenberg-picture equations are linear and agree with what we know about passive linear optics in

classical optics. The b̂ operators play the same role as the polarization field P (r, t) in classical EM; see
Appendix F for a quick review. The new restriction imposed by the quantum treatment is that the matrix F must
be Hermitian.

The general solution of Eq. (6.23) is simple to write down:

ĉ(t) = exp(−iF t)ĉ(0). (6.24)

where exp(−iF t) is interpreted as the exponential of a matrix. We know from linear algebra that, since F is
Hermitian, exp(−iF t) must be a unitary matrix. Let’s call the unitary matrix V , so that we can write

ĉ(t) = V (t)ĉ(0), (6.25)

V (t) ≡ exp(−iF t). (6.26)

This result agrees with the classical coupled-mode equations for passive linear optics. In practice, we can often
just take the matrix V (t) from classical optics and plug it in Eq. (6.25), without redoing the quantum derivation.
We should make sure that V (t) is a unitary matrix, however, so that we don’t break quantum mechanics.

With a unitary V , you can verify the general fact that the entries of ĉ(t) still obey the fundamental
commutation relation

[ĉj(t), ĉ
†
l (t)] = δjl, (6.27)
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which must hold for any dynamics in general, not just passive linear optics, so we are assured that we haven’t
made any mistake.

The Heisenberg picture is convenient for computing expected values. For example, given Eq. (6.25), we
know ĉj(t) =

∑
l Vjl(t)ĉl, so the average amplitude of mode j at time t given an initial state |ψ⟩ (which doesn’t

change in time in the Heisenberg picture) is

⟨ψ| ĉj(t) |ψ⟩ =
∑
l

Vjl(t) ⟨ψ| ĉl |ψ⟩ , (6.28)

while the expected boson number in mode j at time t is

⟨ψ| ĉ†j(t)ĉj(t) |ψ⟩ =
∑
l,m

V ∗
jl(t)Vjm(t) ⟨ψ| ĉ†l ĉm |ψ⟩ , (6.29)

where ⟨ψ| ĉl |ψ⟩ and ⟨ψ| ĉ†l ĉm |ψ⟩ are determined by the initial state |ψ⟩.

Exercise 6.3. Verify Eq. (6.22).

Exercise 6.4. Derive Eq. (6.27) from Eq. (6.21) for any unitary Û(t). Also derive Eq. (6.27) independently
from Eq. (6.25), to show that the V matrix must be unitary.

Exercise 6.5. Find the V (t) matrix if there are only EM normal modes.

Exercise 6.6. Suppose that we redefine the J +K modes using a unitary W matrix:

ĉj =
∑
l

Wjld̂l, d̂l =
∑
j

W ∗
jlĉj . (6.30)

(1) Show that the Hamiltonian given by Eq. (6.3) becomes

Ĥ = ℏ
∑
j,l

F ′
jld̂

†
j d̂l, (6.31)

which has the same form as Eq. (6.3) but with a new coupling matrix F ′. Find F ′ in terms of the old
F and prove that F ′ remains Hermitian if F is Hermitian and W is unitary.

(2) Given Eq. (6.25), show that the Heisenberg equations of motion for d̂j(t) can also be written as

d̂j(t) =
∑
l

V ′
jl(t)d̂l(0), (6.32)

where V ′ is another matrix you should find in terms of F ′. Find also V ′ in terms of V and W . Show
that the V ′ in terms of V and W is also unitary.

(This exercise is important because it shows us that passive linear optics has the same form of Hamiltonian
and the same form of equations of motion regardless of how the modes are defined, as long as they are related
to the original ones by a unitary matrix W .)

6.3. Example: pulse propagation in free space

With only EM fields in free space, we don’t have matter modes to worry about, and we know that normal
sinusoidal modes have annihilation operators that obey âj(t) = âj exp(−iωjt) in the Heisenberg picture. In
practice, we don’t often deal with sinusoidal modes directly, however, and sources and detectors may be more
conveniently modeled using some other set of modes, e.g., optical pulses, which will behave like the coupled
oscillators that we studied in Sec. 3.5.

Let the annihilation operator of a new mode labeled by l be

f̂l =
∑
j

W ∗
jlâj , (6.33)

where {âj} are the operators for the sinusoidal modes. Recall from Sec. 3.5.2 that such a new mode has an
electric field that is a superposition of sinusoidal waves, and Wjl as a function of j = (k, s) is called the
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(k, s)-space amplitude that determines the weight of each sinusoidal wave in the new mode. In the Heisenberg
picture,

f̂l(t) ≡ Û †(t)f̂lÛ(t) =
∑
j

W ∗
jlÛ

†(t)âjÛ(t) =
∑
j

W ∗
jle

−iωjtâj =
∑
j

(
Wjle

iωjt
)∗
âj (6.34)

We see that f̂l(t) has the same form as Eq. (6.33), except that it is the annihilation operator for another mode,
with a (k, s)-space amplitude given by Wjle

iωjt.
To be more specific, let’s follow the optical-pulse example in Sec. 3.5.2 and write

Wjl = δs1δkx0δky0g(kz) exp(−ikzzl), (6.35)
so that the pulse mode consists of sinusoidal waves with one polarization s = 1, kx = 0, and ky = 0 only.
g(kz) governs the weight of each sinusoidal wave with a certain value of kz in the pulse mode. g can be the
rectangle function assumed in Sec. 3.5.2, or any function in general, e.g., Gaussian, but keep in mind that we’ll
often assume that g(kz) is highly concentrated near some wavenumber kz = k0 that is close to an optical value,
as shown in Fig. 6.1. Recall that, because of the phase factor exp(−ikzzl), this mode has an electric field that
looks like a pulse centered at z = zl. For clarity, I will rewrite f̂l(t) as

f̂l(t) = f̂(zl, t) =
∑
j

(
Wjle

iωjt
)∗
âj , (6.36)

to show explicitly the dependence of f̂l(t) on zl. For example, f̂(zl, 0) is just

f̂(zl, 0) = f̂l(0) = f̂l =
∑
j

W ∗
jlâj . (6.37)

Figure 6.1. A sketch of a typical g(kz) function.

Suppose that g(kz) = 0 for kz < 0, so that we have a superposition of sinusoidal waves with positive kz
only. Then ωj can be expressed as

ωj = ωk = c|kz| = ckz. (6.38)

The (k, s)-space amplitude of f̂(zl, t) in Eq. (6.36) becomes
Wjle

iωjt = δkx0δky0δs1g(kz) exp(−ikzzl) exp(ickzt) (6.39)
= δkx0δky0δs1g(kz) exp[−ikz(zl − ct)]. (6.40)

This looks very much like the Wjl given by Eq. (6.35) for the initial f̂(zl, 0) in Eq. (6.37), except that zl is
replaced by zl − ct. In other words, Wjle

iωjt is the (k, s)-space amplitude of a pulse centered at z = zl − ct.
Hence, we can write

f̂(zl, t) = f̂(zl − ct, 0). (6.41)

You may have seen this sort of solution to 1D pulse propagation in classical optics, but the precise physical
meaning of the Heisenberg picture is rather obscure. For example, suppose we’d like to compute the average
amplitude of the pulse mode centered at zl at time t. This average amplitude is given by

⟨ψ| f̂(zl, t) |ψ⟩ = ⟨ψ| f̂(zl − ct, 0) |ψ⟩ . (6.42)
Recall that |ψ⟩ is the state at t = 0 and it doesn’t change in the Heisenberg picture. This expression means that
the average amplitude of the pulse mode centered at zl at time t is equal to the average amplitude of the pulse
mode centered at zl − ct at time 0.



6.4. A SEQUENCE OF PULSES 57

In general, Eq. (6.41) implies that, if we measure the pulse mode centered at zl at time t, it is as if we apply
the same measurement to the pulse mode centered at zl − ct at time 0; the probability distributions will be
exactly the same. See Fig. 6.2 for an illustration.

a measurement of

this mode at time t...

is the same as a measurement of

this mode at time 0.

Figure 6.2. An interpretation of the Heisenberg picture for pulse propagation.

This result agrees with the classical picture that a pulse propagates from position zl − ct to position zl after
time t, even though the precise physical interpretation of the Heisenberg picture is a bit hard to comprehend.

6.4. A sequence of pulses

Instead of thinking about one pulse mode at one time, imagine a detector that sits at one position, say, z0,
and just waits for the pulses to come to it. Then the detector can measure multiple pulse modes over time. For
example, at t = 0, we have

f̂(z0, 0) = f̂(z0, 0), (6.43)

at t = ∆t, we have

f̂(z0,∆t) = f̂(z0 − c∆t, 0), (6.44)

which corresponds to a different pulse mode, and at t = 2∆t, we have

f̂(z0, 2∆t) = f̂(z0 − 2c∆t, 0), (6.45)

which is yet another pulse mode, and so on and so forth. Measurements at z0 of the pulses that come to the
detector one by one over time is equivalent to a measurement of all the pulse modes at one time 0; Fig. 6.3
offers an illustration. The former is how we measure pulses in practice, so it is more common in optics to write
the pulse-mode operators as

f̂(z0, 0), f̂(z0,∆t), f̂(z0, 2∆t), . . . (6.46)

at one position z0 and multiple times, rather than

f̂(z0, 0), f̂(z1, 0), f̂(z2, 0), . . . (6.47)

at one time and multiple positions.
If the pulse modes satisfy the usual commutation relations

[f̂(zl, 0), f̂(zm, 0)] = 0, [f̂(zl, 0), f̂
†(zm, 0)] = δlm (6.48)

for different positions at the same time, and we set

zl = z0 + l∆z, ∆t =
∆z

c
, (6.49)

so that ∆z is the distance between adjacent pulses, then we can write

f̂(z0, tm) = f̂(z0 − ctm, 0) = f̂(z0 −m∆z, 0), tm ≡ m∆t, m is an integer, (6.50)
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same

same

Figure 6.3. Multiple pulse modes can be measured by sitting at one position z0 and wait for
the pulses to come.

and obtain the following commutation relations for the operators at different times:[
f̂(z0, tm), f̂(z0, tn)

]
= 0,

[
f̂(z0, tm), f̂ †(z0, tn)

]
= δmn. (6.51)

At the end of the day, this is just a different convention of writing the operators for a sequence of pulse modes,
to make them look more like the convention in optics, where pulses are described and measured in the time
domain instead of the space domain.

For each pulse mode, it is also customary to describe its electric field in terms of time-domain quantities
rather than the space-domain quantities we assumed in Sec. 3.5.2. The translation is as follows:

(1) The rapid oscillation term exp(ik0z) for a pulse becomes exp[ik0(z − ct)] if we sit at one place and
measure the electric field in time, so ck0 is the frequency (in radian/s) of the oscillation in time.

(2) The spectrum of the pulse as a function of ω (frequency in radian/s) becomes g(ω/c), where we replace
kz by ω/c. For example, for the rectangle example in Sec. 3.5.2,

g(kz) ∝ rect

(
kz − k0
κ

)
, g(ω/c) = rect

(
ω − ck0
cκ

)
, (6.52)

so the center frequency of the spectrum in ω domain becomes

ω0 ≡ ck0, (6.53)

and the bandwidth of the spectrum becomes cκ.
(3) The pulse width in time domain is now ∝ 1/(cκ).
(4) Instead of using ∆z to describe the distance between adjacent pulses in space, we use ∆t = ∆z/c to

describe the spacing in time.
To give some typical numbers, if the center spatial frequency is k0 = 2π/λ0, where λ0 = 1550 nm (typical

wavelength for optical fiber communications), then ck0 ≈ 2π × 200 THz (1 THz (Tera-Hertz) is 1012 Hz). If
∆t = 1 ns, then the pulse repetition rate would be 1/∆t = 1 GHz.

6.5. Schrödinger picture

Advantages of the Heisenberg picture:
(1) The equations of motion are simple, at least for passive linear optics.
(2) They look exactly like those in classical optics.

Disadvantages:
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(1) The precise physical meaning is rather obscure.
(2) Many other subjects in quantum physics, such as quantum information and open quantum system

theory, use the Schrödinger picture almost exclusively, so it’s hard to relate any Heisenberg-picture
result to those subjects.

To adopt the Schrödinger picture, we need to compute Û(t) |ψ⟩. This is often possible for passive linear optics
and special initial states, by leveraging the simple math from the Heisenberg picture.

6.5.1. Coherent states. For an initial coherent state, we can take advantage of its definition in terms of the
displacement operator to write

Û(t) |α⟩ = Û(t)D̂(α) |vac⟩ = Û(t)D̂(α)Û †(t)Û(t) |vac⟩ . (6.54)

D̂(α) is now expressed in terms of the ĉ operators, i.e.,

D̂(α) = exp

∑
j

αj ĉ
†
j − H.c.

. (6.55)

(I could have written it as D̂(c : α) but I won’t, for brevity.) For passive linear optics, it can be shown that

Û(t) |vac⟩ = |vac⟩ . (6.56)

Then we need to compute Û(t)D̂(α)Û †(t). Using Eq. (B.76), we find that

Û(t)D̂(α)Û †(t) = exp

∑
j

αjÛ(t)ĉ†jÛ
†(t)− H.c.

. (6.57)

We also know
Û(t) = Û †(−t), (6.58)

so Û(t)ĉ†jÛ
†(t) = Û †(−t)ĉ†jÛ(−t) is just the Heisenberg picture of ĉ†j with negative time. We can then take

advantage of the Heisenberg-picture result given by Eq. (6.25) to find

Û(t)ĉ†jÛ
†(t) = Û †(−t)ĉ†jÛ(−t) =

∑
l

V ∗
jl(−t)ĉ

†
l . (6.59)

Notice that the matrix V (t) obeys V †(t) = exp(iF t) = V (−t), so

V ∗
jl(−t) = [V †(−t)]lj = [V (t)]lj = Vlj(t). (6.60)

Hence
Û(t)ĉ†jÛ

†(t) =
∑
l

Vlj(t)ĉ
†
l , (6.61)

Û(t)D̂(α)Û †(t) = exp

∑
j,l

αjVlj(t)ĉ
†
l − H.c.

. (6.62)

This is still a displacement operator, but now the complex amplitude in front of each ĉ†l becomes∑
j

Vlj(t)αj . (6.63)

Hence
Û(t)D̂(α)Û †(t) = D̂(V (t)α), (6.64)

Û(t) |α⟩ = |V (t)α⟩ . (6.65)

This is a neat result, because it says that, in the Schrödinger picture, a coherent state remains a coherent state,
and its amplitudeα evolves as V (t)α, just like the equation of motion given by Eq. (6.25) and just like classical
optics. This result is a lot more intuitive than the Heisenberg picture, although it is specific to a coherent state.

Exercise 6.7. Verify Eq. (6.56).
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Exercise 6.8. Assume that {âj} are annihilation operators of normal sinusoidal modes with j = (k, s). Let the
amplitude of a coherent state in the (k, s) space at time t = 0 be

αj ∝ δs1δkx0δky0g(kz) exp(−ikzz1). (6.66)

In other words, the excited mode of the coherent state is initially an optical pulse centered at z = z1. Assume
that g(kz) = 0 for kz < 0. Find Û(t) |α⟩ and show that the excited mode of the coherent state at time t is an
optical pulse centered at z = z1 + ct, as illustrated in Fig. 6.4.

A coherent state with

this excited mode at time 0...

becomes a coherent state with

this excited mode at time t.

Figure 6.4. Schrödinger picture of a coherent state when the excited mode is a pulse.

6.5.2. Sudarshan representation. Now we can exploit the simple result for a coherent state to study
the Schrödinger picture of an arbitrary density operator in terms of the Sudarshan representation in Sec. 5.4.
Suppose that the initial state is ρ̂, with a Sudarshan representation given by Φ(α). Then the Schrödinger-picture
density operator with passive linear optics becomes

ρ̂(t) ≡ Û(t)ρ̂Û †(t) =

ˆ
Φ(α)Û(t) |α⟩ ⟨α| Û †(t)d2Jα =

ˆ
Φ(α) |V (t)α⟩ ⟨V (t)α| d2Jα. (6.67)

If Φ is nonnegative, we can again think of this state as a noisy coherent state, the amplitude α as a classical
random variable, and Φ(α) as the probability density of the random variable at initial time. But bear in mind
that Eq. (6.67) works for any Φ in general, and we shall see that the Sudarshan representation is quite handy in
derivations involving passive linear optics.

Exercise 6.9. Show that Eq. (6.67) can also be expressed as

ρ̂(t) =

ˆ
Φ(V †(t)β) |β⟩ ⟨β| d2Jβ. (6.68)

Hint: you can assume the fact

d2Jβ ≡
J∏

j=1

(dReβj)(d Imβj) = d2Jα (6.69)

if β = Vα and V is a unitary matrix.

6.5.3. Fock representation. For an arbitrary pure state, we can still make some progress if we use the
Fock representation. For a discrete set of modes, the Fock representation of any state is given by Eq. (5.82).
The Schrödinger picture of the state becomes

Û(t) |ψ⟩ =
∞∑

N=0

∑
j∈{1,...,J}N

|Fock : j⟩ ⟨Fock : j| Û(t) |ψ⟩ . (6.70)
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The N -boson wavefunction can be expressed as

⟨Fock : j| Û(t) |ψ⟩ = 1√
N !

⟨vac| ĉj1 . . . ĉjN Û(t) |ψ⟩ . (6.71)

If we insert Û(t)Û †(t) in front of each ĉjn , we find

⟨Fock : j| Û(t) |ψ⟩ = 1√
N !

⟨vac| Û(t)︸ ︷︷ ︸
⟨vac|

Û †(t)ĉj1Û(t)︸ ︷︷ ︸
ĉj1 (t)

Û †(t)ĉj2Û(t)︸ ︷︷ ︸
ĉj2 (t)

. . . Û †(t)ĉjN Û(t)︸ ︷︷ ︸
ĉjN (t)

|ψ⟩ . (6.72)

It can be shown that ⟨vac| Û(t) = ⟨vac|. We can also exploit the Heisenberg-picture result given by Eq. (6.25)
once again to find that Û †(t)ĉjÛ(t) = ĉj(t) =

∑
l Vjl(t)ĉl, leading to

⟨Fock : j| Û(t) |ψ⟩ =
∑

l1,...,lN

Vj1l1(t) . . . VjN lN (t)
1√
N !

⟨vac| ĉl1 . . . ĉjl |ψ⟩ (6.73)

=
∑

l1,...,lN

Vj1l1(t) . . . VjN lN (t) ⟨Fock : l|ψ⟩ . (6.74)

⟨Fock : l|ψ⟩ is the N -photon wavefunction at t = 0 (unnormalized). We may think of Vj1l1 . . . VjN lN as a
Green’s function G(j, t|l, 0), also called a propagator:

⟨Fock : j| Û(t) |ψ⟩ =
∑
l

G(j, t|l, 0) ⟨Fock : l|ψ⟩ , (6.75)

G(j, t|l, 0) = Vj1l1(t) . . . VjN lN (t). (6.76)

In particular, when there is only one boson (N = 1),

G(j, t|l, 0) = Vj1l1(t), (6.77)

so we can call V the one-particle propagator. For N bosons in passive linear optics, the total propagator is
simply a product of one-particle propagators.

For example, suppose that the initial wavefunction is a product of one-particle functions:

⟨Fock : l|ψ⟩ ∝ ϕ(l1) . . . ϕ(lN ). (6.78)

We may interpret this as a wavefunction of independent bosons, since the probability density∝ |ϕ(l1) . . . ϕ(lN )|2
is that of independent random variables. In particular, a coherent state gives such wavefunctions for all N (Ex-
ercise 5.7). Then

⟨Fock : j| Û(t) |ψ⟩ =

∑
l1

Vj1l1(t)ϕ(l1)

 . . .
∑

lN

VjN lN (t)ϕ(lN )

. (6.79)

Each one-particle function ϕ(ln) simply evolves on its own, the wavefunction remains a product of one-particle
functions, and the bosons at any time remain independent from one another.

Passive linear optics in the Fock representation resembles a model of bosons that do not interact with one
another. But it is important that we do not confuse this particle picture with the oscillator picture, where the
oscillators are coupled by passive linear optics.

6.6. Example: lossless beam splitter

A beam splitter is a basic workhorse in passive linear optics (https://en.wikipedia.org/wiki/Beam
_splitter). It is used typically with two input optical beams aligned carefully so that they meet at the beam
splitter and produce two output optical beams, as depicted in Fig. 6.5.

https://en.wikipedia.org/wiki/Beam_splitter
https://en.wikipedia.org/wiki/Beam_splitter
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Figure 6.5. An illustration of a beam splitter.

6.6.1. Heisenberg picture. Suppose that we measure a pulse mode at time T in each of the two output
beams. Let the Heisenberg-picture annihilation operators be â3(T ) and â4(T ), respectively. The interaction
between all the EM modes and the matter modes in the beam splitter is in general quite complicated, and the
two operators would depend on all the other modes:

â3(T ) = V31(T )â1(0) + V32(T )â2(0) + . . . , (6.80)
â4(T ) = V41(T )â1(0) + V42(T )â2(0) + . . . . (6.81)

Instead of deriving the V matrix from first principles, we cheat a little bit by peeking at classical optics and ask
how we can make our equations of motion consistent with it.

Let α3(T ) and α4(T ) be the c-number amplitudes of those output pulse modes in classical optics. For a
beam splitter, they can be expressed in terms of the c-number amplitudes for two input pulse modes, denoted as
α1(0) and α2(0), like this: (

α3(T )
α4(T )

)
=

(
τ r
r′ τ ′

)
︸ ︷︷ ︸

≡S

(
α1(0)
α2(0)

)
, (6.82)

where τ, τ ′ are the transmission coefficients of the beam splitter and r′, r′ are the reflection coefficients (all
complex numbers). This relation is called an input-output relation and the S matrix is called the scattering
matrix. There may be many modes in the problem, but at a certain time T and for the output pulse modes we
are looking at, the two output amplitudes α3,4(T ) depend on only two input amplitudes α1,2(0):

(1) α3(T ) = τα1(0)+rα2(0) means that the output is a superposition of two contributions: the first input
α1(0) multiplied by a transmission coefficient τ , and the second input α2(0) multiplied by a reflection
coefficient r.

(2) α4(T ) = r′α1(0)+ τ
′α2(0) means that the output is a superposition of the first input α1(0) multiplied

by a reflection coefficient r′ and the second input α2(0) multiplied by a transmission coefficient τ ′.
For our quantum equations to be consistent with the classical ones, they should obey

⟨ψ| âj(T ) |ψ⟩ = αj(T ). (6.83)

Eqs. (6.80) and (6.81) can be made to give the classical Eq. (6.82) if we set(
V31(T ) V32(T )
V41(T ) V42(T )

)
= S =

(
τ r
r′ τ ′

)
, (6.84)

V3j(T ) = 0 and V4j(T ) = 0 for j = 3, 4, . . . , (6.85)
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so that â3(T ) and â4(T ) depend only on â1(0) and â2(0) and not the other âj(0)’s. We obtain(
â3(T )
â4(T )

)
= S

(
â1(0)
â2(0)

)
, (6.86)

the averages of which agree with the classical Eq. (6.82).
This method seems quick and dirty, so we should double-check that everything remains legal in the quantum

case. Remember that, in the quantum case, the big V matrix must be unitary. Then Eq. (6.85) holds and we
have only two inputs and two outputs if and only if the scattering matrix S is unitary (see Exercise 6.10).
This is called the lossless assumption. To reassure ourselves, we can double-check that, given a unitary S, the
usual commutation relations

[âj(T ), âl(T )] = 0,
[
â3(T ), â

†
3(T )

]
=
[
â4(T ), â

†
4(T )

]
= 1,

[
â3(T ), â

†
4(T )

]
= 0 (6.87)

all hold.
The lossless assumption is an approximation because any optical component in practice is a little lossy, and

S is not exactly unitary. The approximation may be acceptable, however, if the material of the beam splitter has
very low loss (e.g., dielectrics, glasses, crystals) given the spectrum of the pulses, the bulk and the surfaces are
very uniform so that there’s little scattering into other modes, and your alignment of the optical beams is very
good, etc.

There are also stringent requirements on the electric fields of the pulse modes so that the two input modes
couple exactly into two output modes and not more. A detailed study of the requirements would require a deeper
dive into classical optics that we won’t attempt here; it suffices to say that the pulses should have identical pulse
shapes (e.g., identical center frequency ω0 = ck0, identical spectrum g(ω/c)), their spectrum should fall on
the transparent frequency band of the beam splitter where there is negligible loss and dispersion, and the pulses
arrive at beam splitter at the right time, at the right spots, and at the correct angles. The timing issue is less of a
problem if we have continuous-wave (CW) laser beams, which can be regarded as sequences of pulses.

At the end of the day, the main reason we make the assumption is simplicity: the input-output relation
involves only two inputs and two outputs. We can worry about more complicated models later.

Exercise 6.10. Assume that V is unitary.
(1) Prove that Eq. (6.85) holds if and only if the scattering matrix S given by Eq. (6.84) is unitary.
(2) Prove that the scattering matrix S given by Eq. (6.84) is unitary if and only if

Vj1(T ) = 0 and Vj2(T ) = 0 for j ̸= 3 and j ̸= 4. (6.88)

(These exercises imply that, assuming that V is unitary, S is unitary if and only if V looks like this:

V =



0 0
0 0
V31 V32 0 . . . 0
V41 V42 0 . . . 0
0 0
...

...
0 0


, (6.89)

so â3(T ) and â4(T ) depend on â1(0) and â2(0) only (V3j(T ) = V4j(T ) = 0 for j ̸= 1 and j ̸= 2) and also no
other output modes depend on â1(0) and â2(0) (Vj1(T ) = Vj2(T ) = 0 for j ̸= 3 and j ̸= 4.)

Exercise 6.11. Show that, given a unitary S, we have

|α3(T )|2 + |α4(T )|2 = |α1(0)|2 + |α2(0)|2 (6.90)

in the classical case and

â†3(T )â3(T ) + â†4(T )â4(T ) = â†1(0)â1(0) + â†2(0)â2(0) (6.91)

in the quantum case. Eq. (6.91) means that the total photon number is conserved (i.e., a measurement of the
total output photon number at time t is equivalent to a measurement of the total input photon number at time 0).

(This is why we call a unitary S the lossless assumption.)
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Exercise 6.12. A beam splitter is called 50-50 if

|τ |2 = |r|2 = |τ ′|2 = |r′|2 = 1

2
, (6.92)

since

|α3(T )|2 = |α4(T )|2 =
1

2
|α1(0)|2 (6.93)

if α2(0) is zero and

|α3(T )|2 = |α4(T )|2 =
1

2
|α2(0)|2 (6.94)

if α1(0) is zero. Find the relations among ∠τ , ∠r, ∠τ ′, and ∠r′ if the scattering matrix is unitary.

Exercise 6.13. Prove that, if V is unitary and S is given by Eq. (6.84) in terms of V31, V32, V41, V42, then
Eq. (6.82) implies

|α3(T )|2 + |α4(T )|2 ≤ |α1(0)|2 + |α2(0)|2, (6.95)

so the beam splitter is in general lossy in the context of classical optics.

Exercise 6.14. If the initial state for a lossless beam splitter is a coherent state for mode 1 and 2 and vacuum for
all the other modes in a tensor product like this:

|ψ⟩ = |α1(0)⟩ ⊗ |α2(0)⟩ ⊗ |vac⟩ ⊗ · · · ⊗ |vac⟩ . (6.96)

What is the state at time T in the Schrödinger picture?

6.6.2. Schrödinger picture. Here we would like to derive something like Eq. (6.67) for a lossless beam
splitter, which involves many modes in general, even though only four modes seem to matter in the Heisenberg
picture.

From Exercise 6.9, we know that, for passive linear optics,

Û ρ̂Û † =

ˆ
Φ(V †β) |β⟩ ⟨β| d2Jβ, (V †β)j =

∑
k

V ∗
kjβk, (6.97)

where the T dependence of Û(T ) and V (T ) is not explicitly stated for brevity. From Exercise 6.10, we also
know that, for a lossless beam splitter,

Vk1 = Vk2 = 0 for k ̸= 3 or 4, V3j = V4j = 0 for j ̸= 1 or 2. (6.98)

Hence

Φ(V †β) = Φ(V ∗
31β3 + V ∗

41β4, V
∗
32β3 + V ∗

42β4, . . . ), (6.99)

where the . . . variables all do not depend on β3 or β4 and depend on β1, β2, β5, β6, . . . only. Now if the initial
state is separable like

ρ̂ = ρ̂12 ⊗ ρ̂34...J , (6.100)

where ρ̂12 is the initial state for mode 1 and 2 and ρ̂34...J is the initial state for the rest of the modes, we can
write the initial Φ(α) as

Φ(α) = Φ12(α1, α2)Φ34...J(α3, α4, . . . ), (6.101)

where Φ12 is the Sudarshan representation of ρ̂12 and Φ34... is that of ρ̂34...J . Then the Sudarshan representation
of Û ρ̂Û † at time T becomes

Φ(V †β) = Φ12(V
∗
31β3 + V ∗

41β4, V
∗
32β3 + V ∗

42β4)Φ34...J(. . . ). (6.102)
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This is separable as a product of Φ12(V
∗
31β3 + V ∗

41β4, V
∗
32β3 + V ∗

42β4), which is a function of (β3, β4) only, and
Φ34...J(. . . ), which does not depend on (β3, β4) and is a function of β1, β2, β5, β6, . . . only. Hence

Û(ρ̂12 ⊗ ρ̂34...J)Û
†

=

ˆ
Φ12(V

∗
31β3 + V ∗

41β4, V
∗
32β3 + V ∗

42β4)Φ34...J(. . . ) |β1, β2, . . .⟩ ⟨β1, β2, . . .| d2β1d2β2 . . . d2βJ (6.103)

=

ˆ
Φ34...J(. . . ) |β1, β2⟩ ⟨β1, β2| ⊗

[ˆ
Φ12(V

∗
31β3 + V ∗

41β4, V
∗
32β3 + V ∗

42β4) |β3, β4⟩ ⟨β3, β4| d2β3d2β4
]

︸ ︷︷ ︸
≡ρ̂34(T )

⊗ |β5, β6, . . .⟩ ⟨β5, β6, . . .| d2β1d2β2d2β5d2β6 . . . d2βJ . (6.104)

This expression is a bit hard to read but it means that the state is separable as a tensor product of a density operator
ρ̂34(T ) for mode 3,4 and a density operator for the other modes, as ρ̂34(T ) doesn’t depend on β1, β2, β5, β6, . . .
and is in some sense factorizable from the

´
(. . . )d2β1d

2β2d
2β5d

2β6 . . . integral. In particular, if we take the
partial trace with respect to mode 1,2,5,6,. . . , we obtain

tr1256...

[
Û(ρ̂12 ⊗ ρ̂34...J)Û

†
]
= ρ̂34(T ). (6.105)

This final state ρ̂34(T ) for mode 3 and 4 can be rewritten as

ρ̂34(T ) =

ˆ
Φ12(V

∗
31β3 + V ∗

41β4, V
∗
32β3 + V ∗

42β4) |β3, β4⟩ ⟨β3, β4| d2β3d2β4 (6.106)

=

ˆ
Φ12(α1, α2)

∣∣∣∣(V31 V32
V41 V42

)(
α1

α2

)〉〈(
V31 V32
V41 V42

)(
α1

α2

)∣∣∣∣ d2α1d
2α2 (change of variables)

(6.107)

=

ˆ
Φ12(α1, α2)

∣∣∣∣S(α1

α2

)〉〈
S

(
α1

α2

)∣∣∣∣ d2α1d
2α2,

(
S =

(
V31 V32
V41 V42

))
(6.108)

where the change of variables is given by

α1 = V ∗
31β3 + V ∗

41β4, α2 = V ∗
32β3 + V ∗

42β4,

(
α1

α2

)
= S†

(
β3
β4

)
,

(
β3
β4

)
= S

(
α1

α2

)
, (6.109)

and we have written the coherent state for mode 3 and 4 as

|β3, β4⟩ =
∣∣∣∣(β3β4

)〉
=

∣∣∣∣S(α1

α2

)〉
. (6.110)

Eq. (6.108) looks like Eq. (6.67), except that it involves the scattering matrix S of the beam splitter and the final
state ρ̂34(T ) is for mode 3 and 4. For example, if the initial state for mode 1 and 2 is a coherent state

ρ̂12 = |α1, α2⟩ ⟨α1, α2| , (6.111)

then

Φ12(α
′
1, α

′
2) = δ2(α′

1 − α1)δ
2(α′

2 − α2), (changed dummy (α1, α2) in Eq. (6.108) to (α′
1, α

′
2)) (6.112)

ρ̂34(T ) =

∣∣∣∣S(α1

α2

)〉〈
S

(
α1

α2

)∣∣∣∣ , (6.113)

which is still a coherent state, and its amplitudes are given by the classical input-output relations for the beam
splitter.

Exercise 6.15.
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(1) Consider two modes 1 and 2 only. Show that a coherent state
∣∣∣∣S(α1

α2

)〉
12

for the two modes, where

S is a unitary matrix, can be expressed as∣∣∣∣S(α1

α2

)〉
12

= Û

∣∣∣∣(α1

α2

)〉
12

, Û = exp

−iT
2∑

j=1

2∑
k=1

Fjkâ
†
j âk

, S = exp(−iFT ), (6.114)

where Û is a unitary operator.
(2) Define an operator Â as

Â ≡
∞∑
n=0

∞∑
m=0

|n,m⟩34 ⟨n,m|12 , Â |n,m⟩12 = |n,m⟩34 , (6.115)

i.e., it maps any number state in H1 ⊗H2 to a number state in H3 ⊗H4 with the same numbers n,m.
Show that it also maps any coherent state for mode 1 and 2 to a coherent state for mode 3 and 4 with
the same amplitudes, i.e.,

Â |β3, β4⟩12 = |β3, β4⟩34 . (6.116)

(3) Show that Â is a unitary operator from H1⊗H2 to H3⊗H4, i.e., Â†Â = Î1⊗ Î2 and ÂÂ† = Î3⊗ Î4.
Show that ÂÛ is also a unitary operator from H1 ⊗H2 to H3 ⊗H4.

(4) For a lossless beamsplitter, show that we can write

ρ̂34(T ) = B̂ρ̂12B̂
†, (6.117)

where B̂ = ÂÛ is a unitary operator from H1 ⊗H2 to H3 ⊗H4, so that ρ̂34(T ) for mode 3 and 4 is
related to the initial ρ̂12 for mode 1 and 2 through some unitary operator B̂.

(Our construction of the unitary operator B̂ = ÂÛ is mathematical, aiming to show that a unitary
B̂ exists mathematically to relate any input state to the output state for a beamsplitter with any unitary
scattering matrix S. Deriving B̂ from real physics would be much harder.)



CHAPTER 7

Loss

7.1. Heisenberg picture

The standard way of modeling optical loss in a material is to assume passive linear optics, where some of
the modes are inaccessible to our experimenter. Those inaccessible modes can be matter modes, such as energy
excitations in electrons or vibrations of the crystal, or EM modes, such as scattered light in directions we can’t
collect. For simplicity, let’s consider loss in one optical mode, e.g., one pulse in an optical fiber. Let â1(0) be
the annihilation operator for a pulse mode at the input end of the fiber and â3(T ) be the operator for a pulse
mode at the output end. If we peek at the classical equation

α3(T ) = τα1(0), (7.1)

where τ is the transmission coefficient with |τ |2 < 1, and just mindlessly write

â3(T ) = τ â1(0), (7.2)

then

[â3(T ), â
†
3(T )] = |τ |2[â1(0), â†1(0)] = |τ |2 < 1, (7.3)

and we would have committed a cardinal sin in quantum mechanics: violating the commutation relation
for an annihilation operator. Recall that [â3(T ), â†3(T )] = 1 must hold for any t in the Heisenberg picture
â3(T ) = Û †â3Û for any unitary Û ; if Û is not unitary, all hell breaks loose in quantum mechanics (e.g.,
probability is not conserved, Heisenberg uncertainty relations no longer hold.)

We are not so brave to break quantum mechanics in this book, so we correct our model. The minimal model
that works is the two-input-two-output relation given by Eq. (6.86), just like that for a beam splitter, with a
unitary S, as illustrated in Fig. 7.1. Now we have

â3(T ) = τ â1(0) + râ2(0), (7.4)

including â2(0) for an inaccessible input mode. Since S is unitary, SS† = I , meaning that

SS† =

(
τ r
r′ τ ′

)(
τ∗ r′∗

r∗ τ ′∗

)
=

(
1 0
0 1

)
. (7.5)

In particular,

|τ |2 + |r|2 = 1. (7.6)

Most importantly, this relation allows |τ |2 to go below 1, so we can use it to model loss. With [âj(0), â†l (0)] = δjl
for the two input modes, we obtain

[â3(T ), â
†
3(T )] = |τ |2 + |r|2 = 1, (7.7)

which restores the fundamental commutation relation.

Side note. |τ |2 must remain below 1 in this model. If you want to model an amplifier by making |τ |2 > 1, you’ll
have to go beyond passive linear optics (another topic for another day).

Eq. (7.4) is the simplest example of a quantum dissipation-fluctuation relation: it says that, if there
is dissipation (i.e., loss, with |τ |2 < 1), we need to include an additional input â2(0), the mode of which is
inaccessible and acts like a noise source.

67
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inaccessible

Figure 7.1. A beam-splitter model for optical loss.

Our output now depends on the initial state of the two input modes 1 and 2. Remember that mode 1 is
something we can control, and mode 2 is inaccessible. A common assumption of the initial state is that mode 1
and 2 are initially independent, i.e., the density operator is given by

ρ̂ = ρ̂1 ⊗ ρ̂2, (7.8)

and ρ̂2 is a thermal state. The output mean amplitude becomes

tr [â3(T )ρ̂] = τ tr [â1(0)ρ̂1] + r tr [â2(0)ρ̂2]. (7.9)

We obtain the classical Eq. (7.1) if tr[â2(0)ρ̂2] = 0, which is indeed the case for a thermal ρ̂2.
More interestingly, suppose we measure the quadrature

q̂3(T ) ≡
1√
2

[
â3(T ) + â†3(T )

]
(7.10)

=
1√
2

[
τ â1(0) + τ∗â†1(0)

]
+

1√
2

[
râ2(0) + r∗â†2(0)

]
. (7.11)

then it can be shown that the variance is〈
∆q23(T )

〉
= |τ |2

〈
∆O2

1(0)
〉
+ |r|2

〈
∆O2

2(0)
〉
, (7.12)

Ô1(0) ≡
1√
2|τ |

[
τ â1(0) + τ∗â†1(0)

]
, (7.13)

Ô2(0) ≡
1√
2|r|

[
râ2(0) + r∗â†2(0)

]
. (7.14)

where Ô1(0) and Ô2(0) are quadrature operators of mode 1 and 2,
〈
∆O2

1(0)
〉

is in terms of ρ̂1, and
〈
∆O2

2(0)
〉

is in terms of ρ̂2. We see that, in the quantum case, an additional variance
〈
∆O2

2(0)
〉

due to mode 2 must
contribute to the output variance—this is why I said earlier that mode 2 acts like a noise source and why we call
Eq. (7.4) a dissipation-fluctuation relation. For a thermal ρ̂2 with mean number ⟨n2⟩ in particular,〈

∆O2
2(0)

〉
= ⟨n2⟩+

1

2
. (7.15)

Even if ρ̂2 is vacuum (⟨n2⟩ = 0), this term is still nonzero.

Exercise 7.1. Verify Eq. (7.12).

Exercise 7.2. An optical pulse passes through two lossy optical components. For the first component, the
input-output relation is

â3(T ) = τ1â1(0) + r1â2(0), |τ1|2 + |r1|2 = 1, (7.16)
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and for the second component, the input-output relation is

â5(T + T ′) = τ2â3(T ) + r2â6(0), |τ2|2 + |r2|2 = 1, (7.17)

where mode 6 is another inaccessible mode. Show that the net input-output relation can be expressed as

â5(T + T ′) = τ â1(0) + rb̂(0), (7.18)

where τ and r also satisfy Eq. (7.6) and b̂(0) is the annihilation operator for a new mode in terms of â2(0) and
â6(0).

(The point of this exercise is to show that Eqs. (7.4) and (7.6) can model cascaded losses, so they are quite
general.)

Exercise 7.3. Suppose that ρ̂1 = |α⟩ ⟨α| is a coherent state and ρ̂2 is vacuum.
(1) Find

〈
∆q23(T )

〉
.

(2) The signal-to-noise ratio (SNR) of the measurement is defined as

SNR ≡ ⟨q3(T )⟩2〈
∆q23(T )

〉 , (7.19)

⟨q3(T )⟩ ≡ tr [q̂3(T )ρ̂1]. (7.20)

Find the SNR in terms of

⟨O1(0)⟩ ≡ tr[Ô1(0)ρ̂1] (7.21)

and call it SNR|α⟩.
(3) Suppose now that ρ̂1 is a “squeezed” state with the same initial mean ⟨O1(0)⟩ as that of the coherent

state, but its initial variance of Ô1 is given by〈
∆O2

1(0)
〉
=
s

2
, (7.22)

where s ≤ 1 is a squeezing parameter. Find the SNR when |τ |2 = 1. Find SNR/SNR|α⟩, i.e., how
much the SNR is enhanced relative to a coherent state when there is no loss. Find SNR/SNR|α⟩ for a
given |τ |2 and s.

(4) Assume a fixed s < 1. If |τ |2 is reduced, does SNR/SNR|α⟩ increase or decrease? What is
SNR/SNR|α⟩ as |τ |2 → 0?

(5) If s = 0.1, plot SNR/SNR|α⟩ as a function of 0 ≤ |τ |2 ≤ 1. Find the minimum |τ |2 so that
SNR/SNR|α⟩ ≥ 2, i.e., find the minimum transmission so that there remains a 3dB enhancement.

(This exercise shows how loss affects the SNR in a simple sensing problem.)

7.2. Schrödinger picture

The way we model loss by passive linear optics is an example of a more general strategy of modeling an
open quantum system that interacts with an environment.

(1) At t = 0, there are some accessible degrees of freedom that we call system A and some inaccessible
degrees of freedom that we call system B or the initial bath. Let ρ̂A be the density operator of system
A and ρ̂B be that of system B.
• In the beam-splitter model of loss, system A would be the input mode 1 and system B would be

the input mode 2 (and everything else).
(2) Over time, system A and B may interact. The dynamics is modeled by a unitary operator Û .
(3) At final time T , again only some degrees of freedom are accessible and some are not. We call the

accessible part at time T system C, which may not be the same as system A. We call the inaccessible
part at time T system D or the final bath.
• In the beam-splitter model, system C would be the output mode 3. System D would be the output

mode 4 and everything else.
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The Schrödinger picture is more popular in open quantum system theory, and the main problem in the Schrödinger
picture is to compute the density operator of the accessible system C at time T , which is given by

ρ̂C(T ) = trD

[
Û(ρ̂A ⊗ ρ̂B)Û

†
]
, (7.23)

where trD is the partial trace over the inaccessible system-D Hilbert space (see Sec. B.10.2). Decoherence of
a system, in particular, is modeled this way. Once we have ρ̂C(T ), we can compute the probability distribution
of any measurement on system C at time T using Born’s rule.

Eq. (7.23) is usually difficult to solve, but we can use Sec. 6.6.2, and Eq. (6.108) in particular, for our
beam-splitter model of loss. At t = 0, ρ̂A = ρ̂1 is the state of the first input mode, and ρ̂B = ρ̂2 ⊗ ρ̂34...J is
the state of the initial bath. After the beam-splitter interaction, Eq. (6.108) gives the density operator ρ̂34(T )
for output mode 3 (system C) and output mode 4 (part of system D). We can compute ρ̂C(T ) = ρ̂3(T ) from
ρ̂34(T ) simply by tracing out mode 4:

ρ̂3(T ) = tr4 [ρ̂34(T )] = tr4

ˆ
Φ12(α1, α2)

∣∣∣∣S(α1

α2

)〉〈
S

(
α1

α2

)∣∣∣∣ d2α1d
2α2 (7.24)

=

ˆ
Φ12(α1, α2) tr4

[∣∣∣∣S(α1

α2

)〉〈
S

(
α1

α2

)∣∣∣∣]d2α1d
2α2. (7.25)

Φ12(α1, α2), the Sudarshan representation of mode 1 and 2, is the product of the representation Φ1(α1) for
mode 1 and Φ2(α2) = δ2(α2) for mode 2, assumed to be in vacuum state here. The partial trace of a coherent
state is also easy, since the coherent state is separable. Let(

β3
β4

)
= S

(
α1

α2

)
=

(
τα1 + rα2

r′α1 + τ ′α2

)
. (7.26)

Then the partial trace is simply

tr4 (|β3, β4⟩ ⟨β3, β4|) = tr4 (|β3⟩ ⊗ |β4⟩ ⟨β3| ⊗ ⟨β4|) = tr4 (|β3⟩ ⟨β3| ⊗ |β4⟩ ⟨β4|) = |β3⟩ ⟨β3| , (7.27)

where β3 = τα1 + rα2. Hence

ρ̂3(T ) =

ˆ
Φ1(α1)δ

2(α2) |τα1 + rα2⟩ ⟨τα1 + rα2| d2α1d
2α2 =

ˆ
Φ1(α1) |τα1⟩ ⟨τα1| d2α1. (7.28)

For example, if the input mode 1 is in a coherent state,

ρ̂1 = |α⟩ ⟨α| , Φ1(α1) = δ2(α1 − α), (7.29)

then the state of output mode 3 is simply the coherent state

ρ̂3(T ) = |τα⟩ ⟨τα| (7.30)

with a reduced amplitude.
We can draw two conclusions from this calculation:
(1) A classical state with a nonnegative Sudarshan representation Φ1(α1) will remain a classical state after

loss, since ρ̂3(T ) also has a nonnegative Sudarshan representation (Exercise 7.4).
(2) A coherent state will remain a coherent state after loss, even though the amplitude is reduced.

A nonclassical input state, on the other hand, is less robust to loss and become less nonclassical, but it is outside
the scope of this course to study what happens there; you may go through Exercise 7.5 to get a taste of what’s
going on.

Exercise 7.4. Find the Sudarshan representation Φ3(α3, T ) of ρ̂3(T ) from Eq. (7.28). Show that, if Φ1(α1) ≥ 0
for all α1, then Φ3(α3, T ) also stays nonnegative for all α3.

Exercise 7.5. (Numerical exercise). Assume that there are only two modes 1 and 2 for simplicity and a unitary
operator given by

Û(T ) = exp

−iT
2∑

j=1

2∑
k=1

Fjkâ
†
j âk

. (7.31)
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(1) If the Heisenberg equations of motion are given by
â1(T ) = τ â1(0) + râ2(0), â2(T ) = r′â1(0) + τ ′â2(0), (7.32)

find FT in terms of S =

(
τ r
r′ τ ′

)
.

(2) Assume initial states ρ̂1 = |n1⟩ ⟨n1| and ρ̂2 = |0⟩ ⟨0|. Compute the final density matrix ⟨n| ρ̂1(T ) |m⟩
of mode 1 in the Schrödinger picture

ρ̂1(T ) = tr2

[
Û(ρ̂1 ⊗ ρ̂2)Û

†
]
. (7.33)

(3) Compute the entropy of the state given by
S ≡ − tr [ρ̂1(T ) ln ρ̂1(T )], (7.34)

for various values of n1 and |τ |2. The operator logarithm ln ρ̂1(T ) can be computed by the matrix
logarithm https://en.wikipedia.org/wiki/Logarithm_of_a_matrix. Observe how the
entropy changes as a function of n1 and |τ |2.

https://en.wikipedia.org/wiki/Logarithm_of_a_matrix


CHAPTER 8

Measurements

8.1. Simple and generalized measurements

The simplest kind of quantum measurement can be modeled by assuming an orthonormal basis of the
Hilbert space {|en⟩ : n = 1, 2, . . . }, such that the probability of an outcome n ∈ {1, 2, . . . } is given by

Pn = ⟨en| ρ̂ |en⟩ . (8.1)

The jargons “von Neumann measurements” and “projective measurements” in the literature are all essentially
this simple kind. We’ve already encountered some examples in quantum optics, such as photon counting. If
the outcome is a continuous variable, we use Dirac’s trick to write down a probability density, as reviewed in
Appendix D.

The most general model of quantum measurement assumes that we can enlist an ancilla system for help
(ancilla is a fancy word for an aid). The density operator of the system augmented by the ancilla would be
ρ̂ ⊗ ρ̂B , and then we model the measurement on the augmented system using an orthonormal basis {|fn⟩} on
the larger Hilbert space:

Pn = ⟨fn| ρ̂⊗ ρ̂B |fn⟩ . (8.2)

All quantum measurements can be modeled this way.
The variety of quantum measurements allowed by these rules is huge in theory, but in practice we can only

perform some of them in optics. This chapter discusses some basic types of measurements in quantum optics
and how they can be implemented experimentally.

The discussion will be simple and idealistic, even though real devices will have all sorts of technical
imperfections. To model those technical imperfections mathematically, we would have to use a lot more
probability theory, so we won’t go there.

8.2. Photon counting

We use the usual number basis to model ideal photon counting. For one mode, the outcome would have a
probability distribution given by

Pn = ⟨n| ρ̂ |n⟩ . (8.3)

For J modes, the probability distribution is now a function of J photon numbers:

Pn1,...,nJ = ⟨n1, . . . , nJ | ρ̂ |n1, . . . , nJ⟩ . (8.4)

These are ideal assumptions. In current technology, even the best photodetectors, e.g., avalanche photodiodes
and transition-edge detectors, have a lot of technical problems, such as

(1) Poor photon-number resolution: they can’t tell exactly the number of photons, e.g., they can only tell
if it’s zero or nonzero, or they can give only a rough range of the photon numbers, not the precise
number.

(2) Inefficiency: only a fraction of the photons can be detected.
(3) Dark counts: Even when there is no photon, there are false-positive counts.
(4) Thermal noise: the electronics in the detector may add thermal noise to the signal. Similar to dark

counts. This is why a lot of photodetectors need to be cooled for optimal performance.
(5) Dead time: After a detection event, certain detectors would take some time to reset before it can detect

photons again.
Because of these problems, one needs to make a lot of measurements and do a lot of calibration and data

processing in quantum optics experiments, or buy very expensive detectors that have better specs. If the detector
is bad, experimental results can still be consistent with quantum calculations for the expected values, such as
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tr(n̂ρ̂), since one can take many measurements and compute the sample average to reduce the noise, but we
shouldn’t expect the variance of the experimental outcome or the probability distribution to agree well with
Born’s rule, unless the experiment is amazingly good.

Technical problems notwithstanding, all photodetectors at optical frequencies (infrared, visible, etc.) per-
form some version of photon counting, i.e., they measure the optical energy or power. Since energy and power
are the square of the EM fields, they are also called square-law detectors.

Side note. Sometimes people reserve the name “photon counting” for detectors that can have very good photon-
number resolution, but let’s not be pedantic here.

8.3. Homodyne detection

Since we only have square-law detectors in optics, we’d need a more complicated setup if we want to
measure other observables, e.g., the quadratures. A standard approach to measure a quadrature is homodyne
detection: Combine an optical beam with another much stronger beam called the local oscillator, typically a
laser beam, using a beam splitter, and then measure the photon numbers of the two output ports, as depicted in
Fig. 8.1.

Side note. “Homo” in the word homodyne means “same” and refers to the fact that, in the limit of infinitely long
pulses (called continuous wave or CW in optics), the local oscillator and the signal have the same frequency
ω0 = ck0. For the pulses considered here, their electric fields need to match very well for the two-input-two-
output relation to hold, as discussed earlier, not just the center frequency. “Dyne” means “power” in Greek;
presumably it refers to the local oscillator.

local oscillator

signal

photon 

counting

photon 

counting

Figure 8.1. Homodyne detection using a 50-50 beam splitter, a local oscillator, and photon
counting in the two output modes.

For simplicity, we follow Sec. 6.6 and assume for now that there is just one optical pulse we’d like to
measure, called the signal. Let input 1 be the signal pulse and input 2 be the strong local oscillator. We also
assume that the beam splitter is lossless and 50-50, i.e.,

|τ |2 = |r|2 = |τ ′|2 = |r′|2 = 1

2
. (8.5)

Since the scattering matrix is unitary, SS† = S†S = I , we also have
τ∗r′ + r∗τ ′ = 0, τ∗r + r′∗τ ′ = 0. (8.6)

In the Heisenberg picture, the output photon numbers for the output pulse modes become (omitting the depen-
dence of the operators on time for brevity)

â†3â3 =
(
τ∗â†1 + r∗â†2

)
(τ â1 + râ2) = |τ |2â†1â1 + τ∗râ†1â2 + τr∗â1â

†
2 + |r|2â†2â2, (8.7)

â†4â4 =
(
r′∗â†1 + τ ′∗â†2

)(
r′â1 + τ ′â2

)
= |r′|2â†1â1 + r′∗τ ′â†1â2 + r′τ ′∗â1â

†
2 + |τ ′|2â†2â2. (8.8)
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For a 50-50 beam splitter, these can be rewritten as

â†3â3 =
1

2

(
â†1â1 + eiθâ†1â2 + e−iθâ1â

†
2 + â†2â2

)
, (8.9)

â†4â4 =
1

2

(
â†1â1 − eiθâ†1â2 − e−iθâ1â

†
2 + â†2â2

)
, (8.10)

where

θ ≡ ∠(τ∗r) (8.11)

is the phase of the complex number τ∗r. Now let’s focus on the observable

Ô ≡ â†3â3 − â†4â4 = eiθâ†1â2 + e−iθâ1â
†
2, (8.12)

which can be measured by measuring the two output photon numbers and then subtract one from the other.
When the local oscillator is much stronger than the signal, we can model it as classical. In quantum mechanics,
we model a classical degree of freedom by replacing its operators by their means as classical numbers. Here
we replace â2 by the complex amplitude α2 of the local-oscillator pulse. Then

Ô ≈ e−iθα∗
2â1 + eiθα2â

†
1. (8.13)

This is now a quadrature operator (see Exercise 4.26), i.e., a Hermitian linear combination of â1 and â†1. We
can write

Ô = |α2|
(
e−iθ−i∠α2 â1 + H.c.

)
, (8.14)

which shows that, by changing the phase ∠α2 of the local-oscillator amplitude α2, one can measure a different
quadrature. For example, if we set

∠α2 = −θ, (8.15)

then

Ô = |α2|
(
â1 + â†1

)
, (8.16)

which is proportional to the q-quadrature operator q̂1 ≡ (â1 + â†1)/
√
2. If we set

∠α2 = −θ + π

2
, (8.17)

then

Ô =
|α2|
i

(
â1 − â†1

)
, (8.18)

which is proportional to the p-quadrature operator p̂1 ≡ (â1 − â†1)/(
√
2i). With a measurement of Ô, we can

just divide the outcome by some constant and it’d be equivalent to the usual measurement of a quadrature studied
in Exercise 4.26.

It is remarkable that homodyne detection with photodiodes in practice can be quite close to ideal (> 99%
efficiency, meaning that 99% of the noise variance comes from quantum) [9], unlike photon counting. It has
something to do with the fact that photodiodes work much better at high optical energy, and photon-number
resolution is not really required with homodyne.

Side note. We have taken the classical approximation of the local oscillator as given and replaced â2 with α2

without justification, but its validity can be studied more carefully by assuming that the local oscillator is in a
coherent state |α2⟩, and then take the limit of |α2| → ∞ [10, 11]. The probability distribution of the exact Ô
given by Eq. (8.12) can be shown to approach that of the approximate Ô given by Eq. (8.13). Exercise 8.2 asks
you to check this approximation for the mean and the variance.

Exercise 8.1. Suppose that the q-quadrature operator q̂1 ≡ (â1 + â†1)/
√
2 has the diagonal form

q̂1 =

ˆ ∞

−∞
x |q1 = x⟩ ⟨q1 = x| dx, (8.19)
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where q̂1 |q1 = x⟩ = x |q1 = x⟩ and ⟨q1 = x|q1 = x′⟩ = δ(x − x′). Let the diagonal form of the Ô given by
Eq. (8.16) be

Ô =

ˆ ∞

−∞
λ |O = λ⟩ ⟨O = λ| dλ, (8.20)

where Ô |O = λ⟩ = λ |O = λ⟩ and ⟨O = λ|O = λ′⟩ = δ(λ− λ′).
(1) Find |O = λ⟩ in terms of |q1 = x⟩.
(2) Find the probability density of Ô if the state is

(a) a number state |n⟩,
(b) a coherent state |α⟩.

Exercise 8.2. Let the exact Ô given by Eq. (8.12) be Ô and the approximation given by Eq. (8.13) be Ô′. Let
the second input mode be a coherent state |α2⟩, so that the total state for the two input modes is |ψ⟩ ⊗ |α2⟩.

(1) Show that the means ⟨O⟩ and ⟨O′⟩ are equal.
(2) Show that the variances are related by

⟨∆O2⟩ = ⟨∆O′2⟩+ ⟨ψ| â†1â1 |ψ⟩ . (8.21)

(3) If the first input is a coherent state |ψ⟩ = |α⟩, show that the difference between the two variances in
part (2) is negligible if

|α2|2 ≫ |α|2. (8.22)

8.4. Dual-homodyne detection

What if we want to measure both quadratures of the same pulse mode? One way is to use a beam splitter
to split the signal beam into two, and then measure the two quadratures of the two outputs using two homodyne
setups discussed in Sec. 8.3, as illustrated in Fig. 8.2.

signal

Figure 8.2. Dual-homodyne detection.

To compute the probability density of this dual-homodyne setup, we again have to bear in mind that there
are always two inputs and two outputs for a beam splitter in the quantum case. Assume that the second input is
in a vacuum state |0⟩. Let’s study what happens when the signal is in a coherent state |α⟩ first, and then use the
Sudarshan trick to generalize the result.

With mode 1 in a coherent state |α⟩ and mode 2 in vacuum |0⟩, the multimode state |α⟩1 ⊗ |0⟩2 is also a
coherent state. For simplicity, we’ll assume that the beam splitter has the scattering matrix

S =
1√
2

(
1 1
1 −1

)
, (8.23)

so it’s lossless and 50-50. At the output, the state in the Schrödinger picture is also a coherent state, but now the
amplitudes for mode 3 and 4 become α/

√
2 and α/

√
2, respectively, i.e., the output state for mode 3 and 4 can
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be expressed as ∣∣∣α/√2
〉
3
⊗
∣∣∣α/√2

〉
4
. (8.24)

Then we perform measurements of q̂3 ≡ (â3+ â
†
3)/

√
2 and p̂4 ≡ (â4− â†4)/(

√
2i) via two homodyne detectors.

The probability density becomes

f(x, y|α) =
∣∣∣(⟨q3 = x| ⊗ ⟨p4 = y|)

(∣∣∣α/√2
〉
3
⊗
∣∣∣α/√2

〉
4

)∣∣∣2 (8.25)

=
1

π
exp

[
−(x− Reα)2 − (y − Imα)2

]
, (8.26)

where I’ve used Eqs. (4.7) and (4.8) back in Chapter 4 and I’ve inserted the symbolα into f(x, y|α) to emphasize
that the probability density is conditioned on the amplitude α of the coherent state.

There is actually a more elegant expression of this probability density. Recall that two coherent states |α⟩
and ⟨β| have the inner product

|⟨β|α⟩|2 = exp
(
−|β − α|2

)
= exp

[
−(Reβ − Reα)2 − (Imβ − Imα)2

]
. (8.27)

This looks like Eq. (8.26) if we take

β = x+ iy. (8.28)

Then Eq. (8.26) can be rewritten in terms of the complex β as

f(x, y|α) = f(Reβ, Imβ|α) = 1

π
| ⟨β|α⟩ |2 = 1

π
⟨β|α⟩ ⟨α|β⟩ . (8.29)

In other words, instead of taking the two real numbers (x, y) as the outcomes of the dual-homodyne setup, we
can equally well assume that the outcome is one complex number β = x+ iy, and the probability density has a
simple expression given by Eq. (8.29). It says that we can simply sandwich the density operator |α⟩ ⟨α| between
the coherent-state bra ⟨β| and ket |β⟩ and then divide the result by π.

Now if the initial state ρ̂ of mode 1 is arbitrary, the probability density for dual-homodyne looks like

f(x, y) = ⟨q3 = x, p4 = y| Û(ρ̂⊗ |vac⟩ ⟨vac|)Û † |q3 = x, p4 = y⟩ (8.30)

where |vac⟩ denotes that all the other modes are in vacuum state, Û models the dynamics due to the beam
splitter, and |q3 = x, p4 = y⟩ models the homodyne measurements at the two outputs. The expression looks
scary, but if we write ρ̂ in terms of the Sudarshan representation ρ̂ =

´
Φ(α) |α⟩ ⟨α| d2α, then we obtain

f(x, y) =

ˆ
Φ(α) ⟨q3 = x, p4 = y| Û(|α⟩ ⟨α| ⊗ |vac⟩ ⟨vac|)Û † |q3 = x, p4 = y⟩︸ ︷︷ ︸

f(x,y|α)

d2α. (8.31)

Lo and behold, the underbraced expression is simply the probability density f(x, y|α) for dual-homodyne given
an initial coherent state |α⟩ ⟨α|. Hence

f(x, y) =

ˆ
Φ(α)f(x, y|α)d2α (8.32)

=
1

π

ˆ
Φ(α) ⟨β|α⟩ ⟨α|β⟩ d2α (using Eq. (8.29)) (8.33)

=
1

π
⟨β|
[ˆ

Φ(α) |α⟩ ⟨α| d2α
]
|β⟩ = 1

π
⟨β| ρ̂ |β⟩ . (8.34)

This is the general expression for the probability density for the dual-homodyne detection—simply sandwich ρ̂
between the coherent-state bra ⟨β| and ket |β⟩, and then divide by π. The outcome is a complex number β; one
homodyne detector gives its real part, and the other homodyne detector gives its imaginary part.

Dual-homodyne detection is an example of generalized measurements. The ancilla in this case is the second
input mode shown in Fig. 8.2. With this generalized measurement, we are able to measure both quadratures of
an optical mode, which would not be possible with one simple homodyne measurement.

There is a price to pay with this generalized measurement, however. Imagine a communication scenario:
the sender prepares a pulse in a coherent state |α⟩ with one complex parameter α. The receiver measures it by
homodyne or dual-homodyne, and the receiver’s goal is to estimate the unknown complex parameter α given its
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measurement outcomes. First, let’s assume that the receiver uses simple homodyne to measure q̂. Recall from
Chapter 4 that a simple quadrature measurement has the statistics

⟨q⟩ =
√
2Reα,

〈
∆q2

〉
=

1

2
. (8.35)

This homodyne detection is sensitive to Reα only, not Imα, as the probability density doesn’t depend on Imα
at all. The signal-to-noise ratio would be

SNR(q̂) ≡ ⟨q⟩2

⟨∆q2⟩
= 4(Reα)2. (8.36)

With homodyne, the receiver could also have chosen to measure another quadrature, say, p̂, giving

SNR(p̂) ≡ ⟨p⟩2

⟨∆p2⟩
= 4(Imα)2, (8.37)

but the homodyne detector must pick one quadrature to measure, never both in one measurement.
Dual homodyne, on the other hand, is sensitive to both Reα and Imα, since Eq. (8.26) implies that

⟨q3⟩ = Reα, ⟨p4⟩ = Imα,
〈
∆q23

〉
=
〈
∆p24

〉
=

1

2
. (8.38)

The variances remain the same, because the outputs 3 and 4 are still in a coherent state, but the means are
reduced by a factor of

√
2, because of the beam splitter. The SNR’s become

SNR(q̂3) =
⟨q3⟩2〈
∆q23

〉 = 2(Reα)2, SNR(p̂4) =
⟨p4⟩2〈
∆p24

〉 = 2(Imα)2, (8.39)

each of which is a factor of 2 lower than that of a simple homodyne measurement. This reduction in the
SNR’s is the penalty we have to pay for measuring both quadratures in one generalized measurement.

Exercise 8.3. Prove that
˜

1
π ⟨β| ρ̂ |β⟩ d2β = 1, i.e., the probability density is normalized.

Exercise 8.4. Compute the probability density of the outcome from dual-homodyne detection if
(1) ρ̂ is a coherent state |α⟩.
(2) ρ̂ is a number state |n⟩ ⟨n|.

Exercise 8.5. If we care about the means and the variances only, it is easier to look at the Heisenberg picture:

q̂3 = τ q̂1 + rq̂2 =
1√
2
(q̂1 + q̂2), p̂4 = τ ′p̂1 + r′p̂2 =

1√
2
(p̂1 − p̂2). (8.40)

Use these equations to verify Eqs. (8.38) for an initial coherent state |α⟩1 ⊗ |0⟩2 for mode 1 and 2.

8.5. A long pulse is a superposition of short pulses

Dual-homodyne is a complicated setup, requiring two homodyne detectors and one more beam splitter.
There is a simpler setup to achieve the same measurement called heterodyne detection, but its principle is a bit
more complicated to explain. It involves one long signal pulse and a sequence of quick measurements of the
long pulse, and we’ll have to go beyond the simple scenario of only two input pulses and two output pulses.

Forget about any beam splitter for now and just think about pulses in free space. Think of a long pulse,
the envelope of which is plotted in the top-left figure of Fig. 8.3. Let f̂ be the annihilation operator for this
long-pulse mode. So far we’ve been studying one measurement of one mode, but what if we have a fast detector
that can do multiple measurements for the duration of this one long pulse?

The way forward is to think of the long pulse as a superposition of M short pulses, and then we can
assume that the fast detector measures the short pulses one-by-one.

First define a set ofM short-pulse modes with annihilation operators {b̂l} in the way described in Sec. 3.5.2.
We assume the usual commutation relations

[b̂l, b̂m] = 0, [b̂l, b̂
†
m] = δlm. (8.41)
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Figure 8.3. Top-left: electric-field envelope of a long pulse. Think of the long pulse as a
superposition of short pulses at different locations (bottom-left). Right column: variation of
the same idea, except that the short pulses are sinc functions. Note that these are envelopes of
the pulses; the electric fields of optical pulses are obtained by multiplying the envelopes by the
rapid oscillations exp(ik0z) (not shown in these plots), or exp(−ick0t) = exp(−iω0t) if we
adopt the time-domain formalism in Sec. 6.4.

Each mode is assumed to have a (k, s)-space amplitude given by Wjl. Suppose that the electric field of each
short pulse (recall Eq. (3.91)) looks like

vl(r) ≡
∑
j

ω
1/2
j Wjluj(r) ∝ rect

(
z − zl
∆z

)
exp(ik0z). (8.42)

This rectangle function for various centers zl is plotted in the bottom-left figure of Fig. 8.3, without the exp(ik0z)
factor. (We don’t have to use the rect function; it’s just clearer to assume something specific here; a variaton of
the same idea is shown on the right column.) In classical optics, if we excite these short-pulse modes with the
same amplitude, say, α/

√
M , then we expect to see a long pulse with electric field∑

l

α√
M
vl(r) ∝

α√
M

exp(ik0z)
∑
l

rect

(
z − zl
∆z

)
. (8.43)

The envelope 1√
M

∑
l rect [(z − zl)/∆z] is plotted in the top-left figure of Fig. 8.3, confirming that it indeed

looks like a long pulse. In quantum optics, we can construct a coherent state with these properties by assuming
the displacement operator

D̂ = exp

(∑
l

α√
M
b̂†l − H.c.

)
, (8.44)

which excites each short-pulse mode by the same amplitude α/
√
M . We expect D̂ |vac⟩ to be the coherent state

with a long-pulse mode as its excited mode. To confirm this intuition, we stare at Eq. (8.44) and ask what the
excited-mode annihilation operator is. After staring for a while, you should see that it can be rewritten as

D̂ = exp
(
αf̂ † − H.c.

)
, f̂ ≡ 1√

M

∑
l

b̂l. (8.45)
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We can check that f̂ obeys the standard commutation relation [f̂ , f̂ †] = 1, so it is a bona-fide annihilation
operator for the excited mode of the coherent state D̂ |vac⟩. Eq. (8.45) also shows that the amplitude of the
excited mode is α.

We now work backwards to double-check the electric field of the mode defined by f̂ . Write f̂ in terms of
the original {âj} for the sinusoidal modes as

f̂ =
1√
M

∑
l

b̂l =
1√
M

∑
l

∑
j

W ∗
jlâj =

∑
j

(
1√
M

∑
l

W ∗
jl

)
︸ ︷︷ ︸

≡W̃ ∗
j

âj . (8.46)

This expression shows that the (k, s)-space amplitude of the excited mode is

W̃j ≡
1√
M

∑
l

Wjl. (8.47)

Recall from Eq. (3.91) that the electric field given a (k, s)-space amplitude W̃j for a mode is proportional to∑
j ω

1/2
j W̃juj(r). For our W̃j , the electric field becomes

∑
j

ω
1/2
j W̃juj(r) ∝

∑
j

ω
1/2
j

(
1√
M

∑
l

Wjl

)
uj(r) =

1√
M

∑
l

∑
j

ω
1/2
j Wjluj(r) =

1√
M

∑
l

vl(r).

(8.48)

This is a sum of the electric fields vl(r) of the short-pulse modes given by Eq. (8.42). It is given by

1√
M

∑
l

vl(r) ∝ exp(ik0z)
∑
l

rect

(
z − zl
∆z

)
, (8.49)

which is indeed the long pulse we want.
To summarize, a coherent state with a long-pulse mode as its excited mode and α as its amplitude can be

rewritten as

D̂ |vac⟩ = exp
(
αf̂ † − H.c.

)
|vac⟩ = exp

(∑
l

α√
M
b̂†l − H.c.

)
|vac⟩ , (8.50)

where
(1) f̂ is the annihilation operator of the long-pulse mode.
(2) α is the amplitude of the long-pulse mode.
(3) {b̂l} are the annihilation operators of the short-pulse modes.
(4) The amplitudes of the short-pulse modes are given byα/

√
M

...
α/

√
M

. (8.51)

The derivation is a bit long-winded but hopefully this end result makes sense to you. In classical optics, it
is obvious that a long pulse is a superposition of short pulses. In quantum optics, we need to be a bit more
specific about the mode operators and the state. It’s easier if we can assume a coherent state and work with the
displacement operator.

Exercise 8.6. Suppose that we transform the M short-pulse modes to M new modes, and the long-pulse mode
is one of the latter, i.e., let

f̂m =
∑
l

Cmlb̂l, C11 = C12 = · · · = C1M =
1√
M
, (8.52)

where f̂1 is the f̂ defined earlier andC is a unitary matrix. Use the formalism in Sec. 5.1.2 to rederive Eq. (8.50).
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8.6. Heterodyne detection

Now that we know how to rewrite a long-pulse coherent state as a coherent state with M short pulses, it
becomes clear how we can measure both quadratures of α: perform a sequence of homodyne measurements of
the short-pulse modes, with varying local-oscillator phases to measure different quadratures of the different
short pulses in the signal. This is precisely what heterodyne detection does; see Fig. 8.4 for the experimental
setup.

local oscillator

signal

photon 

counting

photon 

counting

Figure 8.4. Setup of heterodyne detection. It’s the same as homodyne, except that the local
oscillator has a slightly different center frequency ω0 + Ω. (The difference in the frequencies
is greatly exaggerated in the figure.)

We will adopt the time-domain convention for pulses in Sec. 6.4 from now on. In heterodyne detection, the
local oscillator is also a long optical pulse, but now its phase varies across the multiple short-pulse modes. Let

tm = m∆t, m = 0, . . . ,M − 1, (8.53)
be the center positions of the M short pulses in the local oscillator. Suppose that the electric field of the local
oscillator looks like

α0e
−iω0t

∑
m

e−iΩtm rect

(
t− tm
∆t

)
, (8.54)

where α0 is a complex constant, so that the phases of the short-pulse modes vary as ∠α0−Ωtm. The amplitudes
of the short pulse modes for the local oscillator are then given by

α2(tm) ∝ α0 exp(−iΩtm). (8.55)
This time-varying phase is typically imposed by shifting the center frequency of the local oscillator slightly
from ω0 to ω0 +Ω, so that the electric field would look like

e−iω0t−iΩt
∑
m

rect

(
t− tm
∆t

)
≈ e−iω0t

∑
m

e−iΩtm rect

(
t− tm
∆t

)
. (8.56)

Ω is usually a radio frequency (MHz to GHz) in practice.

Side note. “Hetero” in the word heterodyne means “different” and refers to the center frequency ω0 +Ω of the
local oscillator being different from ω0 of the signal.

The short-pulse modes of the local oscillator interfere with the short-pulse modes of the signal one by one
at the beam splitter. The input-output relation should now be expressed as(

â3(T + tm)
â4(T + tm)

)
=

(
Û †(tm)â3(T )Û(tm)

Û †(tm)â4(T )Û(tm)

)
= S

(
Û †(tm)â1(0)Û(tm)

Û †(tm)â2(0)Û(tm)

)
= S

(
â1(tm)
â2(tm)

)
, m = 0, 1, 2, . . .

(8.57)

The meaning of this equation is that the input-output relation remains the same for sequences of pulses; â1(tm)
and â2(tm) should now be regarded as the annihilation operators for short-pulse modes in the input arms in
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the sense of Sec. 6.4. We measure the photon numbers â†3(T + tm)â3(T + tm) and â†4(T + tm)â4(T + tm) at
each tm and subtract one from the other to obtain a quadrature operator in terms of â1(tm). For a signal in the
coherent state, we know the probability density of each outcome xm from Sec. 8.3. With the outcome suitably
scaled, the probability density is the same as that for a quadrature measurement given by Eq. (4.7). Let the
observable being measured be Eq. (8.14) divided by some constant C, so that it can be expressed as

Ô(tm) ≡ 1

C

[
â†3(T + tm)â3(T + tm)− â†4(T + tm)â4(T + tm)

]
(8.58)

=
1√
2

[
e−iϕm â1(tm) + H.c.

]
, ϕm ≡ θ + ∠α0 − Ωtm, (8.59)

coinciding with the usual definition of a quadrature operator in this book. The phase ϕm depends on the
local-oscillator phase ∠α0−Ωtm and also the θ defined by Eq. (8.11), which comes from the optics. Since each
short-pulse mode of the signal has amplitude α/

√
M , as we derived in Sec. 8.5, the mean of Ô(tm) is given by

⟨O(tm)⟩ = 1√
2

(
e−iϕm

α√
M

+ c.c.
)

=

√
2

M
Re
(
αe−iϕm

)
. (8.60)

The M outcomes are independent random variables, since the coherent state is a tensor product of coherent
states in terms of the short-pulse modes and we are measuring those modes independently one by one. The
probability density for all the outcomes is hence

f(x1, . . . , xM |α) = 1

πM/2
exp

−
∑
m

[
xm −

√
2

M
Re
(
αe−iϕm

)]2. (8.61)

The outcomes form a noisy time series:
(1) their averages ∝ Re

(
αe−iϕm

)
oscillate at the frequency Ω with respect to discrete time tm because

ϕm = ϕ0 − Ωtm;
(2) there’s also noise because each outcome is an independent Gaussian random variable with variance

1/2.
Let’s come back to the communication scenario discussed in Sec. 8.4. We have M real numbers

(x1, . . . , xM ) coming out of the measurements, but there are, after all, only two real parameters Reα and
Imα that we want to estimate. Is there any way of simplifying the outcomes? A bit of statistics is necessary to
derive the best procedure, but I’ll skip the derivation and just tell you the end result: Given the measurement
outcomes (x1, . . . , xM ), we should compute

y1 ≡
√

2

M

∑
m

xm cosϕm, y2 ≡
√

2

M

∑
m

xm sinϕm. (8.62)

This procedure is called demodulation. With some benign assumptions (see Exercise 8.7), it can be shown that
the probability density of (y1, y2) is

f ′(y1, y2|α) =
1

π
exp
[
−(y1 − Reα)2 − (y2 − Imα)2

]
. (8.63)

This is exactly the same as Eq. (8.26) from dual-homodyne! At the end of the day, heterodyne together with
demodulation gives exactly the same probability density as that from dual-homodyne for a coherent state, and
by the Sudarshan trick, the probability densities from the two methods are also the same and given by Eq. (8.34)
for an arbitrary signal state.

The theory of heterodyne detection is complicated, but the experimental setup is significantly simpler than
dual-homodyne—it’s the same as one homodyne, except that the local oscillator has a slightly different center
frequency. Shifting the laser frequency is easy with an optical modulator (acousto-optic or electro-optic).
In quantum optics, it’s extremely important to minimize loss in your setup (because of quantum dissipation-
fluctuation relations), so it’s always good to use fewer optical components. Demodulation is trivial with an
oscilloscope or a computer.

Another practical advantage of heterodyne is that the outcomes form a time series oscillating at the frequency
Ω, typically a radio frequency. The time series is carried as an electric signal in the detector and the electronics
before it is recorded permanently in data storage, so additional electronic noise may still be added to it before



8.6. HETERODYNE DETECTION 82

it’s recorded. Electronic noise often falls off like 1/f in the frequency domain, so a high-frequency electric
signal will suffer less from the 1/f noise.

One small shortcoming of heterodyne is that, for a signal pulse mode of the same duration, it requires a
faster detector to perform the sequence of quick measurements to capture information about both quadratures.
A minimum of M = 2 is necessary, so the detector is required to be at least twice as fast as the detectors for
dual-homodyne.

Exercise 8.7. An alternative way of writing Eq. (8.61) is to assume that each outcome is a random variable
given by

Xm = X̄m + Zm, X̄m ≡
√

2

M
Re
(
αe−iϕm

)
, (8.64)

where {Zm} are independent zero-mean Gaussian random variables, each with variance 1/2.
(1) Show that

X̄m =

√
2

M
[(Reα) cosϕm + (Imα) sinϕm]. (8.65)

(2) Assume

Ω =
πL

M∆t
, (8.66)

where L is a nonzero integer and |L| < M . (This assumption simplifies the math a bit. It means that,
over the duration M∆t of the long pulse, the phase of the local oscillator covers the range from ϕ0
to ϕ0 − ΩtM = ϕ0 − πL (Fig. 8.5), while |L| < M ensures that |Ω∆t| = π|L|/M ̸= π, so that the
local-oscillator phase doesn’t vary in increments of π and the measurements don’t end up measuring
one quadrature only.)

Figure 8.5. Left: a plot of the local-oscillator phase ϕm versus tm (normalized by the duration
of the short pulse ∆t), assuming ϕ0 = 0, L = 2, M = 20. The phase goes from 0 to −2π in
this example. Right: a plot of cosϕm and sinϕm versus tm.

Show that
M−1∑
m=0

cos2 ϕm =
M

2
,

M−1∑
m=0

sin2 ϕm =
M

2
,

M−1∑
m=0

(sinϕm)(cosϕm) = 0. (8.67)

(3) Show that

Y1 ≡
√

2

M

M−1∑
m=0

Xm cosϕm Y2 ≡
√

2

M

M−1∑
m=0

Xm sinϕm (8.68)

are Gaussian random variables, with statistics

E(Y1) = Reα, E(Y2) = Imα, V(Y1) = V(Y2) =
1

2
, COV(Y1, Y2) = 0, (8.69)

so that their probability density is given by Eq. (8.63).
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(4) Prove that the outcomes Y1, Y2 from the demodulation are sufficient statistics about Reα and Imα
(https://en.wikipedia.org/wiki/Sufficient_statistic). (This means that we haven’t lost
any information about α through the demodulation.)

Side note. A lot of the concepts we use to study heterodyne detection, such as demodulation, noisy time series,
and sufficient statistics, come from electrical engineering and statistics. There is a long history of electrical
engineers and statisticians studying quantum optics, and they have brought those techniques to the field.

Exercise 8.8. We mentioned earlier that dual-homodyne is a generalized measurement and an ancilla is involved.
What is the ancilla in heterodyne detection?

https://en.wikipedia.org/wiki/Sufficient_statistic


CHAPTER 9

Michelson and Mach-Zehnder Interferometers

9.1. Introduction

The detection of gravitational waves by optical interferometers at LIGO (Laser Interferometer Gravitational-
Wave Observatory, https://www.youtube.com/watch?v=z7pKXVkcDzs, https://www.ligo.caltech
.edu/page/ligo-gw-interferometer) is the most useful application of quantum optics, and arguably the
only useful application of quantum optics so far. LIGO scientists have been able to remove so many other noise
sources, such as seismic noise and thermal vibrations of the mirrors, that the quantum shot noise has emerged
as a significant problem. A quantum treatment becomes necessary to study it and deal with it.

The type of interferometer they use is called a Michelson interferometer. Here we will study a simple
version of it. Its physics turns out to be the same as another type called the Mach-Zehnder interferometer so
we will study them together.

bright port

laser in

dark port

Figure 9.1. Left: A Michelson interterometer. Right: A Mach-Zehnder interferometer.

Figure 9.1 shows the two types of interferometers. The input-output relations are the same for both, even
though the experimental setups differ. We will study them using the Heisenberg picture, since everything
consists of passive linear optics and we usually care about the expected values and variances of the outputs only,
both of which are pretty easy to compute with the Heisenberg picture.

9.2. Input-output relations

Assume that there are two pulse modes going into the first beam splitter and their annihilation operators
are â1(0) and â2(0), respectively. As we learned in Chapter 6, if the beam splitter is lossless, we can write the
input-output relation as (

â3(t1)
â4(t1)

)
= S

(
â1(0)
â2(0)

)
, (9.1)

where S is the scattering matrix.
The two output pulses then go their separate ways in the two arms of the interferometer. The important

feature of an interferometer is that the two pulses may experience two different phase shifts in the two
84

https://www.youtube.com/watch?v=z7pKXVkcDzs
https://www.ligo.caltech.edu/page/ligo-gw-interferometer
https://www.ligo.caltech.edu/page/ligo-gw-interferometer
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arms. For example, the arm lengths may be different, or there may be phase modulators in the two arms. In a
gravitational-wave detector, a gravitational wave acts as a classical force that moves the mirrors in the Michelson
interferometer, so that the arm lengths differ slightly, on the order of 10−19 m.

First, let us assume that there is no phase shift in either arm, the arm lengths are identical and given by L.
Let

t2 − t1 = L/c (9.2)

be the time it takes for the pulses to propagate through the arms. Let â5(t2) be the annihilation operator for the
pulse mode at the end of the first arm, and â6(t2) be the annihilation operator for the pulse mode at the end of
the second arm. From Sec. 6.3, we learned that the input-output relation for pulse propagation looks like

f̂(zl, t2) = f̂(zl − c(t2 − t1), t1) = f̂(zl − L, t1) (9.3)

for a propagation distance of L = c(t2 − t1). If we assume that f̂(zl − L, t1) is â3(t1) at the entrance of the
first arm and f̂(zl, t2) is â5(t2) at the exit of the first arm, then we’d have

â5(t2) = â3(t1). (9.4)

Similarly, in the second arm, we’d have

â6(t2) = â4(t1). (9.5)

There are mirrors in the arms in practice and the pulses don’t travel in only one direction, but it turns out that
the relations above still hold as long as we treat L as the total distance each pulse has to propagate from the
entrance to the exit.

Suppose now that there is a change ∆L1 to the length of the first arm. Let’s assume that input operator

â3(t1) = f̂(zl − L, t1) (9.6)

is the same as before, but the output operator, because of the length change, should be set as

â5(t2) = f̂(zl +∆L1, t2), (9.7)

so that the difference between the two positions is (zl +∆L1)− (zl −L) = L+∆L1, which is the new length
of the arm. When ∆L is much shorter than the length of the pulse, it turns out that the input-output relation can
be approximated as

â5(t2) ≈ eik0∆L1 f̂(zl, t2) = eik0∆L1 â3(t1). (9.8)

This phase shift due to length change is a well known result in classical optics, but in case you are not familiar
with it, Sec. 9.2.1 offers a derivation using our formalism. By the same argument, if there is a change ∆L2 to
the length of the second arm, we have

â6(t2) ≈ eik0∆L2 â4(t1). (9.9)

In matrix form,(
â5(t2)
â6(t2)

)
=

(
eiϕ1 0
0 eiϕ2

)(
â3(t1)
â4(t1)

)
, ϕ1 ≡ k0∆L1, ϕ2 ≡ k0∆L2, (9.10)

where ϕ1 and ϕ2 are the phase shifts in the first and second arms, respectively.
Finally, the pulses go through a beam splitter again. Assume that the second beam splitter has a scattering

matrix S̃, such that (
â7(t3)
â8(t3)

)
= S̃

(
â5(t2)
â6(t2)

)
. (9.11)

Putting Eqs. (9.1), (9.10) and (9.11) together, the final result is(
â7(t3)
â8(t3)

)
= S̃

(
eiϕ1 0
0 eiϕ2

)
S

(
â1(0)
â2(0)

)
. (9.12)
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9.2.1. Side note: Derivation of Eq. (9.8). Recall from Sec. 6.3 that f̂(zl, 0) for a pulse mode depends on
zl through the phase exp(−ikzzl) in the (k, s)-space amplitude:

f̂(zl, 0) =
∑
j

W ∗
jlâj , Wjl ∝ rect

(
kz − k0
κ

)
exp(−ikzzl). (9.13)

If zl is displaced to zl +∆L, we have a new (k, s)-space amplitude given by

f̂(zl +∆L, 0) =
∑
j

W̃ ∗
jlâj , W̃jl ∝ rect

(
kz − k0
κ

)
exp[−ikz(zl +∆L)] =Wjl exp(−ikz∆L). (9.14)

Now we make the assumption

κ∆L≪ 1. (9.15)

Recall that the pulse width is ∝ 1/κ, so this assumption means that the displacement ∆L is much smaller than
the pulse width. The function rect[(kz − k0)/κ] implies that we care about kz ∈ [k0 − κ/2, k0 + κ/2] only.
Write

exp(−ikz∆L) = exp(−ik0∆L) exp[−i(kz − k0)∆L], (9.16)

and notice that the phase (kz − k0)∆L in the second exponential changes from −κ∆L/2 to κ∆L/2. When
κ∆L ≪ 1, |(kz − k0)∆L| ≤ κ∆L/2 is close to zero for the whole range of kz , so exp[−i(kz − k0)∆L] ≈ 1,
and we can assume

rect

(
kz − k0
κ

)
exp(−ikz∆L) ≈ rect

(
kz − k0
κ

)
exp(−ik0∆L). (9.17)

In other words, the rectangle function rect[(kz−k0)/κ] is so sharp around kz = k0 and exp(−ikz∆L) varies so
slowly that the rectangle behaves like a Dirac delta function and we can assume kz ≈ k0 in the exponential; see
Fig. 9.2 for an illustration. For example, if a pulse is around 1 µs long in time, then it’d be around 2π/κ = 300 m
long in space. The displacement ∆L, on the other hand, is typically much shorter than the wavelength, which
is around 1 µm usually, so our approximation is excellent.

Figure 9.2. If κ∆L≪ 1, then the rectangle function is so sharp relative to exp(−ikz∆L) that
the latter can be approximated as exp(−ik0∆L).

Putting this approximation in Eq. (9.14), we obtain

W̃jl ≈Wjl exp(−ik0∆L), (9.18)

f̂(zl +∆L, 0) ≈
∑
j

W ∗
jle

ik0∆Lâj = eik0∆Lf̂(zl, 0). (9.19)

Now we apply this approximation on Eqs. (9.6) and (9.7) to obtain

â5(t2) ≡ f̂(zl +∆L1, t2) ≈ eik0∆L1 f̂(zl, t2) = eik0∆L1 f̂(zl − L, t1) = eik0∆L1 â3(t1). (9.20)

As before, we don’t have to use the rectangle function; any function that has a center at k0 and a width of κ can
work.
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9.3. Output dependence on phase shift

To be concrete, let’s assume

S =
1√
2

(
1 1
−1 1

)
, S̃ =

1√
2

(
1 −1
1 1

)
. (9.21)

The input-output relation becomes(
â7(t3)
â8(t3)

)
= eiϕ̄

 cos
(
ϕ1−ϕ2

2

)
i sin

(
ϕ1−ϕ2

2

)
i sin

(
ϕ1−ϕ2

2

)
cos
(
ϕ1−ϕ2

2

)(â1(0)
â2(0)

)
, ϕ̄ ≡ 1

2
(ϕ1 + ϕ2). (9.22)

If ϕ1 = ϕ2,

â7(t3) = eiϕ̄â1(0), â8(t3) = eiϕ̄â2(0), (9.23)
meaning that the first input goes to the first output, and the second input goes to the second output.

Now assume that a laser beam in a coherent state |α⟩ goes into the first input and nothing (i.e., vacuum
state |0⟩) goes into the second input. If ϕ1 = ϕ2, the laser beam will come out of the first output, and nothing
(vacuum) comes out of the second output. This is why the first input and output (with operators â1(0) and
â7(t3)) are called the bright ports, while the second input and output (with operators â2(0) and â8(t3)) are
called the dark ports. To put it another way, the laser beam is split evenly into the two arms, and when the two
beams come back to a beam splitter, they constructively interfere at the bright output port, and destructively
interfere at the dark output port.

ϕ1 ̸= ϕ2 is, of course, the interesting case. We have

â7(t3) = eiϕ̄
[
â1(0) cos

(
ϕ1 − ϕ2

2

)
+ iâ2(0) sin

(
ϕ1 − ϕ2

2

)]
, (9.24)

â8(t3) = eiϕ̄
[
iâ1(0) sin

(
ϕ1 − ϕ2

2

)
+ â2(0) cos

(
ϕ1 − ϕ2

2

)]
. (9.25)

Notice that the dark port now has a nonzero mean field given by

⟨â8(t3)⟩ = eiϕ̄iα sin

(
ϕ1 − ϕ2

2

)
. (9.26)

Because of the relative phase shift in the two arms, there is incomplete destructive interference at the dark
port, and some light leaks out. By measuring the dark port, one can estimate the relative phase shift ϕ1 − ϕ2.
This is the basic principle of optical interferometry for phase estimation.

The relative phase shift is typically miniscule, so we can assume
|ϕ1 − ϕ2| ≪ 1, (9.27)

which allows us to make the first-order Taylor approximation

cos

(
ϕ1 − ϕ2

2

)
≈ 1, sin

(
ϕ1 − ϕ2

2

)
≈ ϕ1 − ϕ2

2
. (9.28)

If we also make the classical approximation â1(0) ≈ α for the first input, we obtain

â7(t3) ≈ eiϕ̄
[
α+ iâ2(0)

ϕ1 − ϕ2
2

]
, (9.29)

â8(t3) ≈ eiϕ̄
[
iα
ϕ1 − ϕ2

2
+ â2(0)

]
. (9.30)

Notice that the mean outputs are given by

⟨â7(t3)⟩ ≈ eiϕ̄α, ⟨â8(t3)⟩ ≈ eiϕ̄iα
ϕ1 − ϕ2

2
, (9.31)

so the bright port isn’t sensitive to the relative phase shift in the first order and it doesn’t hurt if we don’t measure
it. Eq. (9.30) for the dark-port output, on the other hand, is the key result of this chapter. We should interpret it
as a quantum dissipation-fluctuation relation and â2(0) as a quantum noise term. This dependence on â2(0)
shows that the noise ultimately comes from the dark input port, as first discovered by Caves [12].



9.4. HOMODYNE DETECTION 88

Beware that we’ve ignored any loss in the input-output relation. A more careful analysis including loss can
be performed using the model in Chapter 7. There will be an attenuation of the signal as well as additional noise
terms.

Exercise 9.1. Verify Eq. (9.22).

Exercise 9.2.

(1) Show that Eq. (9.30) obeys [â8(t3), â†8(t3)] = 1. (Despite all the approximations, Eq. (9.30) remains
a legal Heisenberg equation of motion.)

(2) Without the approximations, we should write

â8(t3) = eiϕ̄
[
i sin

(
ϕ1 − ϕ2

2

)
â1(0) + cos

(
ϕ1 − ϕ2

2

)
â2(0)

]
. (9.32)

(a) Show that
[
â8(t3), â

†
8(t3)

]
= 1.

(b) Given the Ô in Eq. (9.33), find its variance if the first input is a coherent state and the second
input is a vacuum state.

(c) If |ϕ1 − ϕ2| ≪ 1, show that the variance of Ô is determined mostly by the second input.

Exercise 9.3. Another use of a Mach-Zehnder interferometer is as an optical switch. Suppose that ϕ1 and ϕ2
can be controlled by optical phase modulators in the two arms. Find the minimum |ϕ1 − ϕ2| such that the laser
beam comes out completely in the second output, rather than the first output.

9.4. Homodyne detection

Suppose that we measure the dark port by homodyne detection, which measures the observable

Ô ≡ 1√
2

[
e−iθâ8(t3) + H.c.

]
, (9.33)

where θ is the local-oscillator phase. Given Eq. (9.30), the mean of the output becomes

⟨O⟩ = 1√
2

[
e−iθeiϕ̄iα

ϕ1 − ϕ2
2

+ c.c.
]
=

1√
2
(ϕ1 − ϕ2)Re(e

−iθeiϕ̄iα). (9.34)

To maximize the sensitivity of the mean to ϕ1 − ϕ2, we should set the local-oscillator phase θ such that
|Re(e−iθeiϕ̄iα)| is maximized. This can be accomplished if

θ = ϕ̄+
π

2
+ ∠α+ 2πm, m is any integer. (9.35)

Then

Re(e−iθeiϕ̄iα) = |α|, ⟨O⟩ = |α|√
2
(ϕ1 − ϕ2). (9.36)

On the other hand, Eq. (9.30) shows that the variance of Ô is equal to the variance of a quadrature of â2(0).
Use Eq. (9.30) to write

Ô =
|α|√
2
(ϕ1 − ϕ2) + Ô2, Ô2 ≡

1√
2

[
e−iθeiϕ̄â2(0) + H.c.

]
. (9.37)

Then 〈
∆O2

〉
=
〈
∆O2

2

〉
=

1

2
, (9.38)

because the dark-port input is in a vacuum state, which has a variance equal to 1/2 for a quadrature operator Ô2

for any θ (see Exercise 4.26). This variance is called the shot-noise limit in interferometry. The SNR becomes

SNR =
⟨O⟩2

⟨∆O2⟩
= |α|2(ϕ1 − ϕ2)

2. (9.39)

We can increase the SNR if we increase the average photon number |α|2 of the laser in each pulse mode, but
there would be other issues when the laser power is too high. For example, the mirrors are not perfect in practice
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and may absorb a tiny fraction of the light. When the laser power is too high, the absorbed energy can turn into
random mechanical fluctuations on the mirror surface.

LIGO has the problem that they cannot increase the laser power any higher without running into those
issues. The solution, first conceived by Caves in 1981 [12] and eventually implemented in LIGO in the 2010s, is
to inject into the dark port a different quantum state called a squeezed state, which we will study in Chapter 10.

Side note. In practice, the relative phase shift ϕ1 − ϕ2 varies in time, so one should perform a sequence of
measurements to measure the phase shift as a function of time. The properties of the detectors determine the
pulse modes being measured, and the rate R of the measurements is related to the duration ∆t between two
pulse modes via R = 1/∆t, which is in the range of MHz–GHz in practice. The average photon number |α|2
of the laser is related to the average power P through the relation

|α|2 = 1

ℏω0
P∆t, (9.40)

where P∆t is the average energy in each pulse mode and the 1/ℏω0 factor converts the energy to the average
photon number. The input-output relation can now be expressed in terms of the discrete time tm ≡ m∆t as

Ô(tm) =
|α|√
2
[ϕ1(tm)− ϕ2(tm)] + Ô2(tm), (9.41)

where Ô2(tm) is the quadrature operator of an input pulse mode at tm in the sense of Sec. 6.4. The outputs
(x0, x1, . . . , xM ) hence form a noisy time series. A standard approach to noise analysis is to perform a
Fourier transform of the time series and look at the spectrum in the frequency domain. I won’t go into
details as it’d require too much background knowledge for an undergraduate course; this is simply a disclaimer
that the analysis in this book is elementary, and one must be proficient with more advanced time-series and
frequency-domain analysis to study statistics seriously for real interferometers.

Exercise 9.4. Prove that Eq. (9.35) maximizes Re(e−iθeiϕ̄iα).

Exercise 9.5. Assume Eq. (9.30) and the vacuum state for the dark-port input. Find the probability distribution
of â†8(t3)â8(t3).

Exercise 9.6. LetO be the outcome from a von Neumann measurement of Ô given by Eqs. (9.37). Assume that
the dark-port input is a vacuum state.

(1) Show that O is a Gaussian random variable. Find its mean and its variance.
(2) Let

Y = mO + b (9.42)

be an unbiased estimator of ϕ1 − ϕ2, meaning that its expected value E(Y ) is

E(Y ) = ϕ1 − ϕ2. (9.43)

Find the real constants m and b.
(3) The SNR is more properly defined in terms of an unbiased estimator as

SNR ≡ [E(Y )]2

V(Y )
, (9.44)

where V(Y ) is the variance of Y . Show that it agrees with Eq. (9.39).
(4) Repeat the above exercises if the dark-port input is a coherent state with amplitude β. Does the SNR

improve?

Exercise 9.7. Suppose that the relative arm-length change |∆L1 −∆L2| is 10−19 m. Assume a wavelength of
1 µm for the input laser beam and ∆t = 1 ms (millisecond). Find the average optical power needed to achieve
an SNR of 1.

Exercise 9.8. Assume a classical single-mode state

ρ̂ =

ˆ
Φ(α) |α⟩ ⟨α| d2α, (9.45)
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where the Sudarshan representation Φ is a nonnegative probability density. Prove that the variance
〈
∆O2

〉
of a

quadrature operator

Ô ≡ 1√
2

(
e−iθâ+ H.c.

)
(9.46)

cannot go below 1/2.
(This exercise shows that all classical states must obey the shot-noise limit for the variance of a quadrature.)



CHAPTER 10

Squeezing

We learned in Chapter 9 that, to overcome the shot-noise limit in interferometry, we need to lower the
variance of a quadrature below 1/2. Exercise 9.8 shows that such a sub-shot-noise variance is impossible for
classical states (those with a nonnegative Sudarshan representation). This chapter shows how a nonclassical
state called a squeezed state can achieve this goal. For simplicity, we focus on one mode, and we study the
Heisenberg picture first.

10.1. Heisenberg picture

Assume the Hamiltonian

Ĥ =
ℏ
2

(
iξâ†2 − iξ∗â2

)
=
iℏ
2

(
ξâ†2 − H.c.

)
, (10.1)

where ξ is a complex number. Notice that it contains â†2 and â2 terms, so it is no longer the passive linear optics
we studied in Chapter 6. Physically, this Hamiltonian can occur in some nonlinear optical material, but we will
defer a study of its physical origin until Sec. 10.2. Let’s look at the Heisenberg equation of motion for â:

dâ(t)

dt
= − i

ℏ

[
â(t), Ĥ

]
= − i

ℏ
Û †(t)

[
â, Ĥ

]
Û(t) = ξâ†(t). (10.2)

We can solve it if we also consider the adjoint

dâ†(t)

dt
= ξ∗â(t), (10.3)

so that
d2â(t)

dt2
= ξ

dâ†(t)

dt
= |ξ|2â(t). (10.4)

We know the solution to this differential equation is

â(t) = Ĉ exp(|ξ|t) + D̂ exp(−|ξ|t). (10.5)

Matching the initial conditions

â(0) = Ĉ + D̂
dâ(t)

dt

∣∣∣∣
t=0

= ξâ†(0) = |ξ|(Ĉ − D̂), (10.6)

we find

Ĉ =
1

2

[
â(0) +

ξ

|ξ|
â†(0)

]
, D̂ =

1

2

[
â(0)− ξ

|ξ|
â†(0)

]
, (10.7)

so

â(t) = â(0) cosh(|ξ|t) + ξ

|ξ|
â†(0) sinh(|ξ|t), (10.8)

coshX ≡ 1

2
[exp(X) + exp(−X)], sinhX ≡ 1

2
[exp(X)− exp(−X)]. (10.9)

Since cosh and sinh grow rapidly for increasing t (and exponentially for |ξ|t ≫ 1; see Fig. 10.1 for plots),
the average amplitude ⟨â(t)⟩ (under the right initial conditions) can grow as the pulse propagates inside the
material. This suggests that the process can amplify the light, and indeed it turns out to happen in a device
called an optical parametric amplifier (OPA).

91
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Figure 10.1. Plots of hyperbolic functions. eX/2 in-between the two graphs is for comparison.

For our purpose of reducing the shot noise, a more illuminating way of writing the solution is to define two
quadrature operators as

Q̂(t) ≡ 1√
2

[
e−iϕâ(t) + eiϕâ†(t)

]
, (10.10)

ϕ ≡ 1

2
∠ξ, (10.11)

P̂ (t) ≡ 1√
2i

[
e−iϕâ(t)− eiϕâ†(t)

]
, (10.12)

so that

Q̂(t) = Q̂(0)e|ξ|t, (10.13)

P̂ (t) = P̂ (0)e−|ξ|t. (10.14)

One quadrature grows exponentially, and the other quadrature decays exponentially. The variances become〈
∆Q2(t)

〉
=
〈
∆Q2(0)

〉
e2|ξ|t, (10.15)〈

∆P 2(t)
〉
=
〈
∆P 2(0)

〉
e−2|ξ|t. (10.16)

Equation (10.16), in particular, is precisely what we want for interferometry. If a pulse in a vacuum state goes
into a nonlinear material with the Hamiltonian given by Eq. (10.1), then the variance of P̂ when the pulse
comes out would be reduced below the shot-noise limit ⟨∆P 2(0)⟩ = 1/2. This procedure is called optical
squeezing. On the other hand, ⟨∆Q2(t)⟩ for the other quadrature would grow, and this variance growth is called
anti-squeezing. The quadrature to be squeezed can be chosen by picking the right phase for the ξ parameter in
the Hamiltonian through Eq. (10.11).
Side note. For a historical account of the application of optical squeezing to gravitational-wave detectors, see
Ref. [9].

Exercise 10.1. Verify Eqs. (10.2), (10.13), and (10.14).
Exercise 10.2. Check that Eq. (10.8) obeys the commutation relation [â(t), â†(t)] = 1.

Exercise 10.3. Find [Q̂(t), P̂ (t)] from Eqs. (10.13) and (10.14). Show that Eqs. (10.15) and (10.16) still obey
the Heisenberg uncertainty relation as long as

〈
∆Q2(0)

〉
and

〈
∆P 2(0)

〉
obey the relation initially.

Exercise 10.4. Compute the average output photon number ⟨â†(t)â(t)⟩ if the initial state is vacuum.
(Because of this nonzero photon number, the output light is sometimes called spontaneous parametric down

conversion (SPDC) or parametric fluorescence. People used to think of it as just amplified spontaneous emission
from an amplifier, before realizing in the 1970s that it also leads to squeezing of a quadrature [13, 14].)
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Exercise 10.5. If the initial state is vacuum, show that the output state in the Schrödinger picture |ψ(t)⟩ =

exp
(
− i

ℏĤt
)
|0⟩ =

∑∞
n=0 ψn(t) |n⟩ contains only number states with even n, i.e., ψn(t) = 0 if n is odd.

Exercise 10.6. Let
〈
∆P 2(0)

〉
= 1/2. Suppose that, after squeezing, the optical mode experiences loss according

to Chapter 7, so that the annihilation operator of the optical mode to be measured is given by

â3(T ) = τ â(t) + râ2, (10.17)

where â(t) is given by Eq. (10.8) and |τ |2+ |r|2 = 1. Assume that τ is real and the bath (the inaccessible mode
2 in Chapter 7) is in the vacuum state.

(1) Find the variance
〈
∆P 2

3

〉
if one measures the squeezed quadrature

P̂3 ≡
1√
2i

[
e−iϕâ3(T )− H.c.

]
(10.18)

after the loss.
(2) The squeezing level in decibel (dB) is defined as

R ≡ −10 log10

〈
∆P 2

3

〉
⟨∆P 2⟩shot noise

= −10 log10
(
2
〈
∆P 2

3

〉)
. (10.19)

If |τ |2 = 1, find R as a function of |ξ|t. If |τ |2 < 1, find an upper bound on R for any squeezing in
terms of |τ |2.

(This exercise shows that loss reduces and limits the amount of squeezing.)

10.2. Optical parametric amplification (OPA)

The Hamiltonian given by Eq. (10.1) is what we need to squeeze a quadrature, but to learn how we can
implement it in practice, first we have to discuss a little bit of nonlinear optics here.

10.2.1. Origin of nonlinearity. To model passive linear optics, Chapter 6 assumes that the matter modes
are harmonic oscillators coupled to the EM modes, while Exercise 6.2 says that the resulting normal modes
are hybrid EM-matter modes called polaritons. Optical nonlinearity comes from the fact that, if we have some
special material, e.g., lithium niobate (LiNbO3) or potassium titanyl phosphate (KTP), and the mode amplitudes
are strong, e.g., when strong laser beams are used, the matter modes no longer behave as harmonic oscillators
exactly and are more accurately modeled as anharmonic oscillators.

To correct for the anharmonicity, we add to the Hamiltonian a term f(b̂) that is cubic with respect to the
matter-mode operators {b̂j}, i.e.,

Ĥ = ℏ
∑
j,l

Fjlĉ
†
j ĉl + f(b̂), (10.20)

f(b̂) =
∑
j,l,m

Cjlmb̂j b̂lb̂m +Djlmb̂
†
j b̂lb̂m + H.c., (10.21)

where {Cjlm} and {Djlm} are constants, the specific values of which are unimportant to our discussion. (We
could add higher-than-cubic terms as well, but it’s sufficient to stick with cubic here to model an OPA.) Rewrite
the Hamiltonian in terms of the polariton-mode operators {d̂j} as per Exercise 6.2 by assuming ĉj =

∑
lWjld̂l.

Then {b̂j} can be expressed as linear functions of {d̂j}, and f(b̂) would become cubic with respect to {d̂j},
i.e., the Hamiltonian would look like

Ĥ = ℏ
∑
j

ωj d̂
†
j d̂j + g(d̂), (10.22)

g(d̂) =
∑
j,l,m

C ′
jlmd̂j d̂ld̂m +D′

jlmd̂
†
j d̂ld̂m + H.c., (10.23)

where g(d̂) is cubic with respect to the d̂ operators and {C ′
jlm} and {D′

jlm} are some other constants. In other
words, the polariton modes no longer behave exactly as harmonic oscillators; they become anharmonic because
they are partly matter modes.
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For the sake of discussion, suppose that there are only two polariton modes: the first mode has a natural
frequency ω1 = ω and the second mode has a natural frequency ω2 = 2ω that is twice the frequency of the
first mode (called second harmonic). The cubic term g(d̂) becomes

g(d̂) = C ′
111d̂

3
1 + C ′

112d̂
2
1d̂2 + · · ·++D′

211d̂
†
2d̂

2
1 + H.c.. (10.24)

Now go to the interaction picture, assuming

Ĥeasy = ℏ
∑
j

ωj d̂
†
j d̂j , η̂ = g(d̂). (10.25)

Then we can replace d̂j by d̂j exp(−iωjt) in g(d̂) to compute the interaction-picture Hamiltonian η̂easy(t).
Eq. (10.24) becomes

η̂easy(t) = C ′
111d̂

3
1e

−3iωt + C ′
112d̂

2
1d̂2e

−4iωt + · · ·+D′
211d̂

†
2d̂

2
1 + H.c.. (10.26)

Of all the terms in g(d̂), notice that the last term ∝ d̂†2d̂
2
1 and its Hermitian conjugate ∝ d̂2d̂

†2
1 in Eq. (10.26) are

special—they stay constant in time while everything else oscillates at multiples of ω. In the rotating-wave
approximation (see Sec. D.5), we throw away all the terms in the Hamiltonian that oscillate quickly in time,
because they average to zero over time and their net effect is negligible. We are left with

η̂easy(t) ≈ D′
211d̂

†
2d̂

2
1 + H.c.. (10.27)

If we assume that the second mode has a strong amplitude and can be approximated as classical, then we can
replace d̂2 by the complex amplitude α2, and we are left with

η̂easy(t) ≈ D′
211α

∗
2d̂

2
1 + H.c., (10.28)

which explains the physical origin of the â2 and â†2 terms in Eq. (10.1).
It’s helpful to think about what a Hamiltonian given by Eq. (10.27) does to a state for a tiny time step:

exp

(
− i

ℏ
η̂easy∆t

)
|ψ⟩ ≈

(
Î − i

ℏ
η̂easy∆t

)
|ψ⟩ . (10.29)

The term ∝ d̂2d̂
†2
1 in η̂easy converts one second-harmonic polariton at 2ω to two polaritons at ω, while the term

d̂†2d̂
2
1 converts two polaritons at ω to one second-harmonic polariton at 2ω.
When light goes from free space into a crystal, the photons are converted to polaritons as they enter and

polaritons are converted back to photons as they leave. The net effect of the crystal is to convert one second-
harmonic photon to two lower-frequency photons (down conversion) or convert two photons into a second-
harmonic photon (second-harmonic generation). The efficiency of each process depends on the experimental
setup; please consult nonlinear optics textbooks, such as Refs. [15, 16, 17], for further details.

In practice, it’d be too tedious to go any further with this quantum approach. There are many other ways of
deriving a quantum model of OPA and there’s a lot more physics in OPA and nonlinear optics in general, but
the most common approach, similar to how we dealt with passive linear optics in Chapter 6, is this:

(1) Derive the classical equations of motion using classical optics.
(2) Replace the c-number amplitudes by operators of some modes.
(3) Guess a Hermitian Hamiltonian such that the quantum equations of motion can be shown to arise from

the Heisenberg picture. The Hermitian Hamiltonian ensures that we don’t violate any fundamental
principle of quantum mechanics.

(4) If we can’t find a Hermitian Hamiltonian or something is wrong with the quantum equations of motion
(e.g., it doesn’t preserve the commutation relations), we’ll have to fix it somehow; Chapter 7 is an
example regarding loss.

10.2.2. Nonlinear optics. We now consult classical nonlinear optics to see how an OPA works in practice.
Recall the usual model of EM fields in matter reviewed in Appendix F. When the polarization field P (r, t) is
a function of the electric field E(r, t), the matter is called a dielectric. In most dielectrics we use in optics
(crystals, glasses, plastics, semiconductors, etc.), the polarization field P (r, t) at each position r reacts only
to the electric field E(r, t) at the same position r (we call this a local response). The time-domain behavior
is slightly more complicated, but for our purpose in this section we can also assume that P (r, t) at each time
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reacts to the electric field at the same time t (we call this an instantaneous response). The precise dependence
of P on E may still be complicated, but it is often sufficient to consider the Taylor expansion

P j(r, t) = ϵ0
∑

l=x,y,z

χ
(1)
jl El(r, t)︸ ︷︷ ︸

P
(1)
j

+ ϵ0
∑
l,m

χ
(2)
jlmEl(r, t)Em(r, t)

︸ ︷︷ ︸
P

(2)
j

+ . . . , j = x, y, z, (10.30)

and keep the first few orders. χ(1) and χ(2) are called optical susceptibility tensors: χ(1) is a tensor that maps a
vector to a vector, while χ(2) is a higher-order tensor that maps two vectors to one vector. The nice thing about
this expression is that we no longer need to care about the matter degrees of freedom, as everything depends
only on the electric field, and the role of the matter is modeled simply by the susceptibility tensors χ(1), χ(2),
etc., that one can measure experimentally. For reasons that come from solid-state physics, χ(2) is nonzero only
for special crystals, such as lithium niobate (LiNbO3) and potassium titanyl phosphate (KTP).

It can be shown that this classical picture is consistent with a quantum approach if we add a new term to the
EM Hamiltonian [18]:

Ĥ = ĤEM + ϵ0

˚ 1
2

∑
j,l

χ
(1)
jl Êj(r)Êl(r) +

2

3

∑
j,l,m

χ
(2)
jlmÊj(r)Êl(r)Êm(r) + . . .

d3r, (10.31)

where Ê is expressed in terms of annihilation {âj} and creation operators {â†j} just as before.
Unlike the discussion in Sec. 10.2.1 based on the true physical origin of nonlinearity, Eq. (10.31) is derived

by peeking at classical optics and guessing a Hamiltonian that is consistent with it [18]. To my knowledge, no
one has bothered to explicitly derive Eq. (10.31) from first principles, although we can see that both approaches
produce the same form of Hamiltonian, with quadratic and cubic terms with respect to the annihilation and
creation operators.

If we keep only the χ(1) term, the model is called a linear dielectric. We need the χ(2) term as well to model
an OPA. Suppose

Ĥeasy = ĤEM +
ϵ0
2

˚ ∑
j,l

χ
(1)
jl Êj(r)Êl(r)d

3r, (10.32)

η̂ =
2ϵ0
3

˚ ∑
j,l,m

χ
(2)
jlmÊj(r)Êl(r)Êm(r)d3r. (10.33)

Then we can regard Ĥeasy as the simple Hamiltonian for the polaritons discussed in Chapter 6. We know from
classical optics that the polaritons in a crystal are also sinusoidal plane waves, although the frequency ω(k, s)
and the polarization ẽ(k, s) of each mode is a bit different from the free-space case.

Let’s go to the interaction picture. η̂easy(t) would become a linear combination of many cubic terms with
respect to {âj} and {â†j}, although many of them can be thrown away through the rotating-wave approximation.
More terms can be thrown away if they turn out to be negligible after the

˝
(. . . )d3r integral is performed.

To understand how, recall that the electric field is a linear combination of exp(±ik · r) terms for the sinusoidal
plane-wave modes. If we expand χ(2)

jlmÊj(r)Êl(r)Êm(r), we find a lot of terms that oscillate in space, and they
would become relatively small after the integration, while terms that stay constant in space become relatively
large. For example, consider one “fundamental” mode with frequency ω and polarization ẽ1 = ỹ and one
“second-harmonic” mode with frequency 2ω and polarization ẽ2 = z̃. Assume that both propagate in the x̃
direction, as depicted in Fig. 10.2. The term in η̂easy(t) that is relevant to the two modes looks like˚

χ(2)
yyzâ2â

†2
1 exp[i(k2 − 2k1)x]d

3r + H.c., (10.34)

where k1 is the wavenumber of the fundamental mode and k2 is the wavenumber of the second-harmonic mode.
The integration along the length L of the crystal would yield

ˆ L/2

−L/2
exp[i(k2 − 2k1)x]dx =


L, k2 − 2k1 = 0,

sin[(k2 − 2k1)L/2]

(k2 − 2k1)/2
, k2 − 2k1 ̸= 0.

(10.35)
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If k2 − 2k1 = 0, then we say that the phase-matching condition is satisfied and the integral would grow with
L, but if k2 − 2k1 ̸= 0, then the integral does not grow with L and is inversely proportional to the mismatch
k2 − 2k1.

Pump laser beam

at

Signal at

Figure 10.2. An optical parametric amplifier. (The pump beam and the signal beam are
actually overlapping optical beams in practice, and a dichroic mirror (https://www.rp-pho
tonics.com/dichroic_mirrors.html) is used to combine or separate the two beams.)

Side note. I have assumed a Cartesian coordinate system that is aligned with the principal axes of a KTP
crystal, the most commonly used crystal in optical squeezing. χ(2)

yyz happens to be nonzero in a KTP crystal, so
the propagation direction is chosen to be the x̃ axis.

In a crystal, usually k2−2k1 ̸= 0, but a technique called quasi-phase matching can be used to compensate
for the mismatch (https://en.wikipedia.org/wiki/Quasi-phase-matching). The idea is to apply
“periodic polling” to the crystal through high voltages, so that the domains of the crystal are periodically
switched and χ(2)(x) switches sign periodically along x. Now we can write χ(2) as the Fourier series

χ(2)(x) = C exp

(
i
2π

Λ
x

)
+ c.c. + . . . , (10.36)

where C is the Fourier coefficient and Λ is the period of the polling. If
2π

Λ
= |k2 − 2k1|, (10.37)

the exp(±i2πx/Λ) terms in χ(2) can cancel the exp[±i(k2 − 2k1)x] terms, χ(2)(x) exp[i(k2 − 2k1)x] then
contains a constant term, and after the

´ L/2
−L/2(. . . )dx integration, the constant term becomes ∝ L that grows

with the crystal length L.
With phase matching and a strong “pump” laser beam at 2ω with â2 ≈ α2, it is possible to simplify η̂easy(t)

to

η̂easy(t) ∝ α2â
†2
1 + H.c., (10.38)

where all other terms are thrown away because of either the rotating-wave approximation or phase mismatch.
This result now agrees with Eq. (10.1) that we assumed earlier.

Notice that the ξ parameter in Eq. (10.1) is proportional to the amplitude α2 of the pump, so we can choose
the squeezed and antisqueezed quadratures by changing the phase of the pump.

Side note. To enhance the squeezing, the crystal is often put inside an optical cavity so that the signal optical
beam passes through the crystal many times [9]. While a more complicated model is needed [19] to model
the setup and the multimode squeezing that comes out of it, the single-mode model here captures the essential
physics and is good enough for an undergraduate corse.

Side note. The word “parametric” comes from the fact that, when there is a strong laser pump beam at
frequency 2ω0, we can also model the OPA by assuming that the “parameter” of the system χ(1) oscillates at
frequency 2ω0. Historically, parametric interactions have been studied since Faraday and Rayleigh (https:
//en.wikipedia.org/wiki/Parametric_oscillator). A textbook example is a child “pumping”
a swing at twice the natural frequency of the swing, where the moment of inertia is the “parameter” to be
modulated in time. With radio/microwave circuits, it’s also possible to see the same parametric amplification
behavior by modulating the capacitance or inductance at twice the frequency of a signal to be amplified.

https://www.rp-photonics.com/dichroic_mirrors.html
https://www.rp-photonics.com/dichroic_mirrors.html
https://en.wikipedia.org/wiki/Quasi-phase-matching
https://en.wikipedia.org/wiki/Parametric_oscillator
https://en.wikipedia.org/wiki/Parametric_oscillator
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10.3. Squeezed vacuum state

Let’s return to the formalism in Sec. 10.1 and study more general properties of squeezing. Define a squeeze
operator as

Ŝ(z) ≡ exp

(
1

2
zâ†2 − H.c.

)
, z ∈ C. (10.39)

Convince yourself that this is the unitary operator resulting from the Hamiltonian given by Eq. (10.1), with

z = ξt. (10.40)

It follows from Sec. 10.1 that the Heisenberg picture of â under this unitary is given by

Ŝ†(z)âS(z) = â cosh |z|+ ei∠zâ† sinh |z|. (10.41)

Now imagine that we measure a quadrature

q̂(θ) ≡ 1√
2

(
e−iθâ+ eiθâ†

)
(10.42)

after squeezing the vacuum (see Exercise 4.26 for basic properties of q̂(θ)). The probability density of the
outcome is given by

f(x) = | ⟨q(θ) = x| Ŝ(z) |0⟩ |2 = ⟨0| Ŝ†(z) |q(θ) = x⟩ ⟨q(θ) = x| Ŝ(z) |0⟩ , (10.43)

where Ŝ(z) |0⟩ is called a squeezed vacuum state. To compute this, we take the following steps:
(1) Define the Heisenberg picture of q̂(θ) as

Ô ≡ Ŝ†(z)q̂(θ)Ŝ(z). (10.44)

It allows us to write the diagonal form of Ô in two ways:

Ô =

ˆ ∞

−∞
x |O = x⟩ ⟨O = x| dx = Ŝ†(z)q̂(θ)Ŝ(z) =

ˆ ∞

−∞
xŜ†(z) |q(θ) = x⟩ ⟨q(θ) = x| Ŝ(z)dx. (10.45)

A nontrivial theorem in Hilbert-space theory [20, Theorem VIII.6] says that the diagonal form is
unique, so that we can write

Ŝ†(z) |q(θ) = x⟩ ⟨q(θ) = x| Ŝ(z) = |O = x⟩ ⟨O = x| . (10.46)

Now we need to find |O = x⟩.
(2) Use Eq. (10.41) to obtain

Ô =
1√
2

(
g∗â+ gâ†

)
, g ≡ eiθ cosh |z|+ e−iθei∠z sinh |z|. (10.47)

(3) Rewrite Ô in terms of another quadrature operator:

Ô = |g| 1√
2

(
e−i∠gâ+ ei∠gâ†

)
= |g|q̂(∠g), (10.48)

q̂(∠g) ≡ 1√
2

(
e−i∠gâ+ ei∠gâ†

)
. (10.49)

|g| determines how much the quadrature is amplified or squeezed. Exercise D.6 shows that, given
Eq. (10.48), the orthonormal eigenstates of Ô can be expressed in terms of the orthonormal eigenstates
of q̂(∠g) as

|O = x⟩ = 1√
|g|

∣∣∣∣q(∠g) = x

|g|

〉
. (10.50)
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(4) Now we can rewrite Eq. (10.43) as

f(x) = ⟨0| Ŝ†(z) |q(θ) = x⟩ ⟨q(θ) = x| Ŝ(z) |0⟩ (10.51)
= ⟨0|O = x⟩ ⟨O = x|0⟩ (using Eq. (10.46)) (10.52)

= |⟨O = x|0⟩|2 (10.53)

=
1

|g|

∣∣∣∣〈q(∠g) = x

|g|

∣∣∣∣0〉∣∣∣∣2 (using Eq. (10.50)) (10.54)

=
1√
π|g|

exp

(
− x2

|g|2

)
. (using Exercise 4.26) (10.55)

This is a new result, showing that any quadrature of a squeezed vacuum state is Gaussian with zero mean
and a variance given by |g|2/2, where the g parameter is given by Eq. (10.47). The variance depends on the
quadrature being measured through the θ parameter and the phase of the pump through the ∠z parameter. For
example, if we set

θ =
1

2
∠z, g = ei(∠z)/2e|z|,

|g|2

2
=

1

2
e2|z|, (10.56)

then the variance of q̂(θ) is |g|2/2 = e2|z|/2, which agrees with Eq. (10.15) that we derived earlier for the
antisqueezed quadrature using the Heisenberg picture. On the other hand, if we set

θ =
π

2
+

1

2
∠z, g = iei(∠z)/2e−|z|,

|g|2

2
=

1

2
e−2|z|, (10.57)

then the variance agrees with Eq. (10.16) for the squeezed quadrature.
We have found so far that both the coherent states and the squeezed vacuum states have Gaussian probability

densities for any of their quadratures. It turns out that they are special examples of a general class of states called
Gaussian states, defined by the property that any quadrature of such a state has a Gaussian probability density.
Gaussian states are important states for quantum optics and quantum information, because Gaussian states are
relatively easy to generate, it can be shown that they remain Gaussian states after going through passive linear
optics and squeezing, and they give Gaussian probability densities for homodyne and heterodyne detection.
Chapter 11 will introduce a theoretical concept called the Wigner representation that will be very handy for
studying and visualizing Gaussian states.

Exercise 10.7. Derive the probability density∣∣∣⟨q(θ) = x| Ŝ(z) |α⟩
∣∣∣2 (10.58)

of a quadrature for a squeezed coherent state Ŝ(z) |α⟩.



CHAPTER 11

Wigner Representation

11.1. Definition

The Wigner representation of a quantum state is similar to the Sudarshan representation and useful for a lot
of calculations, as well as visualization of a quantum state. To introduce it, we first focus on just one optical
mode and introduce a preliminary concept called the quantum characteristic function. It is defined as

χ(ξ, η) ≡ tr [ρ̂ exp(iξq̂ + iηp̂)], (ξ, η) ∈ R2, (11.1)

where (ξ, η) are two real variables. This is a generalization of the characteristic function in probability theory
(https://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)). If
fXY (x, y) is the joint probability density for two real random variables X and Y , the classical characteristic
function is defined as

χclassical(ξ, η) ≡
ˆ ∞

−∞

ˆ ∞

−∞
fXY (x, y) exp(iξx+ iηy)dxdy = E [exp(iξX + iηY )], (11.2)

except that the quantum version replaces the random variables X and Y by the quadrature operators q̂ and
p̂. In the classical case, the probability density fXY (x, y) can be obtained from χclassical(ξ, η) because of the
Fourier-transform relations:

fXY (x, y) =
1

(2π)2

ˆ ∞

−∞

ˆ ∞

−∞
χclassical(ξ, η) exp(−iξx− iηy)dξdη. (11.3)

In the quantum case, the Wigner representation is defined similarly in terms of the quantum χ:

W (x, y) ≡ 1

(2π)2

ˆ ∞

−∞

ˆ ∞

−∞
χ(ξ, η) exp(−iξx− iηy)dξdη. (11.4)

The Wigner representation is a function of two real variables (x, y) called the phase-space variables and it
often behaves like a joint probability density of the two quadratures q̂ and p̂, but do note that it can go negative
for some (x, y) for certain states. Since it may go negative, the Wigner representation is also sometimes called
the Wigner quasiprobability distribution.

Exercise 11.1. An alternative definition of the Wigner representation is

W (x, y) =
1

2π

ˆ ∞

−∞
eiλy

〈
q = x− λ

2

∣∣∣∣ ρ̂ ∣∣∣∣q = x+
λ

2

〉
dλ. (11.5)

Show that this definition is equivalent to Eq. (11.4).

11.2. Probability densities of quadratures

The Wigner representation is useful mainly because it is easy to compute the probability density of any
quadrature from it. In particular, it can be shown that, for any state,

⟨q = x| ρ̂ |q = x⟩ =
ˆ ∞

−∞
W (x, y)dy, ⟨p = y| ρ̂ |p = y⟩ =

ˆ ∞

−∞
W (x, y)dx, (11.6)

so the marginal densities computed from the Wigner representation are the probability densities of the q̂ and
p̂ quadratures. In this way W (x, y) behaves like the joint probability density of the two quadratures.

99
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More generally, if we define rotated quadratures

q̂(θ) ≡ q̂ cos θ + p̂ sin θ =
1√
2

(
e−iθâ+ eiθâ†

)
, (11.7)

p̂(θ) ≡ −q̂ sin θ + p̂ cos θ =
1√
2i

(
e−iθâ− eiθâ†

)
, (11.8)

then the Wigner representation can also give their probability distributions as follows:
(1) Define

u(x, y) = x cos θ + y sin θ, v(x, y) = −x sin θ + y cos θ, (11.9)

which are the phase-space coordinates for the new quadratures given by Eqs. (11.7) and (11.8). The
new phase-space coordinate system is shown in Fig. 11.1. The inverse relations are

x(u, v) = u cos θ − v sin θ, y(u, v) = u sin θ + v cos θ. (11.10)

(2) Define a new Wigner representation W ′(u, v) as

W ′(u, v) ≡W (x(u, v), y(u, v)). (11.11)

(3) The marginal distributions with respect to the new W ′ turn out to be the probability distributions of
q̂(θ) and p̂(θ):

⟨q(θ) = u| ρ̂ |q(θ) = u⟩ =
ˆ ∞

−∞
W ′(u, v)dv, ⟨p(θ) = v| ρ̂ |p(θ) = v⟩ =

ˆ ∞

−∞
W ′(u, v)du. (11.12)

(This property for any quadrature is why the Wigner representation is much more useful than just multiplying
⟨q = x| ρ̂ |q = x⟩ and ⟨p = y| ρ̂ |p = y⟩ together.)

Figure 11.1. The new phase-space coordinate system defined by Eqs. (11.9).

This procedure of computing the new Wigner representation is exactly the same as the procedure of
computing a new probability density fUV (u, v) from fXY (x, y) if the new random variables are related to the
old ones by

U = X cos θ + Y sin θ, V = −X sin θ + Y cos θ. (11.13)

The Wigner representation behaves like a joint probability density of quadratures in this way. Do note, however,
the following key caveats:

(1) For certain states, W (x, y) may go negative for some phase-space coordinates (x, y), so it cannot
always be regarded as a probability density.

(2) W (x, y) by itself is not the probability density of any measurement. It gives the probability density of
a quadrature measurement only after we compute the marginal as per Eqs. (11.6) or Eqs. (11.12).
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(3) It is not so easy to compute from W (x, y) the probability distributions for measurements other than
quadrature measurements, so it’s not nearly as useful for other measurements.

Exercise 11.2. Derive Eqs. (11.6).

Exercise 11.3. Prove that the Wigner representation is normalized as
ˆ ∞

−∞

ˆ ∞

−∞
W (x, y)dxdy = 1. (11.14)

Exercise 11.4. Derive Eqs. (11.12).

Exercise 11.5. LetW (x, y) be the Wigner representation of ρ̂. Find the Wigner representations of the following
density operators in terms of W (x, y):

(1) D̂(α)ρ̂D̂†(α), where D̂(α) is the displacement operator.
(2) R̂(θ)ρ̂R̂†(θ), where R̂(θ) is the “rotation” operator defined by Eq. (4.53).
(3) Ŝ(z)ρ̂Ŝ†(z), where Ŝ(z) is the squeeze operator defined by Eq. (10.39).

(This exercise shows that, if the unitary operator for the dynamics can be decomposed into a product of
these three operators, then the Wigner representation in the Schrödinger picture is easy to find.)

11.3. Examples

11.3.1. Coherent state. It is easy to show that, for a coherent state,

ρ̂ = |α⟩ ⟨α| : W (x, y) =
1

π
exp

[
−
(
x−

√
2Reα

)2
−
(
y −

√
2 Imα

)2]
. (11.15)

A plot of this Wigner representation in phase space is shown in Fig. 11.2. It coincides with a Gaussian
probability density for two independent Gaussian random variables, each with variance 1/2. This result agrees
with the distributions | ⟨q = x|α⟩ |2 and | ⟨p = y|α⟩ |2 given by Eqs. (4.7) and (4.8). It also agrees with the
distribution | ⟨q(θ) = u|α⟩ |2 that we computed in Exercise 4.26.

Figure 11.2. The Wigner representation of a coherent state in phase space.

Exercise 11.6. Derive Eq. (11.15).

11.3.2. Squeezed vacuum. For a squeezed vacuum state discussed in Chapter 10, it is easier to write the
Wigner representation in terms of the new variables

u(x, y) = x cos
∠z
2

+ y sin
∠z
2
, v(x, y) = −x sin ∠z

2
+ y cos

∠z
2
, (11.16)
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so that

ρ̂ = Ŝ(z) |0⟩ ⟨0| Ŝ†(z) : W (x, y) =W ′(u, v) =
1

π
exp

(
− u2

e2|z|
− v2

e−2|z|

)
. (11.17)

This result coincides with the probability density of two independent zero-mean Gaussian random variables
U and V , where U has a variance e2|z|/2 and V has a variance e−2|z|/2, as depicted in Fig. 11.3. The new
quadratures q̂(∠z2 ) and p̂(∠z2 ) coincide with the antisqueezed quadrature and squeezed quadrature, respectively,
and it can be shown that this Wigner representation leads to a Gaussian probability density for any quadrature,
in agreement with Sec. 10.3.

Figure 11.3. The Wigner representation of a squeezed vacuum state in phase space. This
picture shows why we call it a squeezed state.

Notice that the Wigner representation remains nonnegative for the squeezed vacuum. The Sudarshan
representation, on the other hand, cannot stay nonnegative for this state, as implied by Exercise 9.8.

Exercise 11.7. Derive Eq. (11.17).

11.3.3. Gaussian states. The coherent state and the squeezed vacuum state are examples of a larger class
of states called the Gaussian states, which are defined as states with Gaussian Wigner representations:

W (x, y) =
1

2π
√
detΣ

exp

[
−1

2
(x−m)⊤Σ−1(x−m)

]
, x ≡

(
x
y

)
. (11.18)

While the mean vector m can be arbitrary, the covariance matrix Σ must satisfy the Heisenberg uncertainty
relations for any two quadratures for W (x, y) to be the Wigner representation of a legal quantum state.

The general theory of Gaussian states for multiple modes goes very deep; it is an active research topic in
quantum information theory [21].

11.3.4. Number states. For ρ̂ = |n⟩ ⟨n|, it’s easier to use Eq. (11.5). Using also Eq. (4.1), we obtain

W (x, y) =
1

2π

ˆ ∞

−∞

eiλy

2nn!π1/2
Hn(x− λ/2) exp

[
−(x− λ/2)2

2

]
Hn(x+ λ/2) exp

[
−(x+ λ/2)2

2

]
dλ

(11.19)

=
e−x2

2π2nn!π1/2

ˆ ∞

−∞
eiλyHn(x− λ/2)Hn(x+ λ/2) exp

(
−λ

2

4

)
dλ (11.20)

=
(−1)n

π
Ln[2(x

2 + y2)]e−x2−y2 , (11.21)
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where Ln(u) is the nth Laguerre polynomial (https://en.wikipedia.org/wiki/Laguerre_polynomia
ls). (I have to admit that I just copied the result from https://en.wikipedia.org/wiki/Wigner_quasi
probability_distribution#Examples.) For n = 1 in particular,

H1(x− λ/2) = 2x− λ, (11.22)

W (x, y) =
e−x2

(2π2)π1/2

ˆ ∞

−∞
eiλy(4x2 − λ2) exp

(
−λ

2

4

)
dλ (11.23)

=
1

π
(2x2 + 2y2 − 1)e−x2−y2 . (11.24)

This function is plotted in Fig. 11.4. Notice that it goes negative in the middle of phase space, so we can’t treat
the Wigner representation here as a probability density. In general, W (x, y) always goes negative somewhere
in phase space for a number state with n ≥ 1.
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Figure 11.4. Wigner representation of the number state |n⟩ , n = 1.

The negativity of the Wigner representation is often regarded as another signature of nonclassicality for a
quantum state. This criterion is a bit more stringent than the negativity of the Sudarshan representation, since
there exist states with positive W (x, y) for all (x, y), such as the squeezed vacuum state, but their Sudarshan
representations can go negative.

11.4. Relations with other phase-space distributions

We have encountered three phase-space distributions so far:
(1) The Sudarshan representation Φ(α) (Sec. 4.5).
(2) The Wigner representation W (x, y).
(3) The so-called Husimi representation, also called the Q function:

Q(α) ≡ 1

π
⟨α| ρ̂ |α⟩ , (11.25)

which is precisely the probability density from dual-homodyne detection or heterodyne detection, as
we found in Chapter 8.

It turns out that the three representations have a cute relationship. To show it, we first rewrite W (x, y) in terms
of a complex variable α:

W̃ (α) ≡ 2W (
√
2Reα,

√
2 Imα), W (x, y) =

1

2
W̃

(
x+ iy√

2

)
. (11.26)

The factor of 2 ensures that W̃ (α) is normalized as¨
W̃ (α)d2α = 1, (11.27)

https://en.wikipedia.org/wiki/Laguerre_polynomials
https://en.wikipedia.org/wiki/Laguerre_polynomials
https://en.wikipedia.org/wiki/Wigner_quasiprobability_distribution#Examples
https://en.wikipedia.org/wiki/Wigner_quasiprobability_distribution#Examples
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just like Φ(α) and Q(α). The relations among the three are

W̃ (α) =

¨
Φ(β)

2

π
exp

(
−2|α− β|2

)
d2β, (11.28)

Q(α) =

¨
Φ(β)

1

π
exp

(
−|α− β|2

)
d2β =

¨
W̃ (β)

2

π
exp

(
−2|α− β|2

)
d2β. (11.29)

Another way of writing these relations is in terms of the convolution ∗ between two functions (https:
//en.wikipedia.org/wiki/Convolution):

f ∗ g ≡
¨

f(β)g(α− β)d2β, (11.30)

W̃ = Φ ∗
(
2

π
e−2|α|2

)
, (11.31)

Q = Φ ∗
(
1

π
e−|α|2

)
=W ∗

(
2

π
e−2|α|2

)
. (11.32)

The effect of convolution with a Gaussian function is like diffusion: it blurs the function in phase space. The
simplest example is a coherent state |β⟩:

Φ(α) = δ2(α− β) ≡ δ(Reα− Reβ)δ(Imα− Imβ), (11.33)

W̃ (α) =
2

π
exp

(
−2|α− β|2

)
, (11.34)

Q(α) =
1

π
exp

(
−|α− β|2

)
. (11.35)

The first column of Figure 11.5 plots W̃ (α) and Q(α) for a coherent state, the second column plots those of
a squeezed vacuum state, while the third column plots W̃ (α) and Q(α) for a number state |n = 1⟩. It’s a lot
more difficult to plot the Sudarshan representations for these common states, and the Wigner representation is
the default phase-space distribution for plotting.

Exercise 11.8. Derive Eqs. (11.28) and (11.29).

Exercise 11.9. Consider a squeezed vacuum state with ∠z = 0. Compute the Husimi representationQ(α). Find
the variances of the two quadratures in dual-homodyne detection. Using this result, explain why dual-homodyne
detection is not used in interferometry with a squeezed state.

11.5. Multimode Wigner representation

Assume J modes. The quantum characteristic function and the Wigner representation are now defined as

χ(ξ,η) ≡ tr [ρ̂ exp(iξ · q̂ + iη · p̂)], (11.36)

ξ · q̂ + η · p̂ =
∑
j

(ξj q̂j + ηj p̂j), (11.37)

W (x,y) ≡ 1

(2π)2J

ˆ
χ(ξ,η) exp(−iξ · x− iη · y)dJξdJη, (11.38)

ξ · x+ η · y =
∑
j

(ξjxj + ηjyj). (11.39)

Exercise 11.10. Find W (x,y) for a multimode coherent state |α⟩.

https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Convolution
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Figure 11.5. First column: Wigner W̃ (α) and Husimi Q(α) for a coherent state |1 + i⟩.
Second column: W̃ andQ for a squeezed vacuum state. Third column: W̃ andQ for a number
state |n = 1⟩.



CHAPTER 12

Spontaneous Parametric Down Conversion (SPDC)

12.1. Entangled photons

We now discuss another application of optical parametric amplifiers (OPA): generation of entangled photons.
Entangled photons are useful for experiments in quantum foundations and quantum information.

I will give a quick overview of the optics involved, focusing on the experimental setup reported in Ref. [22];
see Fig. 12.1. This setup has been adopted in many other experiments; see, e.g., Refs. [23, 24].

Figure 12.1. Experimental setup for generating entangled photons reported in Ref. [22] (Figure
copied from Fig. 3 of the paper). PPKTP means “periodically poled KTP.”

In the setup depicted in Fig. 12.1, there are two pump beams going into the crystal in counter-propagating
directions, but let’s focus on the physics with just one pump beam for now. Recall our discussion in Sec. 10.2.2,
but now assume that there are three modes all propagating in the +x̃ direction, with annihilation operators â1,
â2, â3, respectively. Suppose that

(1) â1 is the annihilation operator of a signal mode with center frequency ω0 and polarization vector
ẽ1 = ỹ.

(2) â2 is the annihilation operator of a so-called idler mode, which has the same properties as the signal
mode except that the polarization vector is ẽ2 = z̃.

(3) â3 is the second-harmonic mode with frequency 2ω0 and polarization vector ẽ3 = ỹ.
Then the term in η̂easy(t) relevant to the three modes would look like˚

χ(2)
yzy(x)â3â

†
1â

†
2 exp[i(k3 − k1 − k2)x]d

3r + H.c., (12.1)

where kj is the wavenumber for mode j. If the crystal is periodically poled such that χ(2)(x) compensates for
the phase mismatch k3 − k1 − k2, then this term would be enhanced over all other terms. Further, assume that
the second-harmonic mode comes from a strong pump laser beam, such that â3 ≈ α3. The interaction-picture
Hamiltonian becomes

η̂easy(t) ≈ gα3â
†
1â

†
2 + H.c., (12.2)

where g is a constant depending on χ(2) and the length of the crystal.
106
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Unlike the squeezing setup in Chapter 10, where we have just one signal mode at the fundamental frequency
ω0 and the Hamiltonian is proportional to â2 and â†2, here we have two modes at ω0 called the signal and the
idler with two different polarizations. The former case is called degenerate OPA and the latter case, with two
different modes at the fundamental frequency, is called nondegenerate OPA. Since k1 ̸= k2, k3 − k1 − k2 is
different from k3 − 2k1, and the efficiency of each process can be controlled by choosing the period of the
poling to achieve quasi-phase matching for the desired process.

We now proceed with the first-order perturbation theory to obtain the interaction-picture quantum state:

|ψI(t)⟩ = T exp

[
− i

ℏ

ˆ t

0
η̂easy(τ)dτ

]
≈ |vac⟩ − i

ℏ

ˆ t

0
η̂easy(τ)dτ |vac⟩ = |vac⟩ − igα3

ℏ
â†1â

†
2 |vac⟩ (12.3)

= |vac⟩ − igα3

ℏ
|Fock : s = 1, s = 2⟩ , (12.4)

where
|Fock : s = 1, s = 2⟩ ≡ â†1â

†
2 |vac⟩ (12.5)

is a two-photon Fock state that we discussed in Sec. 5.6, with one ẽ1-polarized photon, denoted by s = 1 in the
notation, and one ẽ2-polarized photon, denoted by s = 2 (we omit the mention of the wavevectors for brevity).
We see that the process creates two photons at half the frequency of the pump, hence the name spontaneous
parametric down conversion (SPDC).

In the setup depicted by Fig. 12.1, there is another pump beam propagating in the −x̃ direction. Let α3e
iθ

be its amplitude, b̂1 be the annihilation operator for another signal mode with polarization vector ỹ, and b̂2 be
another idler mode with polarization vector z̃. These three modes have the same properties as the three modes
discussed earlier, except that they propagate in the opposite direction. The total Hamiltonian becomes

η̂easy(t) = gα3

(
â†1â

†
2 + eiθ b̂†1b̂

†
2

)
+ H.c.. (12.6)

and the quantum state becomes

|ψI(t)⟩ ≈ |vac⟩ − igα3

ℏ

(
â†1â

†
2 + eiθ b̂†1b̂

†
2

)
|vac⟩ . (12.7)

Let’s focus on the two-photon component:∣∣∣ψ(2)
I (t)

〉
∝
(
â†1â

†
2 + eiθ b̂†1b̂

†
2

)
|vac⟩ = |Fock : sa = 1, sa = 2⟩+ eiθ |Fock : sb = 1, sb = 2⟩ . (12.8)

This equation says that the two-photon state is a superposition of two possibilities:
(1) Two photons, one ẽ1-polarized (denoted by sa = 1) and one ẽ2-polarized (denoted by sa = 2), are

propagating in the +x̃ direction.
(2) Two photons, one ẽ1-polarized (denoted by sb = 1) and one ẽ2-polarized (denoted by sb = 2), are

propagating in the −x̃ direction.
The two counter-propagating beams then meet at a polarizing beam splitter (PBS). Let’s say the optical beam
propagating in the +x̃ direction is directed to the first input of the PBS, and the other beam is direct to the
second input of the PBS. A PBS fully transmits one polarization, say, ẽ1, and fully reflects the other polarization
ẽ2, as depicted in Fig. 12.2. Consider the following two cases:

(1) If two photons come into the first input:
(a) The ẽ1 photon is transmitted into the first output.
(b) The ẽ2 photon is reflected into the second output.

(2) If two photons come into the second input:
(a) The ẽ1 photon is transmitted into the second output.
(b) The ẽ2 photon is reflected into the first output.

In either case, there is always one photon in the first output and one photon in the second output. The polarization
of each photon is unknown because we don’t know whether the photon comes from the first input or the second
input, but we know that, if the polarization of the first output is ẽ1, then the polarization of the second output
must be ẽ2, and vice versa, because the photons, regardless of their origin, are created in a pair with orthogonal
polarizations.

We say that the polarizations of the two photons are entangled.
To model the physics mathematically, define the following:
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Figure 12.2. A polarizing beam splitter (PBS) fully transmits one polarization and fully reflects
the other polarization.

(1) For the first output, let ĉ1 and ĉ2 be the operators for two polarization modes ẽ1 and ẽ2, respectively.
(2) For the second output, let d̂1 and d̂2 be the operators for two polarization modes ẽ1 and ẽ2, respectively.

Let Û be the unitary operator for the PBS, which obeys passive linear optics. The input-output relation for the
PBS in the Heisenberg picture can be taken as

ĉ1(T ) = Û †ĉ1Û = â1, ĉ2(T ) = Û †ĉ2Û = b̂2, d̂1(T ) = Û †d̂1Û = b̂1, d̂2(T ) = Û †d̂2Û = â2. (12.9)

In the Schrödinger picture, the two-photon component of the state hence becomes

Û
∣∣∣ψ(2)

I

〉
∝ Û

(
â†1â

†
2 + eiθ b̂†1b̂

†
2

)
|vac⟩ (12.10)

=
(
Û â†1Û

†Û â†2Û
† + eiθÛ b̂†1Û

†Û b̂†2Û
†
)
Û |vac⟩ (12.11)

=
(
ĉ†1d̂

†
2 + eiθd̂†1ĉ

†
2

)
|vac⟩ (using Eqs. (12.9) and Û |vac⟩ = |vac⟩) (12.12)

≡ |Fock : sc = 1, sd = 2⟩+ eiθ |Fock : sc = 2, sd = 1⟩ . (12.13)

As advertised, this result shows that, given that there are two photons, there is always one photon in the ĉ1,2
modes in the first output and one photon in the d̂1,2 modes in the second output. Moreover, their polarizations
are entangled: If the first photon has polarization vector ẽ1 (denoted by sc = 1), then the second photon has
polarization vector ẽ2 (denoted by sd = 2), and vice versa. The relative phase θ between the two possibilities
can be controlled by optical components.

There are a variety of other methods and configurations to produce entangled photons, although most of
them are based on SPDC in a χ(2) crystal.

12.2. Bell’s theorem and the CHSH game

A lot of people, including Einstein, are not happy with quantum mechanics and they suggest that there
may be a deeper classical “hidden-variable” theory underlying quantum mechanics. Inspired by Einstein,
Bell and others proposed experiments that can test those classical theories. They showed that, according to
those classical theories, the experimental result must obey certain inequalities, while quantum mechanics can
violate them. An experiment violating any of those inequalities can rule out a large class of classical hidden-
variable theories in one go. Those inequalities are now commonly called Bell’s theorem. See, for example,
https://www.nobelprize.org/prizes/physics/2022/summary/ and Refs. [25, 26] for an introduction.

We will focus on one popular version of the inequalities called the CHSH inequality (named after its
inventors Clauser, Horne, Shimony, and Holt) and treat the experiment as a game called the CHSH game. A
nice video about the game can be found at https://www.youtube.com/watch?v=v7jctqKsUMA. Our
description of the game below is slightly different from the video in order to make our description closer to the
academic literature, although the essential idea is the same.

https://www.nobelprize.org/prizes/physics/2022/summary/
https://www.youtube.com/watch?v=v7jctqKsUMA
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12.2.1. Rules of the CHSH game.
(1) The game involves two cooperating players, commonly called Alice and Bob, and a referee.
(2) After the game starts, Alice and Bob are separated and forbidden to communicate with each other.

The referee can communicate with both.
(3) In each round of the game, the referee sends one random instruction u to Alice and another random

instruction v to Bob. There are only two possible instructions “1” or “2” for each player, so in total
there are 4 possible sets of instructions (u, v) = (1, 1), (1, 2), (2, 1), or (2, 2) sent to Alice and Bob,
as shown in Table 1.

(4) After receiving the instruction, Alice should send an answer A = +1 or − 1 to the referee.
(5) Similarly, Bob should also send an answer B = +1 or − 1 to the referee.
(6) The reward is computed as follows:

(a) If Alice and Bob receive the instructions (1, 1), (2, 1), or (2, 2), they win a dollar if their answers
are the same (A = B), or lose a dollar if their answers are different (A ̸= B). The reward given
such instructions is hence AB.

(b) However, if they receive the instructions (1, 2), they win a dollar if their answers are different
(A ̸= B), or lose a dollar if their answers are the same (A = B). The reward given such
instructions is hence −AB.

Table 1 summarizes the rules of the game.
(7) Many rounds of the game are played, and the instructions are random each time, i.e., the four sets of

instructions (1, 1), (1, 2), (2, 1), (2, 2) have equal probability 1/4.

Instruction to Al-
ice (u)

Instruction to Bob
(v)

Win condition Reward Expected Reward

1 1 A = B AB C11 ≡ E(AB|1, 1)
1 2 A ̸= B −AB −C12 ≡ −E(AB|1, 2)
2 1 A = B AB C21 ≡ E(AB|2, 1)
2 2 A = B AB C22 ≡ E(AB|1, 2)

Table 1. CHSH game rules.

We allow Alice and Bob to communicate before the game starts. We also allow Alice and Bob to adopt
any deterministic or randomized strategy, i.e., A and B may be random variables, so that the expected reward
given each set of instructions is listed in the last column of Table 1. The overall expected reward is hence

expected reward per round =
1

4
S, (12.14)

where
S ≡ C11 − C12 + C21 + C22 (12.15)

is called the CHSH number and
Cuv ≡ E(AB|u, v) (12.16)

is the correlation of the players’ answers given instructions (u, v). In other words, the players’ answers should
be as correlated as possible to maximize C11, C21, and C22, except the (1, 2) case, when they should be as
anti-correlated as possible to minimize C12.

By playing many rounds, the average reward should converge to the expected reward.

12.2.2. Classical: hidden-variable model. We first pretend that we don’t know quantum mechanics and
assume that Alice and Bob follow the laws of classical probability theory. We use one random variable λ,
called the hidden variable, to denote any pre-shared information between them and also any random-number
generator, e.g., dices, they use in determining their answers. We do not otherwise impose any restriction on
λ; we allow its sample space to be arbitrary (e.g., λ can be a number or a vector of any dimension) and its
probability distribution can also be arbitrary.

We also allow Alice and Bob to adopt any strategy, with the important restriction that they cannot know the
instruction to the other player. Let Au(λ) be Alice’s answer given instruction u = 1 or 2, and likewise Bv(λ)
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be Bob’s answer given instruction v = 1 or 2. Then we allow Au(λ) and Bv(λ) to be arbitrary functions of the
hidden variable λ. The correlation in Eq. (12.16) becomes

Cuv = E [Au(λ)Bv(λ)]. (12.17)

As proved in Sec. 12.2.3, the assumption of Eq. (12.17) under the hidden-variable model leads to an inequality
for the CHSH number given by

|S| ≤ 2. (12.18)

This inequality is called the CHSH inequality after its inventors (https://en.wikipedia.org/wiki/CH
SH_inequality). In the context of the game, the inequality means that the expected reward per round S/4
cannot exceed 2/4 = 0.5. (It also means that the expected reward cannot go below −2/4 = −0.5.)

We have assumed very little about the hidden-variable model for the proof of the CHSH inequality—the
model allows Alice and Bob to pre-share any classical data and use any strategy. The hidden-variable model is
sometimes called local realism; it encapsulates many physicists’ belief about the fundamental properties of all
physical objects, including our Alice and Bob. I won’t go into the philosophical details and simply refer you to
Refs. [25, 26] for more information.

12.2.3. Side note: Proof of CHSH inequality (12.18). I follow Wikipedia https://en.wikipedia.o
rg/wiki/CHSH_inequality#Bell’s_1971_derivation. First consider

C11 − C12 = E (A1B1 −A1B2) = E (A1B1 −A1B2 ±A1B1A2B2 ∓A1B1A2B2) (12.19)
= E [A1B1(1±A2B2)]− E [A1B2(1±A2B1)]. (12.20)

Take absolute values of both sides, and use triangle inequality |x + y| ≤ |x| + |y| and Jensen’s inequality
E(|X|) ≤ |E(X)| (https://en.wikipedia.org/wiki/Jensen%27s_inequality):

|C11 − C12| ≤ |E [A1B1(1±A2B2)]|+ |E [A1B2(1±A2B1)]| (triangle ineq.) (12.21)
≤ E [|A1B1(1±A2B2)|] + E [|A1B2(1±A2B1)|] (Jensen) (12.22)
= E (|A1B1||1±A2B2|) + E (|A1B2||1±A2B1|) (12.23)
≤ E (|1±A2B2|) + E (|1±A2B1|) (|AjBl| ≤ 1) (12.24)
= E (1±A2B2) + E (1±A2B1) (1±AjBl ≥ 0) (12.25)
= 2± C22 ± C21 = 2± (C21 + C22). (12.26)

It follows that
|C11 − C12| ≤ 2− |C21 + C22|, (12.27)

|C11 − C12|+ |C21 + C22| ≤ 2, (12.28)
|C11 − C12 + C21 + C22| ≤ |C11 − C12|+ |C21 + C22| ≤ 2. (triangle ineq.) (12.29)

12.2.4. Quantum: better strategy using entanglement. The hidden-variable model sounds general and
reasonable, but it turns out that Alice and Bob can do better in the game and violate the CHSH inequality if they
share entanglement.

(1) For each round, Alice has a photon and Bob has a photon. The photons are entangled in their
polarizations.

(2) After receiving an instruction, Alice measures the polarization of her photon with respect to the two
possible polarization vectors

ẽ+(a) = (cos a)ỹ + (sin a)z̃, ẽ−(a) = (− sin a)ỹ + (cos a)z̃, (12.30)
where Alice’s measurement setting a = au depends on the instruction u she receives.

(3) Her answer A depends on the measurement outcome:
(a) if the photon is found to have polarization ẽ+(a), A = +1,
(b) if the photon is found to have polarization ẽ−(a), A = −1.

(4) Similarly, Bob measures the polarization with respect to the polarization vectors
ẽ+(b) = (cos b)ỹ + (sin b)z̃, ẽ−(b) = (− sin b)ỹ + (cos b)z̃, (12.31)

where Bob’s measurement setting b = bv depends on the instruction v he receives.

https://en.wikipedia.org/wiki/CHSH_inequality
https://en.wikipedia.org/wiki/CHSH_inequality
https://en.wikipedia.org/wiki/CHSH_inequality#Bell's_1971_derivation
https://en.wikipedia.org/wiki/CHSH_inequality#Bell's_1971_derivation
https://en.wikipedia.org/wiki/Jensen%27s_inequality
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(5) His answer B depends on the measurement outcome in the same way as Alice’s:
(a) if the photon is found to have polarization ẽ+(b), B = +1,
(b) if the photon is found to have polarization ẽ−(b), B = −1.

(6) Many rounds of the game are played, and the average reward should converge to the expected reward.
With entangled photons, it turns out to be possible for S to violate the CHSH inequality |S| ≤ 2 given by
Eq. (12.18) and for the players to obtain a higher (S > 2, S/4 > 0.5) or lower (S < −2, S/4 < −0.5) expected
reward for the game.

A and B are still random variables in quantum mechanics, although their joint probability distribution,
conditioned on the settings (a, b), should be computed from

P (A,B|a, b) = |⟨Fock : A, a;B, b|ψ⟩|2 =
∣∣∣⟨vac| ĉA(a)d̂B(b) |ψ⟩

∣∣∣2, (12.32)

where
(1) |ψ⟩ is the quantum state of the entangled photons,
(2) |Fock : A, a;B, b⟩ = ĉ†A(a)d̂

†
B(b) |vac⟩ is a two-photon state where Alice’s photon has polarization

ẽA(a) and Bob’s photon has polarization ẽB(b),
(3) the new polarization-mode operators, according to Sec. 3.5.1, should be defined as

ĉ+(a) ≡ (cos a)ĉ1 + (sin a)ĉ2, d̂+(b) ≡ (cos b)d̂1 + (sin b)d̂2, (12.33)

ĉ−(a) ≡ −(sin a)ĉ1 + (cos a)ĉ2, d̂−(b) ≡ −(sin b)d̂1 + (cos b)d̂2. (12.34)

The correlation in Eq. (12.16) becomes

Cuv ≡ E (AB|u, v) =
∑

A=±1,B=±1

ABP (A,B|au, bv). (12.35)

We can no longer assume Eq. (12.17) under the hidden-variable model, where A is a function of Alice’s
instruction u only and B is a function of Bob’s instruction v only. Here we must take both instructions (u, v)
into account when computing each correlation.

We now study a specific quantum scenario that can violate the CHSH inequality (12.18). Let the quantum
state be

|ψ⟩ = 1√
2

(
ĉ†1d̂

†
2 − ĉ†2d̂

†
1

)
|vac⟩ , (12.36)

where I’ve assumed eiθ = −1, so that the state is the so-called singlet state (https://en.wikipedia.org/w
iki/Singlet_state). (I also ignore the events when no photon comes in so that the post-selected quantum
state is the two-photon state without the |vac⟩ component.) The probabilities of detecting the two photons in
certain pairs of polarizations become

P (1, 1|a, b) =
∣∣∣⟨vac| ĉ+d̂+ |ψ⟩

∣∣∣2 = ∣∣∣∣⟨vac| ĉ+d̂+
1√
2

(
ĉ†1d̂

†
2 − ĉ†2d̂

†
1

)
|vac⟩

∣∣∣∣2 (12.37)

=
1

2
[(cos a)(sin b)− (sin a)(cos b)]2 =

1

2
sin2(a− b), (12.38)

P (1,−1|a, b) =
∣∣∣⟨vac| ĉ+d̂− |ψ⟩

∣∣∣2 = ∣∣∣∣⟨vac| ĉ+d̂−
1√
2

(
ĉ†1d̂

†
2 − ĉ†2d̂

†
1

)
|vac⟩

∣∣∣∣2 (12.39)

=
1

2
[(cos a)(cos b)− (sin a)(− sin b)]2 =

1

2
cos2(a− b), (12.40)

P (−1, 1|a, b) =
∣∣∣⟨vac| ĉ−d̂+ |ψ⟩

∣∣∣2 = ∣∣∣∣⟨vac| ĉ−d̂+
1√
2

(
ĉ†1d̂

†
2 − ĉ†2d̂

†
1

)
|vac⟩

∣∣∣∣2 (12.41)

=
1

2
[−(sin a)(sin b)− (cos a)(cos b)]2 =

1

2
cos2(a− b), (12.42)

P (−1,−1|a, b) =
∣∣∣⟨vac| ĉ−d̂− |ψ⟩

∣∣∣2 = ∣∣∣∣⟨vac| ĉ−d̂−
1√
2

(
ĉ†1d̂

†
2 − ĉ†2d̂

†
1

)
|vac⟩

∣∣∣∣2 (12.43)

=
1

2
[(− sin a)(cos b)− (cos a)(− sin b)]2 =

1

2
sin2(a− b). (12.44)

https://en.wikipedia.org/wiki/Singlet_state
https://en.wikipedia.org/wiki/Singlet_state
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The correlation C(a, b) given settings (a, b) becomes

C(a, b) ≡
∑
A,B

ABP (A,B|a, b) (12.45)

= P (1, 1|a, b)− P (1,−1|a, b)− P (−1, 1|a, b) + P (−1,−1|a, b) (12.46)

= sin2(a− b)− cos2(a− b) = − cos[2(a− b)]. (12.47)
Notice the following special cases:

(1) When a = b, P (1, 1|a, a) = P (−1,−1|a, a) = 0, P (1,−1|a, a) = P (−1, 1|a, a) = 1/2, and
C(a, a) = −1, indicating that the polarizations of the photon pair are always orthogonal to each other,
regardless of a. This is a special property of the singlet state.

(2) When a − b = π/4, Bob’s polarization vectors are rotated by 45◦ with respect to Alice’s, and
C(a, b) = 0.

(3) When a − b = π/2, Bob’s polarization vectors are rotated by 90◦ with respect to Alice’s, and
C(a, b) = 1.

To compute the CHSH number given by Eq. (12.15), we combine Eqs. (12.35) and (12.45) to write Cuv =
C(au, bv) and choose the settings

a1 = 0, a2 =
π

4
, b1 =

π

8
, b2 =

3π

8
. (12.48)

Then

C11 = C(a1, b1) = − 1√
2
, C12 = C(a1, b2) =

1√
2
, (12.49)

C21 = C(a2, b1) = − 1√
2
, C22 = C(a2, b2) = − 1√

2
, (12.50)

leading to

S = −2
√
2. (12.51)

Hence |S| > 2, which violates the CHSH inequality (12.18). In the context of the game, S < −2 means that
the expected reward goes below the minimum allowed by the hidden-variable model.

To demonstrate the violation of the CHSH inequality experimentally, many entangled photon pairs are
measured (many rounds of the game are played) so that the reward, based on the measurement outcomes and
averaged over the many rounds, should violate the CHSH inequality for the expected reward |S|/4 ≤ 0.5
significantly. There are many other entangled states and settings that allow one to violate the CHSH inequality,
but the key ingredient of the experiment is the entangled photons.

People often borrow Einstein’s phrase “spooky action at a distance” to describe the violation of local
realism. For a lot of people, a conclusive experiment that violates local realism is a big deal [25, 26], so much
so that they managed to convince the Nobel committee to award the key experimentalists Clauser, Aspect, and
Zeilinger a Nobel Prize in Physics (https://www.nobelprize.org/prizes/physics/2022/summary/).

Exercise 12.1. Verify Eqs. (12.37)–(12.44).

Exercise 12.2. Show that Cuv can also be expressed as

Cuv = ⟨ψ| Âu ⊗ B̂v |ψ⟩ , (12.52)

where Âu and B̂v are observables you should find.
(The expression now looks closer to Eq. (12.17) under the hidden-variable model, although still not the

same, because the probability distribution of (Âu, B̂v) still depends on (u, v) afterall.)

Exercise 12.3. Using quantum theory, compute the marginal probability distribution of Alice’s outcome:∑
B

P (A,B|a, b) (12.53)

and show that it does not depend on b. Do the same for Bob’s outcome.
(This exercise shows that Bob’s setting b cannot influence the statistics ofA and Alice cannot learn anything

about b if she’s alone; same for Bob, so the entangled photons do not allow them to communicate via their

https://www.nobelprize.org/prizes/physics/2022/summary/
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settings. The violation of Bell’s theorem can be revealed only after the referee has combined their results or
Alice and Bob have come together to combine their results.)

Exercise 12.4. Let

|ψ⟩ = 1√
2

(
ĉ†1d̂

†
2 + eiθ ĉ†2d̂

†
1

)
|vac⟩ , (12.54)

ĉ+ = (cos a)ĉ1 + (eiϕ sin a)ĉ2, (12.55)

ĉ− = (−e−iϕ sin a)ĉ1 + (cos a)ĉ2, (12.56)

d̂+ = (cos b)d̂1 + (eiϕ sin b)d̂2, (12.57)

d̂− = (−e−iϕ sin b)d̂1 + (cos b)d̂2. (12.58)
Suppose that experimentalists tell you θ and ϕ are some real constants that they cannot change. ComputeC(a, b)
and give them a set of settings (a1, b1), (a1, b2), (a2, b1), (a2, b2) such that |S| = 2

√
2.

Exercise 12.5. To measure a photon in a certain polarization basis, one way is to use a quarter-wave plate
(QWP), an electro-optic modulator (EOM), and a PBS shown in Fig. 12.3.

EOMQWP

PBS

Figure 12.3.

(1) The QWP applies a phase shift ϕ0 to the ẽ1-polarization mode and a phase shift ϕ0 + π/2 to the
ẽ2-polarization mode.

(2) The EOM applies a phase shift ϕ1 to the ẽ+-polarization mode and a different phase shift ϕ2 to the
ẽ−-polarization mode, where

ẽ+ ≡ 1√
2
(ẽ1 + ẽ2), ẽ− ≡ 1√

2
(ẽ1 − ẽ2). (12.59)

Let â1,2 be the operator for the ẽ1,2-polarized mode at the input and b̂1,2(T ) be the operator for the ẽ1,2-polarized
mode at the output.

(1) Find the input-output relation between
(
b̂1(T )

b̂2(T )

)
≡
(
Û †b̂1Û

Û †b̂2Û

)
and

(
â1
â2

)
, where Û is the unitary

operator that models the QWP + EOM setup.
(2) Let a one-photon state be

|ψ⟩ =
(
ψ1â

†
1 + ψ2â

†
2

)
|vac⟩ . (12.60)

Find the probability P (+) =
∣∣∣⟨Fock : 1| Û |ψ⟩

∣∣∣2 of detecting the photon in the b̂1 mode, where

|Fock : 1⟩ ≡ b̂†1 |vac⟩, and the probability P (+) =
∣∣∣⟨Fock : 2| Û |ψ⟩

∣∣∣2 of detecting the photon in the

b̂2 mode, where |Fock : 2⟩ ≡ b̂†2 |vac⟩.
(3) We would like to implement a measurement with respect to the basis {|Fock : +⟩ , |Fock,−⟩}, where

|Fock : +⟩ = â†+ |vac⟩ , |Fock : −⟩ = â†− |vac⟩ , (12.61)
â+ = (cos a)â1 + (sin a)â2, â− = −(sin a)â1 + (cos a)â2, (12.62)

and a is a given real number, so that the probabilities are given by P (+) = | ⟨+|ψ⟩ |2 and P (−) =
| ⟨−|ψ⟩ |2, respectively. Find a set of ϕ0, ϕ1, ϕ2 that implement the measurement.



CHAPTER 13

Incoherent Imaging*

Our goal in this chapter is to model the quantum state of light in an imaging system with incoherent sources
for astronomy and fluorescence microscopy. The general idea is sketched in Fig. 13.1, which generalizes the
two-input-two-output relations we studied earlier in Chapter 6. Multiple optical pulse modes on an input plane
at z = z1 propagate through passive linear optics. They are transformed to optical pulse modes on an output
plane at z = z2 > z1 some time later. Let {f̂l} be the annihilation operators for the input pulse modes and {ĝl}
be the annihilation operators for the output pulse modes. If the optics is lossless, the input-output relations in
the Heisenberg picture are given by

ĝl =
∑
m

Vlmf̂m, (13.1)

where V is a unitary matrix, as we learned in Chapter 6. If there is loss, we assume that some modes are
inaccessible and trace them out, following Chapter 7.

passive

linear

optics

Figure 13.1. An imaging system as a multi-input-multi-output system. Multiple spatiotempo-
ral modes with annihilation operators {f̂l} are prepared at an input plane z = z1, which are
transformed to multiple spatiotemporal modes with operators {ĝl} in the Heisenberg picture.

13.1. Spatiotemporal modes

13.1.1. Change of variables. The simple pulse modes we studied earlier assume (kx, ky) = (0, 0) and
s = 1. The electric fields of the modes look like pulses moving along z but are otherwise uniform along (x, y).
To model imaging, we need to consider modes with more complicated spatial behavior. To define the modes in
a way relatable to classical optics, we perform a change of variables from (kx, ky, kz) to (kx, ky, ω), similar to
what we did in Sec. 6.4.

Assume that the (k, s)-space amplitude of a mode is nonzero only for kz > 0, so that the mode propagates
in the positive z direction. kz can then be expressed as a function of (kx, ky, ω):

kz(kx, ky, ω) =

√(ω
c

)2
− k2x − k2y. (13.2)

Recall the annihilation operator â(k, s) in the continuum case in Sec. 3.4. It satisfies the standard commutation
relation

[
â(k, s), â†(k′, s′)

]
= δ3(k − k′)δss′ . In terms of the new variables, we define a new annihilation

operator as

b̂(kx, ky, ω, s) ≡
√
∂kz(kx, ky, ω)

∂ω
â(kx, ky, kz(kx, ky, ω), s), (13.3)
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so that it satisfies a similar commutation relation[
b̂(κ, s), b̂†(κ′, s′)

]
= δ3(κ− κ′)δss′ , (13.4)

where we have defined the shorthands

κ ≡ (kx, ky, ω), δ3(κ− κ′) ≡ δ(kx − k′x)δ(ky − k′y)δ(ω − ω′). (13.5)

We can now define an optical mode with mode label l by the annihilation operator

f̂l =
∑
s

˚
W ∗

l (k, s)â(k, s)d
3k =

∑
s

˚
W∗

l (κ, s)b̂(κ, s)d
3κ, (13.6)

where

d3κ ≡ dkxdkydω,

˚
(. . . )d3κ ≡

ˆ ∞

0

ˆ ∞

−∞

ˆ ∞

−∞
(. . . )dkxdkydω, (13.7)

Wl(k, s) is the continuum limit (L→ ∞) of Wjl∆k
−3/2 with ∆k ≡ 2π/L, and

Wl(κ, s) ≡
√
∂kz
∂ω

Wl(k, s) (13.8)

is the (κ, s)-space amplitude of the mode, obtained by substituting kz with the function kz(kx, ky, ω) on the
right-hand side.

For a set of modes, their operators should satisfy the usual commutation relation[
f̂l, f̂

†
m

]
= δlm, (13.9)

so the amplitudes should satisfy the orthonormal condition∑
s

˚
W ∗

l (k, s)Wm(k, s)d3k =
∑
s

˚
W∗

l (κ, s)Wm(κ, s)d3κ = δlm. (13.10)

We can study the physical meaning of the (κ, s)-space amplitude Wl by considering the Heisenberg-picture
electric field Ê(r, t) of the mode. It will be convenient to write the electric field as a sum of two parts:

Ê(r, t) = Ê
(+)

(r, t) + Ê
(−)

(r, t), (13.11)

where Ê(+) is called the positive-frequency part, given by

Ê
(+)

(r, t) ≡ 1

L3/2

∑
j

(
ℏωj

2ϵ0

)1/2

âj ẽk,se
ik·r−iωjt, (13.12)

and Ê(−)
(r, t) = [Ê

(+)
(r, t)]†, the negative-frequency part, is simply the Hermitian conjugate of the former.

With âj =
∑

lWjlf̂l, we can write Ê(+) as

Ê
(+)

(r, t) =
∑
l

f̂lvl(r, t), (13.13)

where the mode function vl(r, t) is given by

vl(r, t) =
1

L3/2

∑
j

(
ℏωj

2ϵ0

)1/2

Wjlẽk,se
ik·r−iωjt (13.14)

→ 1

(2π)3/2

∑
s

˚ [
ℏω(k)
2ϵ0

]1/2
Wl(k, s)ẽk,se

ik·r−iω(k)td3k (L→ ∞) (13.15)

=
1

(2π)3/2

∑
s

˚ (
ℏω
2ϵ0

∂kz
∂ω

)1/2

Wl(κ, s)ẽk,se
ik·r−iωtd3κ. (13.16)
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Thus, (kx, ky, ω) are frequencies of a plane wave that determine the oscillations of the electric field along
(x, y, t), and the integral represents a superposition of the plane waves over a range of (kx, ky, ω). It is
customary in optics to specify a spatiotemporal mode by its mode function vl(x, y, z = 0, t) as a function
of (x, y, t) at a fixed z. Given such a mode function, we can retrieve the (κ, s)-space amplitude by Fourier
transform:

Vl(κ, s) ≡
1

(2π)3/2
ẽk,s ·

˚
vl(x, y, z = 0, t) exp(−ikxx− ikyy + iωt)dxdydt (13.17)

=

(
ℏω
2ϵ0

∂kz
∂ω

)1/2

Wl(κ, s), (13.18)

Wl(κ, s) =

(
ℏω
2ϵ0

∂kz
∂ω

)−1/2

Vl(κ, s). (13.19)

13.1.2. Narrowband approximations. To proceed further, it will be convenient to make a couple of
simplifying approximations that are common in optics:

(1) Quasimonochromatic: Wl(κ, s) is highly concentrated near a carrier frequency ω = Ω, and the
bandwidth of Wl along ω is much smaller than Ω.

(2) Paraxial: Wl(κ, s) is highly concentrated near (kx, ky) = (0, 0), so that the mode consists mostly of
plane waves with wavevectors that have small angles with the z̃ axis. In other words, we assume√

k2x + k2y ≪ Ω

c
. (13.20)

We call these the narrowband approximations. They mean that Wl(κ, s) is highly concentrated near

(kx, ky, ω) = (0, 0,Ω) (13.21)

and Wl(k, s) in k space is highly concentrated near (kx, ky, kz) = (0, 0,Ω/c); see Fig. 13.2. We can then
assume

ℏω
2ϵ0

∂kz
∂ω

≈ ℏΩ
2ϵ0c

, ẽk,1 ≈ ẽkz̃,1, ẽk,2 ≈ ẽkz̃,2, (13.22)

so that the cumbersome prefactor in Eq. (13.19) is a constant, we can treat Wl(κ, s) as the Fourier transform
of the mode function vl(r, t), and the polarization vectors do not depend on the wavevector and we can write
ẽkz̃,s = ẽs in the following. One possible choice is

ẽ1 = x̃, ẽ2 = ỹ, (13.23)

but any pair of orthonormal vectors perpendicular to z̃ will do.

Figure 13.2. The narrowband approximations mean that the (k, s)-space amplitude Wl(k, s)
is highly concentrated near (kx, ky, kz) = (0, 0,Ω/c) in k space.
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13.1.3. Mode amplitude in real space and time. It is often more intuitive to work in real space and time.
Abbreviate the coordinates (x, y, t) as

ξ ≡ (x, y, t) (13.24)

and define the (ξ, s)-space amplitude of the mode as the inverse Fourier transform

wl(ξ, s) ≡
1

(2π)3/2

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
Wl(kx, ky,Ω+ ω̃, s) exp(ikxx+ ikyy − iω̃t)dkxdkydω̃, (13.25)

where we have defined

ω̃ ≡ ω − Ω, (13.26)

as the frequency relative to the carrier. We can take the integration limits with respect to ω̃ to be (−∞,∞)
because Wl ≈ 0 outside a narrow band centered at the carrier Ω. This definition means that wl(ξ, s) is the
inverse Fourier transform of a function Wl(kx, ky,Ω + ω̃, s) that is concentrated near (kx, ky, ω̃) = (0, 0, 0)
with a small bandwidth, so wl is slowly varying in (x, y, t) relative to the frequencies Ω/c in space and Ω in
time.

Side note. In optics, another name for wl(ξ, s) is the envelope function of the mode, and the narrowband
approximation is also called the slowly-varying-envelope approximation.

By Fourier duality,

Wl(kx, ky,Ω+ ω̃, s) =
1

(2π)3/2

˚
wl(ξ, s) exp(−ikxx− ikyy + iω̃t)d3ξ, (13.27)

so the annihilation operator for the mode given by Eq. (13.6) can also be expressed as

f̂l =
∑
s

˚
w∗
l (ξ, s)ĉ(ξ, s)d

3ξ, (13.28)

where

ĉ(ξ, s) ≡ 1

(2π)3/2

˚
b̂(kx, ky,Ω+ ω̃, s)eikxx+ikyy−iω̃tdkxdkydω̃, (13.29)[

ĉ(ξ, s), ĉ†(ξ′, s′)
]
= δ3(ξ − ξ′)δss′ . (13.30)

By virtue of Parseval’s theorem, the (ξ, s)-space amplitudes for a set of modes are orthonormal in the sense of∑
s

˚
w∗
l (ξ, s)wm(ξ, s)d3ξ = δlm. (13.31)

Using Eqs. (13.16) and (13.25) and making the narrowband approximations, the electric field of the mode can
now be expressed as

vl(x, y, z = 0, t) ≈
(

ℏΩ
2ϵ0c

)1/2∑
s

ẽswl(ξ, s)e
−iΩt, (13.32)

so that the wl(ξ, s) amplitude is more directly related to the electric field in real space and time. Examples:
(1) A monochromatic point source at position (x, y, z) = (u, v, 0) would excite a mode with an amplitude

wl(ξ, s) that is highly concentrated near (x, y) = (u, v) at z = 0 and oscillates as exp(−iΩt) in time.
(2) The transverse-electromagnetic (TEM) modes can be obtained by assuming {wl(ξ, s)} to be a set of

Hermite-Gaussian functions of (x, y).
(3) The diffraction of an optical mode is modeled by the change of the mode function vl(x, y, z, t) along z

according to Eq. (13.16). Fresnel diffraction [27], for example, is obtained if we make the Taylor-series
approximation

kz(kx, ky, ω) ≈
ω

c
−
k2x + k2y
2Ω

(13.33)

inside the exp(ikzz) factor in Eq. (13.16).
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13.2. Incoherent light

To model incoherent light, such as the radiation from thermal or fluorescent sources, we assume a quantum
state in the form

ρ̂ =

ˆ
Φ(α) |α⟩ ⟨α| d2Jα, Φ(α) =

1

det(πΓ)
exp

(
−α†Γ−1α

)
, (13.34)

where the Sudarshan representation Φ is a zero-mean symmetric Gaussian distribution with a covariance matrix
given by ˆ

Φ(α)αlα
∗
md

2Jα = Γlm. (13.35)

The word “symmetric” refers to the factˆ
Φ(α)αlαmd

2Jα = 0 ∀l,m. (13.36)

We call any state in this form a Glauber state. This model is motivated by the following facts:
(1) The thermal state discussed in Sec. 5.3 is a Glauber state.
(2) Under passive linear optics, an initial Glauber state would evolve to

ρ̂ =

ˆ
Φ(α) |Vα⟩ ⟨Vα| d2Jα =

ˆ
Φ(V †β) |β⟩ ⟨β| d2Jβ (13.37)

for some unitary matrix V , as we learned in Sec. 6.5.2. The Sudarshan representation in terms of β
becomes

Φ(V †β) =
1

det(πΓ)
exp
[
−β†(V ΓV †)−1β

]
, (13.38)

which is still zero-mean symmetric Gaussian, except that the covariance matrix has been transformed
to V ΓV †. The output state hence remains a Glauber state.

(3) To model loss, we should assume that some modes are inaccessible and trace them out, as we learned
in Chapter 7. If the bath is also in a Glauber state initially, then it can be shown that the state after
passive linear optics and partial trace is still a Glauber state; see Exercise 13.1.

(4) The evolution of the covariance matrix in passive linear optics is consistent with the basic principles
of statistical optics [28].

(5) With a Glauber state, the quadrature observables of each mode are zero-mean Gaussian random
variables with the same variance. This agrees with the common assumption in statistical optics that
the fields of incoherent light are zero-mean Gaussian random processes with the same variance for the
quadratures of each mode.

(6) The photon-counting statistics with a Glauber state follows Mandel’s formula given by Eq. (5.59),
which has been verified by experiments for many common light sources.

In addition to being a decent model, Glauber states are also mathematically convenient because each is completely
specified by the covariance matrix Γ, which is a J ×J matrix for J modes, a much simpler mathematical object
than the infinite-dimensional ρ̂.

A classical-quantum correspondence can now be established by assuming that the mutual coherence
function in statistical optics is given by

γ(ξ, s, ξ′, s′) ≡
〈
Ê(−)

s (x′, y′, z′ = 0, t′)Ê
(+)
s′ (x, y, z = 0, t)

〉
, Ês ≡ ẽ∗s · Ê, (13.39)

which is the covariance between the complex electric fields at two different points ξ = (x, y, t) and ξ′ =
(x′, y′, t′) on a plane at z = 0. The mutual coherence can be related to the covariance matrix Γ in a Glauber
state through the following recipe:

(1) Assuming the spatiotemporal modes in Sec. 13.1 and a coherent state that satisfies

f̂l |α⟩ = αl |α⟩ , (13.40)
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the covariance matrix for a Glauber state becomes

Γlm =

ˆ
Φ(α)αlα

∗
md

2Jα =

ˆ
Φ(α)αlα

∗
md

2Jα = tr

ˆ
Φ(α)f̂l |α⟩ ⟨α| f̂ †md2Jα = tr

(
f̂lρ̂f̂

†
m

)
. (13.41)

(2) Under the narrowband approximations, the mutual coherence can be related to Γ by

γ(ξ, s, ξ′, s′) =
∑
l,m

[ẽ∗s · vl(r, t)] tr
(
f̂lρ̂f̂

†
m

)[
ẽ∗s′ · vm(r′, t′)

]∗
(using Eqs. (13.13) and (13.39)) (13.42)

≈ ℏΩ
2ϵ0c

e−iΩ(t−t′)
∑
l,m

wl(ξ, s)Γlmw
∗
m(ξ′, s′). (using Eqs. (13.32) and (13.41)) (13.43)

(3) Using the orthonormal condition given by Eq. (13.31), we can also express the covariance matrix Γ in
terms of the mutual coherence γ as

Γlm =
2ϵ0c

ℏΩ
∑
s,s′

˚ ˚
w∗
l (ξ, s)γ(ξ, s, ξ

′, s′)wm(ξ′, s′)eiΩ(t−t′)d3ξd3ξ′. (13.44)

This recipe allows us to translate any result in statistical optics in terms of the mutual coherence to the quantum
regime by relating it to the covariance matrix of a Glauber state, provided that the problem at hand satisfies all
the assumptions made in this chapter.

Exercise 13.1.

(1) Let HA be a Hilbert space for J system modes and HB be a Hilbert space for K bath modes. Let ρ̂
be a Glauber state on HA with covariance matrix Γ and ρ̂B be a Glauber state on HB with covariance
matrix Γ(B). Show that ρ̂⊗ ρ̂B is a Glauber state on HA⊗HB and find its covariance matrix in terms
of Γ and Γ(B). You may assume that |α⟩ =

∣∣α(A)
〉
⊗
∣∣α(B)

〉
is a coherent state on HA ⊗HB , where∣∣α(A)

〉
is a coherent state in HA,

∣∣α(B)
〉

is a coherent state in HB , and

α = α(A) ⊕α(B) ≡
(
α(A)

α(B)

)
, (13.45)

where ⊕ is the direct sum (see Sec. B.11).
(2) To model loss, suppose that the system and the bath go through some passive linear optics together,

modeled by a unitary Û operator on HA ⊗HB and a V matrix, such that

Û |α⟩ = |Vα⟩ , Vα =

(
V (AA) V (AB)

V (BA) V (BB)

)(
α(A)

α(B)

)
, (13.46)

where V (AA) is a J × J matrix, V (AB) is a J ×K matrix, V (BA) is a K × J matrix, and V (BB) is a
K ×K matrix. Then we trace out the bath degree of freedom. Show that the resulting system state

σ̂ = trB

[
Û(ρ̂⊗ ρ̂B)Û

†
]

(13.47)

on HA remains a Glauber state and find its covariance matrix in terms of Γ, Γ(B), and the V matrix
given above.

(3) If ρ̂B is the vacuum state, find its covariance matrix Γ(B) and find the covariance matrix of the final
Glauber state σ̂ in terms of Γ and the V matrix given above.

13.3. Spectral modes

Suppose that each (ξ, s)-space amplitude wl(ξ, s) is separable as follows:

wl(ξ, s) = wq,m(ξ, s) = ϕq(x, y, s)φm(t), (13.48)

where the mode label l is now defined as

l = (q,m) (13.49)
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in terms of the label q for the spatial/polarization mode and the labelm for the temporal mode. Let the temporal
amplitude φm(t) over a time interval T be

φm(t) =
1√
T
exp(−iω̃mt), |t| ≤ T

2
, (13.50)

where

ω̃m = ω̃1 +
2π(m− 1)

T
, m = 1, . . . ,M. (13.51)

The electric field of each mode then oscillates with frequency Ω + ω̃m. The temporal amplitudes {φl(t)} are
orthonormal in the sense of ˆ T/2

−T/2
φ∗
m(t)φm′(t)dt = δmm′ . (13.52)

T is assumed to be finite to make the math more tractable, but we also assume that it is very long relative to Ω
and often take the limit T → ∞ if appropriate.

With incoherent light, it is often reasonable to assume

Γll′ = Γ(q,m),(q′,m′) = 0 if m ̸= m′, (13.53)

meaning that there is no correlation between two modes if they do not have the same frequency. The thermal
state, for example, obeys this condition. Moreover, most linear-optics components are time-invariant systems
that do not couple modes with different frequencies, so the covariance remains zero after the light passes through
such components. Another motivation is that incoherent light is often a stationary process in the sense that the
mutual coherence is a function of t− t′ only in terms of its time dependence, so Eq. (13.44) would also imply
Γll′ = 0 in the limit of T → ∞ if the two modes do not have the same frequency.

With no covariance between modes with different frequencies, we can partition Γ as the direct sum

Γ = Γ(1) ⊕ Γ(2) ⊕ · · · ⊕ Γ(M) =


Γ(1)

Γ(2)

. . .
Γ(M)

, (13.54)

where

Γ(m)
qp ≡ Γ(q,m),(p,m) (13.55)

is the covariance matrix for Jm modes with the same frequency ω̃m. We also partition the complex amplitudes
accordingly:

α = α(1) ⊕α(2) ⊕ · · · ⊕α(M) =


α(1)

α(2)

...
α(M)

, (13.56)

where α(m) is a column vector of amplitudes for the Jm modes with the same frequency ω̃m, so that the
Sudarshan representation becomes

P (α) =
M∏

m=1

1

det
(
πΓ(m)

) exp(−α(m)†Γ(m)−1α(m)
)
, (13.57)

and the Glauber state becomes

ρ̂ =
M⊗

m=1

ρ̂(m), ρ̂(m) ≡
ˆ

1

det
(
πΓ(m)

) exp(−α(m)†Γ(m)−1α(m)
) ∣∣∣α(m)

〉〈
α(m)

∣∣∣ d2Jmα(m). (13.58)

Long story short, the zero covariance between modes with different frequencies allows us to factorize the
Glauber state into a tensor product of states, where each state is a Glauber state for modes with the same
frequency.
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13.4. Poisson approximation

We now focus on ρ̂(m) for the spatial/polarization modes with a specific frequency ω̃m. For brevity, we
write

f̂q = f̂q,m. (13.59)

For weak sources at optical frequencies, such as astronomical sources or fluorescent particles, it is often the
case that the average photon number in one spectral mode received by an imaging system is much smaller than
1. Mathematically, this means that

ϵ ≡ tr Γ(m) =
∑
q

tr
(
f̂ †q f̂qρ̂

(m)
)
≪ 1. (13.60)

We can then make the approximation that ρ̂(m) is a linear combination of |vac⟩ ⟨vac|, {|vac⟩ ⟨1q|}, {|1q⟩ ⟨vac|},
and {|1q⟩ ⟨1p|} only, where

|1q⟩ ≡ f̂ †q |vac⟩ (13.61)

is the state with one photon in spatial/polarization mode q. It can be shown that, for a Glauber state,

⟨n| ρ̂(m)
∣∣n′〉 = 0 if

∑
q

nq ̸=
∑
q

n′q, (13.62)

so we can assume

ρ̂(m) = ⟨vac| ρ̂(m) |vac⟩ |vac⟩ ⟨vac|+
∑
q,p

⟨1q| ρ̂(m) |1p⟩ |1q⟩ ⟨1p| , (13.63)

⟨vac| ρ̂(m) |vac⟩ =
ˆ

Φ(m)(α)e−∥α∥2d2Jmα = 1− ϵ+O(ϵ2), (13.64)

⟨1q| ρ̂(m) |1p⟩ =
ˆ

Φ(m)(α)e−∥α∥2αqα
∗
pd

2Jmα = Γ(m)
qp +O(ϵ2), (13.65)

where O(ϵ2) denotes terms on the order of ϵ2 or smaller, which we assume to be negligible. All other matrix
entries are O(ϵ2) and can be neglected. Hence,

ρ̂(m) ≈ (1− ϵ) |vac⟩ ⟨vac|+ Γ̂(m), Γ̂(m) ≡
∑
q,p

Γ(m)
qp |1q⟩ ⟨1p| , ϵ = tr Γ̂(m). (13.66)

This approximation of the density operator is extremely useful in quantum information calculations [29, 30, 31].
An important consequence of Eq. (13.66) is that it gives rise to Poisson statistics for photon counting. To

see this, first consider photon counting in one spectral mode. Let the photon count in mode (q,m) be nq,m.
The probability of finding no photon in one spectral mode is

P [nq,m = 0 for all q] = ⟨vac| ρ̂(m) |vac⟩ = 1− ϵ, (13.67)

the probability of finding one photon is

P

[∑
q

nq,m = 1

]
=
∑
q

⟨1q| ρ̂(m) |1q⟩ = ϵ, (13.68)

and given that there is one photon, the probability of finding the photon in spatial/polarization mode q is

P

[
nq,m = 1

∣∣∣∣∣∑
p

np,m = 1

]
=

1

ϵ
⟨1q| ρ̂(m) |1q⟩ =

1

ϵ
Γ(m)
qq . (13.69)

If we now assume that all the covariance matrices {Γ(m)} for different frequencies are identical and, for each
spatial/polarization mode q, we integrate the photon counts nq,m over all the frequencies to obtain an integrated
photon count

nq ≡
M∑

m=1

nq,m, (13.70)
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the integrated photon counts {nq} in the spatial/polarization modes become Poisson in the limit of

ϵ→ 0, M → ∞, Mϵ held fixed, (13.71)

according to Sec. C.7. This result is consistent with the Poisson model commonly assumed in optical astronomy
[32, 33] and fluorescence microscopy [34], offering another justification of the approximation in Eq. (13.66).

Note that our derivation of the Poisson model works for photon counting with respect to any set of
spatial/polarization modes, since we haven’t assumed anything specific about the modes.

Side note. The photon-counting distribution for thermal, fluorescent, or atomic sources is often not exactly
Poisson, and any deviation from the Poisson model is called bunching or antibunching [35]. To model
bunching or antibunching, one needs to include the multi-photon components of ρ̂(m), i.e., the higher-order
terms

∑
n,n′ ⟨n| ρ̂(m) |n′⟩ |n⟩ ⟨n′| with

∑
q nq =

∑
q n

′
q ≥ 2. Calculations have shown, however, that such

terms are insigificant if ϵ≪ 1:
(1) In astronomy, Hanbury-Brown-Twiss interferometry, also called intensity interferometry, postselects

the two-photon events in each temporal mode, and one must consider at least the two-photon compo-
nents of ρ(m) to model it. Unfortunately, it turns out to have a terrible signal-to-noise ratio compared
with ordinary stellar interferometry that relies on one-photon events [32].

(2) Calculations in quantum information theory [36, 37, 38] also find that, when ϵ ≪ 1, the effect of the
higher-order terms on the total amount of information in the light is negligible.

The reason is simple: the probability of having two or more photons in each spectral mode is O(ϵ2), which is
much smaller than the one-photon probability ϵ; such rare events cannot contribute significant information on
average.

13.5. Imaging

13.5.1. Randomly polarized light. First let us be more specific about the polarizations. Assume

wl(ξ, s) = wq,σ,m(ξ, s) = ϕq(x, y)δsσφm(t), (13.72)

where the mode label now consists of

l = (q, σ,m), (13.73)

q is the label for the spatial part, σ = 1, 2 is the label for the polarization part, and m is the label for the spectral
part. If the light is randomly polarized, then

Γll′ = Γ(q,σ,m),(q′,σ′,m′) = 0 if σ ̸= σ′ (13.74)

for any two modes with orthogonal polarizations, and we can once again partition the covariance matrix as

Γ =
⊕
σ,m

Γ(σ,m), Γ(σ,m)
qp ≡ Γ(q,σ,m),(p,σ,m). (13.75)

Γ(σ,m) is now a covariance matrix for spatial modes with a given polarization σ and frequency ω̃m.
With all these assumptions and using Eq. (13.44), Γ(σ,m) can be expressed as

Γ(σ,m)
qp =

¨ ¨
ϕ∗q(x, y)γ

(σ,m)(x, y, x′, y′)ϕp(x
′, y′)dxdydx′dy′, (13.76)

where

γ(σ,m)(x, y, x′, y′) ≡ 2ϵ0c

ℏΩ

ˆ ∞

−∞

ˆ ∞

−∞
φ∗
m(t)φ∗

m(t′)γ(ξ, σ, ξ′, σ)eiΩ(t−t′)dtdt′ (13.77)

is the spatial part of the mutual coherence. Using the same Poisson approximation in Sec. 13.4, we can write

ρ̂ =
⊗
σ,m

ρ̂(σ,m), ρ̂(σ,m) = (1− tr Γ̂(σ,m)) |vac⟩ ⟨vac|+ Γ̂(σ,m), Γ̂(σ,m) =
∑
q,p

Γ(σ,m)
qp |1q⟩ ⟨1p| . (13.78)

Our remaining task is to find Γ̂(σ,m).



13.5. IMAGING 123

13.5.2. Statistical optics. Let us now review the key results in statistical optics [32] with criminal brevity.
A point source excites a spatially localized mode near (u, v) on the object plane. The mode turns into a spherical
wave as it propagates away from the source. A diffraction-limited optical system collects part of it through an
aperture and passes the light to a detection plane. The mutual coherence on the detection plane becomes [32]

γ(σ,m)(x, y, x′, y′) ∝ Iψ(x, y|u, v)ψ∗(x′, y′|u, v), (13.79)
where I is the intensity of the source and ψ is the point-spread function of the system for the optical field. For
example,

(1) if the detection plane is right at the aperture (called the pupil plane) before any lenses, thenψ(x, y|u, v)
is simply the spherical-wave solution,

(2) if the detection plane is an image plane, thenψ(x, y|u, v) can be modeled as a function of (x−u, y−v).
With multiple incoherent point sources at object-plane positions {(up, vp)} and with intensities {Ip}, there is
no correlation between the fields due to different sources, and the mutual coherence is the sum

γ(σ,m)(x, y, x′, y′) ∝
∑
p

Ipψ(x, y|up, vp)ψ∗(x′, y′|up, vp). (13.80)

More generally, we can regard an arbitrary number of incoherent point sources as one spatially incoherent
extended object with intensity function I(u, v) on the object plane, so that the mutual coherence on the
detection plane becomes

γ(σ,m)(x, y, x′, y′) ∝
¨

I(u, v)ψ(x, y|u, v)ψ∗(x′, y′|u, v)dudv. (13.81)

The setup is illustrated in Fig. 13.3. The famous Van Cittert-Zernike theorem in statistical optics (https:
//en.wikipedia.org/wiki/Van_Cittert%E2%80%93Zernike_theorem) is an example of Eq. (13.81) if
we take the detection plane to be the pupil plane and ψ to be the spherical wave.

Figure 13.3. A diffraction-limited imaging system.

13.5.3. Classical-quantum correspondence. To relate the mutual coherence γ(σ,m) to the covariance
matrix Γ(σ,m) in a Glauber state, use Eq. (13.28) to write the spatial-mode annihilation operator as

f̂q =

ˆ ∞

−∞

ˆ ∞

−∞
ϕ∗q(x, y)d̂(x, y)dxdy, (13.82)

where d̂(x, y) is related to the ĉ operator in Eq. (13.29) by

d̂(x, y) ≡
ˆ ∞

−∞
φ∗
m(t)ĉ(ξ, σ)dt,

[
d̂(x, y), d̂†(x′, y′)

]
= δ(x− x′)δ(y − y′). (13.83)

Define also

|ψu,v⟩ ≡
[¨

ψ(x, y|u, v)d̂†(x, y)dxdy
]
|vac⟩ (13.84)

https://en.wikipedia.org/wiki/Van_Cittert%E2%80%93Zernike_theorem
https://en.wikipedia.org/wiki/Van_Cittert%E2%80%93Zernike_theorem
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as the state of a detection-plane photon emitted by a point source at object-plane position (u, v), assuming that
the point-spread function is normalized as

⟨ψu,v|ψu,v⟩ =
¨

|ψ(x, y|u, v)|2dxdy = 1. (13.85)

Then

⟨1q|ψu,v⟩ =
¨

ϕ∗q(x, y)ψ(x, y|u, v)dxdy, (13.86)

and this inner product can now be combined with Eqs. (13.76) and (13.81) to give

Γ(σ,m)
qp ∝

¨
I(u, v) ⟨1q|ψu,v⟩ ⟨ψu,v|1p⟩ dudv, (13.87)

Γ̂(σ,m) ∝
¨

I(u, v) |ψu,v⟩ ⟨ψu,v| dudv. (13.88)

Eqs. (13.78) and (13.88) are the starting point of many calculations regarding incoherent imaging in quantum
information theory [29, 30, 31].



APPENDIX A

Blackbody Radiation*

A.1. Rayleigh-Jeans

Consider a box with some matter that can both absorb and emit EM radiation, such as the wall of an oven or
atoms inside a star. We call the matter blackbody because it can absorb light at all frequencies, but in practice
anything can absorb and emit light. We focus on the EM fields and assume that the blackbody is the “heat bath.”
According to Gibbs, when the fields and the blackbody are in a thermal equilibrium, each degree of freedom of
the fields should have a probability density of energy given by

f(E) =
exp(−βE)´∞

0 exp(−βE′)dE′ , β ≡ 1

kBT
, (A.1)

where kB is called the Boltzmann constant (even though it was first proposed by Planck) andT is the temperature.
Each degree of freedom is a mode of the EM fields inside the box. The average energy of each mode is then

Ē =

ˆ ∞

0
Ef(E)dE =

1

β
= kBT. (A.2)

This result is consistent with the equipartition theorem for harmonic oscillators. Now we define a spectral
density function S(ω) as a function of the angular frequency ω as follows:

ˆ Ω

0
S(ω)dω =

energy in all modes with frequencies up to Ω

volume of box
. (A.3)

In other words,
´ Ω
0 S(ω)dω is the EM energy density if we include only modes with frequencies up to Ω.

For EM fields, that means we need to sum up the energies of all the modes with frequencies up to Ω to
compute this integral.

Since Ē here is the same for all modes, we just need to count the number of modes and multiply that by Ē.
Recall

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

, nx, ny, nz = 0,±1,±2, . . . , (A.4)

and if we mark each possible value of (kx, ky, kz) by a dot in k space, we’d get something like Fig. A.1.
(1) Each dot is separated from an adjacent dot by 2π/L, and we have a lattice of dots in general.
(2) Remember also that, for each value ofk, we have two polarizations, so each dot denotes two polarization

modes.
(3) Recall that each mode has frequency

ω(k) = c|k|, (A.5)

so the modes with ω(k) = c|k| ≤ Ω would be the modes inside a sphere in k space with radius
|k| ≤ Ω/c.

To simplify the counting, we introduce the concept of mode density ρ(k):˚
V
ρ(k)d3k = number of modes inside a k-space region V. (A.6)

Let’s assume that L is very large, so that the dots are very close to each other and there are a large number of
dots inside the sphere. Then we may approximate the density of the dots as a constant, i.e., assume that ρ(k) is
a constant.
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Figure A.1. Possible values of wavevector k for sinusoidal modes in a box. Each dot denotes
two polarization modes.

There is one dot per k-space volume (2π/L)3, and there are two modes per dot, so the mode density is

ρ(k) ≈ 2

(2π/L)3
. (A.7)

Now the number of modes with ω(k) ≤ Ω is simply an integration of ρ(k) over the sphere with radius Ω/c in
k space. Since ρ(k) is a constant, the integral is simple:

number of modes with ω(k) ≤ Ω ≈ ρ(k)× volume of sphere =
2

(2π/L)3
4π(Ω/c)3

3
. (A.8)

Side note. The concept of mode density and the formalism here are closely related to the important concept of
density of states in solid-state physics.

Putting everything together,
ˆ Ω

0
S(ω)dω =

average energy per mode × number of modes with frequencies up to Ω

volume of box
(A.9)

=
Ē

L3
× 2

(2π/L)3
4π(Ω/c)3

3
. (A.10)

Differentiating both sides with respect to Ω, we obtain

S(ω) = Ē
ω2

π2c3
. (A.11)

We could do more physics to derive the power spectral density of the light that comes out if we poke a hole on
the wall, but we wouldn’t bother for now. (It has the same dependence on ω as S(ω); see Sec. A.3.) Plugging
the classical prediction Ē = kBT into the formula, we obtain the Rayleigh-Jeans law

SRayleigh-Jeans(ω) =
ω2

π2c3
kBT. (A.12)

This fits the experimental result for low ω only. The discrepancy between Rayleigh-Jeans and experiments at
high frequencies is called the ultraviolet catastrophe.
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A.2. Planck

Planck assumes that the energy in each mode is discrete. According to Gibbs, if the energy is discrete, the
probability mass function of the energy in mode j = (k, s) should be

Pj(E) =
exp (−βE/ℏωj)∑
E′ exp (−βE′/ℏωj)

,
E

ℏωj
= 0, 1, 2, . . . (A.13)

The average energy is then

Ēj =
∑
E

EPj(E) =
ℏωj

exp(ℏωj/kBT )− 1
. (A.14)

When ℏωj ≪ kBT , we have Ēj ≈ kBT , which agrees with the classical case, but when the frequency ωj is
high Ēj becomes very different. Since the energy of each mode depends on ωj , which depends on k, we have
to modify the formula for

´ Ω
0 S(ω)dω a bit:

ˆ Ω

0
S(ω)dω =

1

L3

˚
V
Ējρ(k)d

3k. (A.15)

In other words, we think of ρ(k)d3k as the number of modes in a tiny region near k in k space, Ēj as the energy
of those modes, and the integration in k space is just a sum over all the energies in the modes inside the k-space
region V . Since Ēj depends only on the magnitude k of k and ρ(k) is constant, it is convenient to rewrite the
3D k-space integral in spherical coordinates:

ˆ Ω

0
S(ω)dω =

1

L3

˚
V
Ējρ(k)d

3k =

ˆ Ω/c

0

ˆ π

0

ˆ 2π

0
Ēj

2

(2π)3
k2 sin θdkdθdϕ (A.16)

= 4π
2

(2π)3

ˆ Ω/c

0
Ējk

2dk. (A.17)

= 4π
2

(2π)3
1

c3

ˆ Ω

0
Ējω

2dω. (A.18)

Differentiating both sides with respect to Ω, we obtain

S(ω) =
ω2

π2c3
ℏω

exp(ℏω/kBT )− 1
. (A.19)

This is the law Planck derived in 1900. If ℏω ≪ kBT , the Rayleigh-Jeans law given by Eq. (A.12) is a good
approximation, but otherwise Planck’s law is much more accurate for high ω. Moreover, the total energy´∞
0 S(ω)dω is now finite:

ˆ ∞

0
S(ω)dω =

π2

15(ℏc)3
(kBT )

4 ∝ T 4. (A.20)

This T 4 dependence is called the Stefan-Boltzmann law.

A.3. Spectral radiance

To convert S(ω), which is the energy spectral density inside the box, to the power spectral density you
observe outside the box, imagine that there is a hole on the wall of the box where the light leaks out, or consider
the light that leaks out from the surface of a star. This leakage is usually very weak relative to the total energy
of the EM fields and the matter (e.g., the light leaking out an oven or light from a star is very weak relative to
all the energy inside them), so it does little harm to our assumption of a thermal equilibrium between the EM
fields and the matter.

Suppose that the area of the leakage is A (e.g., area of the hole or surface area of the star), and we look
at the energy leaking out in one small time interval ∆t. With many modes inside the box and the EM waves
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having random phases, it is a good assumption that the EM energy density is going to be quite constant inside
the box. The speed at which the EM energy leaks out is c. Then we can define a power spectral densityR(ω) byˆ Ω

0
R(ω)dω = power density =

energy density × volume of EM energy that leaks out
∆t

(A.21)

=

[ˆ Ω

0
S(ω)dω

]
A× c∆t

∆t
= Ac

ˆ Ω

0
S(ω)dω, (A.22)

R(ω) = AcS(ω). (A.23)
We could also define an intensity spectral density I(ω) by dividing both sides by the leakage area A:

I(ω) ≡ R(ω)

A
= cS(ω). (A.24)

If we look at the leaked radiation from very far away, it’s going to spread evenly in all angular directions. If
my detector can only detect a certain solid angle, then the detected intensity spectral density normalized by the
solid angle is

η(ω) ≡ I(ω)

4π
=

c

4π
S(ω), (A.25)

so that, given a certain solid angle that my detector can cover, the intensity spectral density is η(ω)×solid angle,
and if I can detect the whole 4π solid angle, then I get back η(ω)4π = I(ω).

To obtain the exact Planck’s law on Wikipedia, we need to do one final thing: convert this spectral density
in terms of angular frequency ω to a spectral density η̃(ν) in terms of frequency ν = ω/(2π) in Hertz. The two
densities are related by ˆ ν

0
η̃(ν ′)dν ′ =

ˆ 2πν

0
η(ω)dω. (A.26)

Differentiating with respect to ν and writing h = 2πℏ, we finally obtain

η̃(ν) = 2πη(2πν) =
c

2
S(2πν) =

2ν2

c2
hν

exp(hν/kBT )− 1
. (A.27)

η̃(ν) is called the spectral radiance (power (Watt) per frequency (Hertz) per area (m2) per solid angle) on
Wikipedia and we’ve finally arrived at the exact formula.



APPENDIX B

Hilbert Spaces and the Bra-Ket Notation

B.1. Motivation for an abstract formalism

Modern physics has found it simpler and more elegant to describe objects in the physical world using
abstract mathematical concepts beyond numbers, matrices, and functions. The most common example in
classical physics is the use of abstract vectors to describe positions, velocities, forces, fields, etc. A vector in
three dimensions is written as

v = vxx̃+ vyỹ + vzz̃. (B.1)

{x̃, ỹ, z̃} are unit vectors that point in three orthogonal directions, called an orthonormal basis of the vector
space. vx, vy, and vz are the components of the vectors along those directions in a Cartesian coordinate system.
x̃, ỹ, z̃, and v are abstract objects that we call vectors to represent physical concepts; they are not numbers but
something more abstract. We deal with these abstract objects by mathematically defining an algebra on the
vectors, such as addition of two vectors v +w, multiplication of a vector by a scalar cv, the dot product v ·w,
the cross product v ×w, and some tensors to map one vector to another vector. The algebra is a set of rules
about how to manipulate these abstract objects and it turns out that each operation is useful and meaningful in
physics.

One simple example is the work done by a constant force F on an object moving along a straight path from
initial position r1 to final position r2:

W = F · (r2 − r1). (B.2)
F , r2, r1 are all abstract vectors. Writing a physical law this way is obviously simpler; otherwise we’d have
to write out all the components of F , r1, and r2. There’s also a deeper message contained in the abstract
formalism: It tells us that the work done is the same regardless of how we align the basis vectors {x̃, ỹ, z̃} in
our physical problem, or where we define the origin of the Cartesian coordinate system for our position vectors
r1 and r2. In other words, some symmetry of the physics is built into the abstract formalism.

For another example, consider the vector fields, the divergence ∇·, and the curl ∇× in vector calculus.
They allow us to simplify Maxwell’s equations from the original 20-plus equations written down by Maxwell
to just four, and the equations work regardless of how we align the Cartesian coordinate system in our problem.

We have an even higher level of abstraction in advanced quantum mechanics: instead of writing the
fundamental equations in terms of differential equations or matrix algebra, we write them in terms of abstract
Hilbert-space vectors and operators on those abstract vectors. We treat the wavefunctions, the matrices,
and the derivatives in kindergarten quantum mechanics as mere representations of the abstract quantities. The
main reason for the abstract formalism is simplicity: the notation would be a lot more cumbersome if we used
anything else. The inherent symmetry built into the abstract Hilbert-space formalism is a deeper concept that
we won’t touch here.

B.2. Vectors

Quantum mechanics is modeled by vectors in complex Hilbert spaces. A complex Hilbert space, commonly
denoted by the caligraphic H, is a set of elements that we call vectors. In the bra-ket notation, we denote each
vector by a ket written as |ψ⟩. The most important example is the state of a quantum system: we use a vector
|ψ⟩ to model the state at one time, and all the properties of the quantum system at that time can be derived from
|ψ⟩.

In mathematics, we say that a set of objects are vectors when we can do the following things with them:
(1) Scalar multiplication: Given a vector |ψ⟩, z |ψ⟩ is also a vector, where z ∈ C is any complex

number.
(A complex number is also called a scalar in physics, to distinguish it from vectors.)
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(2) Addition: Given two vectors |ψ⟩ and |ϕ⟩, their addition |ψ⟩+ |ϕ⟩ is also a vector.
Moreover, these operations have the following properties: For arbitrary vectors |ψ⟩ , |ϕ⟩ , |ξ⟩ and arbitrary
complex numbers z, w ∈ C,

|ψ⟩+ |ϕ⟩ = |ϕ⟩+ |ψ⟩ , (B.3)
(|ψ⟩+ |ϕ⟩) + |ξ⟩ = |ψ⟩+ (|ϕ⟩+ |ξ⟩), (B.4)

zw |ψ⟩ = (zw) |ψ⟩ , (B.5)
(z + w) |ψ⟩ = z |ψ⟩+ w |ψ⟩ , (B.6)
z(|ψ⟩+ |ϕ⟩) = z |ψ⟩+ z |ϕ⟩ , (B.7)

1 |ψ⟩ = |ψ⟩ . (B.8)
When we take a bunch of vectors and apply scalar multiplications and vector additions repeatedly, i.e.,

z1 |ψ1⟩+ z2 |ψ2⟩+ . . . (B.9)

we say that this is a linear combination of the vectors {|ψ1⟩ , |ψ2⟩ , . . . }. In physics, we also call it a
superposition. The set of all possible linear combinations of a bunch of vectors is called a vector space.
A Hilbert space is a special example of a vector space, and we call it complex when complex coefficients
{z1, z2, . . . } are allowed in a linear combination.

Because we can multiply a vector by any complex number for a complex Hilbert space, unfortunately it is
impossible to draw these vectors in simple pictures, and we have to rely on algebra.

There is a special vector called the zero vector, denoted by 0 (without the |⟩ for brevity). It is defined by
0 + |ψ⟩ = |ψ⟩ ∀ |ψ⟩ ∈ H. (B.10)

Think of it as a vector with zero length.
Almost any Hilbert space that we encounter in physics can be expressed in terms of a special countable

set of vectors {|e1⟩ , |e2⟩ , . . . , |eN ⟩} called a basis of the Hilbert space. This set is called a basis because any
element of the Hilbert space can be expressed as a linear combination of the vectors in the basis, so we can write

|ψ⟩ = ψ1 |e1⟩+ ψ2 |e2⟩+ · · ·+ ψN |eN ⟩ (B.11)

for some complex numbers ψ1, ψ2, . . . , ψN for any |ψ⟩ ∈ H. (A basis plays the same role as the unit vectors
{x̃, ỹ, z̃} you learned in high-school physics, except that now we may have a large number of dimensions, not
just three.) We call {ψ1, ψ2, . . . , ψN} the components of |ψ⟩ with respect to the basis. A basis is also required
to be linearly independent, such that the components {ψn} for a given |ψ⟩ ∈ H are unique, i.e., no other set of
complex numbers can satisfy Eq. (B.11) for a given |ψ⟩.

Note that, given a Hilbert space, there are usually infinitely many bases that we can choose from, so we can
write a vector as

|ψ⟩ = ψ1 |e1⟩+ ψ2 |e2⟩+ · · ·+ ψN |eN ⟩ (B.12)
= ψ′

1

∣∣e′1〉+ ψ2

∣∣e′2〉+ · · ·+ ψ′
N

∣∣e′N〉 (B.13)

using another basis {|e′1⟩ , . . . , |e′N ⟩} of the same Hilbert space. For a given vector, the components depend
on the chosen basis. If we choose a different basis, the components change.

In quantum mechanics, if |ψ⟩ is the state of a quantum system, then we say that ψn as a function of n is a
wavefunction of the system. The wavefunction depends on the basis we choose.

B.3. Inner product

At the end of the day, we need to extract numbers from these abstract vectors to compare with experiments,
and the inner product is the main mathematical way of obtaining numbers from the abstract Hilbert-space
vectors.

For vectors in a Hilbert space, we can take the inner product between two vectors |ϕ⟩ and |ψ⟩, denoted as
⟨ϕ|ψ⟩ in the bra-ket notation. (Mathematicians don’t like this notation and prefer to write it as (ϕ, ψ) or ⟨ϕ, ψ⟩).
The inner product generalizes the dot product in high-school physics. Just like the dot product, the inner product
⟨ψ|ψ⟩ of a vector |ψ⟩ with itself is always a nonnegative real number and we say that

√
⟨ψ|ψ⟩ is the norm of

|ψ⟩ (a fancy word for length). The new feature of the inner product is that ⟨ϕ|ψ⟩ between two different vectors
is a complex number in general.
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An inner product is defined by the following properties: For arbitrary vectors |ψ⟩ , |ϕ⟩ , |η⟩ and arbitrary
complex numbers z, w ∈ C,

(1) ⟨ϕ|ψ⟩ is a complex number.
(2) If we switch the order of the two vectors, the inner product becomes the complex conjugate:

⟨ϕ|ψ⟩ = (⟨ψ|ϕ⟩)∗. (B.14)

(3) The inner product of a vector with itself is always real and nonnegative:

⟨ψ|ψ⟩ ≥ 0. (B.15)

(4) Linearity with respect to the second vector:

⟨ϕ| (z |ψ⟩+ w |η⟩) = z ⟨ϕ|ψ⟩+ w ⟨ϕ|η⟩ . (B.16)

(5) ⟨ψ|ψ⟩ = 0 if and only if |ψ⟩ = 0 (the zero vector). In other words, the zero vector is the unique vector
that has zero length

√
⟨ψ|ψ⟩ = 0.

To compute the inner product in practice, we assume that the Hilbert space has an orthonormal basis
{|e1⟩ , |e2⟩ , . . . , |eN ⟩}, obeying

⟨en|em⟩ = δnm ≡

{
1, n = m,

0, n ̸= m,
(B.17)

where δnm is called the Kronecker delta and ≡ means “defined as.” In other words, each vector in the basis has
unit norm √

⟨en|en⟩ = 1 (B.18)

and is orthogonal to all the other vectors:

⟨en|em⟩ = 0 if n ̸= m. (B.19)

Given an orthonormal basis, we can express each vector in terms of the components

|ϕ⟩ =
∑
n

ϕn |en⟩ = ϕ1 |e1⟩+ · · ·+ ϕN |eN ⟩ , (B.20)

|ψ⟩ =
∑
n

ψn |en⟩ = ψ1 |e1⟩+ · · ·+ ψN |eN ⟩ . (B.21)

Then their inner product is given by the following recipe:

⟨ϕ|ψ⟩ =
∑
n

ϕ∗nψn = ϕ∗1ψ1 + ϕ∗2ψ2 + · · ·+ ϕ∗NψN . (B.22)

Two important points to remember about the recipe:
(1) The inner product is like the dot product, except that we must remember to take the complex conjugate

of the components of the first vector. If the components are all real then the inner product becomes
the same as the dot product.

(2) We must pick the same basis for the two vectors and the basis must be orthonormal, otherwise the
recipe doesn’t work.

Remark B.1.

(1) Orthogonal is just a fancy word for perpendicular—two vectors are said to be orthogonal if their inner
product is zero. “Orthonormal” means orthogonal and normalized—a vector is called normalized if
its norm is equal to 1.

(2) The unit vectors {x̃, ỹ, z̃} in high-school physics are an example of an orthonormal basis of a 3D
vector space.

(3) The number of vectors N in an orthonormal basis is called the dimension of the Hilbert space.
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Another way of writing the inner product is to write the components of each vector as a column vector:

ψ ≡

ψ1
...
ψN

, ϕ ≡

ϕ1
...
ϕN

. (B.23)

We call ψ a column-vector representation of |ψ⟩. Again, the representation depends on the chosen basis.
Then the inner product can be written in terms of matrix algebra as

⟨ϕ|ψ⟩ = ϕ†ψ =
(
ϕ∗1 . . . ϕ∗N

)ψ1
...
ψN

, (B.24)

where † is the conjugate transpose.

Exercise B.1. If
|ϕ⟩ = z |ϕ1⟩+ w |ϕ2⟩ , (B.25)

show that
⟨ϕ|ψ⟩ = z∗ ⟨ϕ1|ψ⟩+ w∗ ⟨ϕ2|ψ⟩ . (B.26)

We say that the inner product is antilinear with respect to the first vector.

With the inner product, we can finally say what a Hilbert space H is:
(1) It is a vector space—the set of all linear combinations of the vectors in a basis as per Eq. (B.11).
(2) An inner product between any two vectors in the Hilbert space is defined.

The precise mathematical definition is a bit more complicated but not very important in physics. In physics, we
are blessed by the existence of orthonormal bases, so calculations are nothing more than matrix algebra, e.g.,
Eq. (B.24), in a fancy language.

Exercise B.2. Let {|0⟩ , |1⟩} be an orthonormal basis. Compute ⟨ϕ|ψ⟩, ⟨ψ|ψ⟩ and ⟨ϕ|ϕ⟩ if
(1)

|ψ⟩ = 1√
2
(|0⟩+ |1⟩), |ϕ⟩ = 1√

2
(|0⟩ − |1⟩). (B.27)

(2)

|ψ⟩ = 1√
2
(|0⟩+ i |1⟩), |ϕ⟩ = 1√

2
(|0⟩ − i |1⟩). (B.28)

(3)

|ψ⟩ = 1√
2
(|0⟩+ i |1⟩), |ϕ⟩ = 1√

2
(−i |0⟩+ |1⟩). (B.29)

Exercise B.3. Prove that, given an orthonormal basis {|en⟩}, each component ψn in the expansion of a vector
|ψ⟩ given by Eq. (B.11) can be obtained from the formula

ψn = ⟨en|ψ⟩ . (B.30)

Exercise B.4. Given one orthonormal basis {|en⟩ : n = 1, . . . , N}, show that the basis consisting of∣∣e′n〉 = N∑
m=1

Unm |em⟩ n = 1, . . . , N, (B.31)

where U is a unitary matrix, is another orthonormal basis. Show that the converse is also true: if {|en⟩}
and {|e′n⟩} are orthonormal bases of a Hilbert space, then they must be related by some unitary matrix as per
Eq. (B.31). Find the relations between the components {⟨en|ψ⟩} with respect to the original basis and the
components {⟨e′n|ψ⟩} with respect to the new basis.

Exercise B.5. Show that the inner product is given by Eq. (B.22) regardless of the orthonormal basis we pick to
define the components.
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Exercise B.6. Suppose that there is just one element |e1⟩ in an orthonormal basis of a Hilbert space. How many
vectors in total are there in the Hilbert space? If there are N elements in an orthonormal basis, how many
vectors in total are there in the Hilbert space?

Exercise B.7. How would you define a 0-dimensional Hilbert space?

B.4. Operators

An operator maps a vector to another vector. In kindergarten quantum mechanics, we usually put a hat on it
(like this: Â) to distinguish it from a scalar, but note that research papers and a lot of books often don’t do that.
If Â maps a vector in H to another vector in the same space H, we say that Â is an operator on H.

All operators considered in this book are linear, in the sense that

Â(z |ψ⟩+ w |ϕ⟩) = zÂ |ψ⟩+ wÂ |ϕ⟩ , (B.32)

for any |ψ⟩ , |ϕ⟩ ∈ H and any z, w ∈ C. In other words, we can always pull an operator inside a sum, and pull
any scalar outside an operator.

Assume an orthonormal basis {|en⟩}. The most powerful notation in the bra-ket formalism is the ket-bra
form of an operator:

Â =
∑
n,m

Anm |en⟩ ⟨em| , (B.33)

where each Anm is a complex number, and A is a matrix called a matrix representation of Â, or simply a
matrix of Â. Note that the matrix depends on the chosen basis. Notice that we write a ket first and a bra second
in this ket-bra form, and it is a double sum. When we apply an operator in this form to a ket |ψ⟩, we obtain

Â |ψ⟩ =
∑
n,m

Anm |en⟩ ⟨em|ψ⟩ . (B.34)

This equation involves the following steps:

(1) Take the inner product of |ψ⟩ with |em⟩ to obtain the components ⟨em|ψ⟩ of |ψ⟩.
(2) Multiply the components with the A matrix to obtain

∑
mAnm ⟨em|ψ⟩, which is a set of complex

numbers.
(3) Use the complex numbers from the previous step to compute the linear combination

Â |ψ⟩ =
∑
n

(∑
m

Anm ⟨em|ψ⟩

)
|en⟩ . (B.35)

The result is a linear combination of kets, so it is also a vector.
The second step above is equivalent to matrix algebra. If we want to compute the components ⟨en| Â |ψ⟩

of the output vector directly, we can write

⟨en| Â |ψ⟩ = ⟨en|
∑
j,m

Ajm |ej⟩ ⟨em|ψ⟩ (B.36)

=
∑
j,m

Ajm ⟨en|ej⟩ ⟨em|ψ⟩ (linearity of inner product) (B.37)

=
∑
j,m

Ajmδnj ⟨em|ψ⟩ ({|en⟩} are orthonormal) (B.38)

=
∑
m

Anm ⟨em|ψ⟩ . (in the
∑
j

sum, only one j = n term is nonzero) (B.39)
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Hence, if we once again regard the components {⟨em|ψ⟩} as a column vector, the components of the output
form another column vector produced by a product of the matrix A with the input column vector: ⟨e1| Â |ψ⟩

...
⟨eN | Â |ψ⟩

 =


A11 A12 . . . A1N

A21 A22 . . . A2N
...

... . . . ...
AN1 AN2 . . . ANN


 ⟨e1|ψ⟩

...
⟨eN |ψ⟩

. (B.40)

Some caveats about the ket-bra form:
(1) In rare cases in advanced quantum mechanics, we also need to deal with antilinear operators that are

not linear and cannot be expressed in the ket-bra form, but we don’t need them in this book.
(2) For infinite-dimensional Hilbert spaces, there exist operators that cannot be expressed in the ket-bra

form exactly, such as the position operator of a particle. In physics, we deal with those using a trick
by Dirac: define a continuous version of an orthonormal basis {|x⟩ : x ∈ Rn} that obeys〈

x
∣∣x′〉 = δn(x− x′), (B.41)

where δn is the n-dimensional Dirac delta function, and then express an operator as an integral rather
then a sum:

Â =

¨
A(x,x′) |x⟩

〈
x′∣∣ dnxdnx′, (B.42)

whereA(x,x′) is now a function of two variables x and x′ rather than a matrix. Mathematicians hate
this but it works.

There is a unique zero operator denoted by 0 (without the hat for brevity). It is defined by
0 |ψ⟩ = 0 ∀ |ψ⟩ ∈ H. (B.43)

In other words, when the zero operator is applied to any vector, the result is always the zero vector. It is slightly
sloppy to use the same symbol 0 to denote the zero number, the zero vector, and the zero operator, but the
notation is standard and harmless in practice; they all behave the same way as the number 0.

Be extremely careful that, like matrix algebra, you cannot interchange the order of two operators in a product
usually:

ÂB̂ ̸= B̂Â usually. (B.44)

In the rare cases that ÂB̂ = B̂Â, we say that the two operators commute. In general, noncommutativity is
the single most annoying feature of quantum mechanics. Another way of describing this problem is to use the
commutator, defined as

[Â, B̂] ≡ ÂB̂ − B̂Â. (B.45)

If [Â, B̂] = 0 (the zero operator), then we say that Â and B̂ commute, and if the commutator is not zero, they
don’t commute.

Exercise B.8. Assume an orthonormal basis {|en⟩ : n = 1, . . . , N} in the following.
(1) Show that the matrix representation of Â is given by

Anm = ⟨en| Â |em⟩ . (B.46)

In other words, there’s a one-to-one correspondence between an operator Â and its matrix representation
A, as long as we fix an orthonormal basis.

(2) An identity operator Î is defined by

Î |ψ⟩ = |ψ⟩ (B.47)
for any |ψ⟩. Prove that it can be expressed as

Î =
∑
n

|en⟩ ⟨en| . (B.48)

Find the matrix representation of Î . Show that Î commutes with any operator.
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(3) Find the matrix representation of ÂB̂ in terms of the matrix representations of Â and B̂ if

Â =
∑
n,m

Anm |en⟩ ⟨em| , B̂ =
∑
n,m

Bnm |en⟩ ⟨em| . (B.49)

Exercise B.9. Let {|en⟩ : n = 1, . . . , N} be a set of vectors in a Hilbert space that are not necessarily orthogonal
or normalized. Suppose that the identity operator can be expressed as

Î =

N∑
n=1

|en⟩ ⟨en| . (B.50)

Then show that any vector |ψ⟩ ∈ H can be expressed as a linear combination of {|en⟩}, i.e., {|en⟩} is a complete
set of vectors of the Hilbert space, and Eq. (B.50) is called the completeness condition on a set of vectors.

Side note. A complete and linearly independent set of vectors is called a basis of the vector space. Equivalently,
a set of vectors {|en⟩} is a basis if and only if any |ψ⟩ ∈ H can be uniquely expressed as a linear combination
of the set. In other words, we can write any vector as

|ψ⟩ =
N∑

n=1

ψn |en⟩ , (B.51)

and the coefficients {ψn} are unique, such that no other linear combination of {|en⟩} gives the same |ψ⟩. To
check that a set of vectors is an orthonormal basis, we need to check that they are orthonormal and also they
satisfy the completeness condition given by Eq. (B.50).

B.5. Adjoint

The adjoint of an operator, also called the Hermitian conjugate, is analogous to the conjugate transpose †
of a matrix, and we use the same symbol †. To define it, it is easier to use mathematicians’ notation of the inner
product. Given an operator Â, its adjoint, denoted by Â†, is defined by the property(

ϕ, Âψ
)
=
(
Â†ϕ, ψ

)
∀ψ, ϕ ∈ H. (B.52)

To write this definition in the bra-ket notation, we first define the adjoint of the ket as the bra:

⟨ϕ| = |ϕ⟩† , (B.53)

so that the inner product can be written as

⟨ϕ|ψ⟩ = |ϕ⟩† |ψ⟩ . (B.54)

Then Â† is defined by the property

⟨ϕ| Â |ψ⟩ =
(
Â† |ϕ⟩

)†
|ψ⟩ ∀ |ψ⟩ , |ϕ⟩ ∈ H. (B.55)

The adjoint operator is useful because it gives us a new way to compute ⟨ϕ| Â |ψ⟩:
(1) The usual way: Apply Â to |ψ⟩ first, and then compute the inner product between |ϕ⟩ and Â |ψ⟩.
(2) The new way: Apply Â† to |ϕ⟩ first, and then compute the inner product between Â† |ϕ⟩ and |ψ⟩.

Here are some fundamental properties of the adjoint, similar to those of the conjugate transpose:
(1) Antilinearity: for any complex numbers c1, c2 and any operators Â1 and Â2,(

c1Â1 + c2Â2

)†
= c∗1Â

†
1 + c∗2Â

†
2. (B.56)

In other words, we can pull † inside a sum, but remember to take the complex conjugate of the
coefficients.

(2) Involution († is its own inverse):

Â†† = Â. (B.57)
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(3) Contravariance:

(ÂB̂)† = B̂†Â†. (B.58)

You should go through Exercise B.10 to learn how to compute the adjoint in practice.

Exercise B.10. Let A be the matrix representation of Â with respect to an orthonormal basis {|en⟩}. Show that
the matrix representation of Â† is given by

⟨en| Â† |em⟩ =
(
⟨em| Â |en⟩

)∗
, (B.59)

so that we can write

Â† =
∑
n,m

(
A†
)
nm

|en⟩ ⟨em| , (B.60)

where A† is the conjugate transpose of the matrix A. In other words, the matrix of Â† is the conjugate
transpose of the matrix of Â.

Exercise B.11. An operator is said to be Hermitian if

Â = Â†. (B.61)
Show that an operator is Hermitian if and only if its matrix representation is Hermitian.

Exercise B.12. The inverse of an operator is defined by Â−1Â = ÂÂ−1 = Î . Show that Â−1 is the inverse of
Â if and only if their matrix representations are inverses of each other.

Exercise B.13. An operator is said to be unitary if

Û−1 = Û †, (B.62)

such that

Û Û † = Û †Û = Î , (B.63)

where Î is the identity operator. Show that an operator is unitary if and only if its matrix representation is
unitary.

Exercise B.14. Let {|en⟩} be an orthonormal basis of a Hilbert space and Û be a unitary operator. Define
another set of operators as ∣∣e′n〉 = Û |en⟩ , n = 1, . . . , N. (B.64)

Show that {|e′n⟩} is also an orthonormal basis. Conversely, given two orthonormal bases {|en⟩} {|e′n⟩}, show
that there exists some unitary operator Û such that the two bases are related by Eq. (B.64).

Exercise B.15. An operator Â is said to be normal if

ÂÂ† = Â†Â. (B.65)
In other words, a normal operator is defined by the property that it commutes with its adjoint. Show that an
operator is normal if and only if its matrix representation is normal.

Exercise B.16. Show that any Hermitian operator is normal. Show that any unitary operator is normal.

Exercise B.17. Prove that, for any |ψ⟩ , |ϕ⟩ ∈ H and any operator Â,(
⟨ϕ| Â |ψ⟩

)∗
= ⟨ψ| Â† |ϕ⟩ . (B.66)

Exercise B.18. Prove that ∣∣∣⟨ϕ| Â |ψ⟩
∣∣∣2 = ⟨ψ| B̂ |ψ⟩ = ⟨ϕ| Ĉ |ϕ⟩ , (B.67)

where
B̂ = Â† |ϕ⟩ ⟨ϕ| Â, Ĉ = Â |ψ⟩ ⟨ψ| Â†. (B.68)
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Side note. You should notice from the exercises that the Hermitian, unitary, and normal properties of an
operator do not depend on the orthonormal basis you choose to express the operator. To put it another way,
if an operator is Hermitian, its matrix representation is Hermitian regardless of which orthonormal basis you
choose; same with unitarity, normality, etc. In mathematics, these intrinsic properties of an operator are usually
defined using abstract algebra without looking at the matrix representation at all.

B.6. Eigenvectors and eigenvalues

Given an operator Â, a ket |ψ⟩ is said to be an eigenvector of Â if

Â |ψ⟩ = λ |ψ⟩ (B.69)

for some complex number λ. λ is then called the eigenvalue of Â associated with the eigenvector |ψ⟩. The most
important example in quantum mechanics is, of course, the eigenvectors of the Hamiltonian operator and the
eigenvalues. You should go through the following important exercise:

Exercise B.19. Let Â be a normal operator. Show that there exists an orthonormal basis {|en⟩} such that Â can
be expressed in the diagonal form

Â =
∑
n

λn |en⟩ ⟨en| , (B.70)

where each |en⟩ is an eigenvector of Â and λn is the eigenvalue of Â associated with |en⟩, i.e.,

Â |en⟩ = λn |en⟩ . (B.71)

Note that Eq. (B.70) is now a single sum, not the double sum in the general ket-bra form. Show that the
eigenvalues of Â are the same as the eigenvalues of its matrix representation.

A function of a normal operator f(Â) is defined in terms of its diagonal form given by Eq. (B.70) as

f(Â) =
∑
n

f(λn) |en⟩ ⟨en| . (B.72)

In other words, to compute f(Â), we express Â in its diagonal form first, and then apply the function to each
eigenvalue. The result is another operator. The most important example is probably the exponential:

exp Â =
∑
n

exp(λn) |en⟩ ⟨en| . (B.73)

This is equivalent to the following:

exp Â =

∞∑
n=0

Ân

n!
. (B.74)

which can be used as the general definition of the operator exponential valid for any operator, not just normal
operators. The most important example in quantum mechanics is the unitary operator associated with the
Hamiltonian

Û = exp

(
− i

ℏ
Ĥt

)
. (B.75)

Exercise B.20. Let Â be a Hermitian operator. Show that all its eigenvalues are real.

Exercise B.21. Show that all the eigenvalues of Â†Â are nonnegative.

Exercise B.22. Let Û be a unitary operator. Show that all its eigenvalues have magnitude |λn| = 1.

Exercise B.23. Let Â be a Hermitian operator. Show that exp
(
iÂ
)

is unitary.

Exercise B.24. Find the matrix representation of exp Â in terms of the matrix representation of Â.
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Exercise B.25. Let Û be a unitary operator. Show that it can always be expressed as exp
(
iÂ
)

with respect to

some Hermitian operator Â.

Exercise B.26. Show that for any operator Â and any unitary operator Û ,

Û(exp Â)Û † = exp
(
Û ÂÛ †

)
. (B.76)

Exercise B.27. If Â is a Hermitian operator, |ψ⟩ is an eigenvector of Â, and λ is the eigenvalue associated
with it, show that |ψ⟩ is also an eigenvector of exp

(
iÂ
)

. Show that the eigenvalue associated with |ψ⟩ for the

operator exp
(
iÂ
)

is exp(iλ).

B.7. Miscellaneous concepts

(1) The trace of an operator is defined as

tr Â =
∑
n

⟨en| Â |en⟩ (B.77)

given an orthonormal basis {|en⟩}.
(2) A Hermitian operator with nonnegative eigenvalues is called a positive-semidefinite operator. If all

the eigenvalues are strictly positive, we say that it is positive-definite.
The most important example of a positive-semidefinite operator is the density operator in quantum

mechanics to describe the state of a quantum state that interacts with an environment (an open quantum
system). The density operator is positive-semidefinite and has a trace equal to 1.

Exercise B.28. Show that the trace of an operator does not depend on the chosen basis, i.e., if there is another
orthonormal bsis {|e′n⟩} of the Hilbert space, the trace is also given by

tr Â =
∑
n

〈
e′n
∣∣ Â ∣∣e′n〉 . (B.78)

If Â is a normal operator with eigenvalues {λn}, prove that

tr Â =
∑
n

λn. (B.79)

Exercise B.29. Find tr Â in terms of a matrix representation of Â.

Exercise B.30. Prove the linear property of trace: for any complex numbers c1, c2 and any operators Â1, Â2,

tr(c1Â1 + c2Â2) = c1(tr Â1) + (c2 tr Â2). (B.80)

Exercise B.31. Prove

tr (|ψ⟩ ⟨ϕ|) = ⟨ϕ|ψ⟩ . (B.81)

Exercise B.32. Prove the cyclic property of the trace: for any operators Â, B̂,

tr(ÂB̂) = tr(B̂Â). (B.82)

Exercise B.33. Prove the unitary invariance of the trace: for any unitary operator Û and any operator Â,

tr(Û ÂÛ †) = tr(Â). (B.83)

Exercise B.34. Prove that an operator Â is positive-semidefinite if and only if

⟨ψ| Â |ψ⟩ ≥ 0 ∀ |ψ⟩ ∈ H. (B.84)
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B.8. Tensor product

Suppose that we need to describe two degrees of freedom for a system, e.g., the spins of two electrons.
For now, think of them as two classical random variables. Suppose that the first spin sA ∈ {+1,−1} has two
possible values, and the second spin sB ∈ {+1,−1} also has two possible values. The set of all possible values
(sample space) of the two spins (sA, sB) is the Cartesian product of the two sets

{+1,−1} × {+1,−1} = {(1, 1), (1,−1), (−1, 1), (−1,−1)}. (B.85)

In quantum mechanics, we generalize the concept of Cartesian product by the concept of tensor product.
Suppose HA and HB are two Hilbert spaces that describe the sets of all possible states for two degrees of
freedom. If |ψ⟩ ∈ HA is the state of the first degree of freedom and |ϕ⟩ ∈ HB is the state of the second degree
of freedom, then we can take the tensor product of the two vectors, denoted by

|ψ⟩ ⊗ |ϕ⟩ , (B.86)

and say that this is a possible quantum state of the two degrees of freedom. It is also possible to do a
superposition, i.e., a linear combination of states in the following way:

c1 |a1⟩ ⊗ |b1⟩+ c2 |a2⟩ ⊗ |b2⟩ , c1, c2 ∈ C. (B.87)

In general, we say that HA ⊗HB is the Hilbert space that contains the set of all linear combinations of all the
tensor products of two vectors, the first vector in HA and the second vector in HB .

To be more specific, suppose that {|en⟩} is an orthonormal basis of HA and {|fn⟩} is an orthonormal basis
of HB . Then the tensor product of the two Hilbert spaces HA ⊗ HB , which is also a Hilbert space, can be
expressed as

HA ⊗HB =

{∑
n,m

ψnm |en⟩ ⊗ |fm⟩ : each ψnm ∈ C

}
. (B.88)

In other words,

{|en⟩ ⊗ |fm⟩ : n = 1, . . . , N,m = 1, . . . ,M} (B.89)

is an orthonormal basis of HA ⊗ HB . Notice that there are now N ×M vectors in the orthonormal basis.
Notice also that there are far more vectors in the Hilbert space HA⊗HB: any linear combination of theN ×M
vectors in the orthonormal basis is fair game. This is an important property of the tensor product: HA⊗HB

contains not only the tensor products of any two vectors in the two Hilbert spaces, but also all their linear
combinations.

Another fundamental property of the tensor product: Given any complex numbers {cn}, {dn}, and any sets
of vectors {|an⟩ ∈ HA} and {|bn⟩ ∈ HB}, we can always write(∑

n

cn |an⟩

)
⊗

(∑
m

dm |bm⟩

)
=
∑
n,m

cndm |an⟩ ⊗ |bm⟩ . (B.90)

In other words, we can always convert the tensor product of two sums into a double sum.
The third important property of the tensor product has to do with how we take the inner product. Let

|a1⟩ , |a2⟩ ∈ HA and |b2⟩ , |b2⟩ ∈ HB . Take the tensor product of |a1⟩ ∈ HA with |b1⟩ ∈ HB to get
|a1⟩⊗|b1⟩ ∈ HA⊗HB , and take the tensor product of |a2⟩ ∈ HA with |b2⟩ ∈ HB to get |a2⟩⊗|b2⟩ ∈ HA⊗HB .
The inner product is given by

(⟨a1| ⊗ ⟨b1|)(|a2⟩ ⊗ |b2⟩) = ⟨a1|a2⟩ ⟨b1|b2⟩ . (B.91)

In other words, we take the inner product ⟨a1|a2⟩ and ⟨b1|b2⟩ in each Hilbert subspace first to obtain two
complex numbers, and then take the product of the two complex numbers.

To make the notations look nicer, I will write each vector in the orthonormal basis as

|en, fm⟩ ≡ |en⟩ ⊗ |fm⟩ . (B.92)

The bra can be written as

⟨en, fm| = |en, fm⟩† = ⟨en| ⊗ ⟨fm| , (B.93)
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and the orthonormality of these vectors can be expressed as
⟨en, fm|en′ , fm′⟩ = δnn′δmm′ . (B.94)

If |ψ⟩ ∈ HA ⊗HB describes the quantum state of two degrees of freedom, then we can always write

|ψ⟩ =
∑
n,m

ψnm |en, fm⟩ . (B.95)

in terms of the orthonormal basis {|en, fm⟩} and the components ψnm, which are given by
ψnm = ⟨en, fm|ψ⟩ . (B.96)

Then we say that ψnm is the wavefunction of the two degrees of freedom n and m.
In general, if we write two vectors in HA ⊗HB as

|ψ⟩ =
∑
n,m

ψnm |en, fm⟩ , (B.97)

|ϕ⟩ =
∑
n,m

ϕnm |en, fm⟩ , (B.98)

Then you should be able to show that their inner product is

⟨ϕ|ψ⟩ =
∑
n,m

ϕ∗nmψnm. (B.99)

With the orthonormal basis, we can also write any operator on HA ⊗HB in the ket-bra form:

Â =
∑

n,m,n′,m′

Anmn′m′ |en, fm⟩ ⟨en′ , fm′ | . (B.100)

The matrix representation now has four indices. If we take a tensor product of multiple Hilbert spaces, the
number of indices will explode! You should begin to see why we prefer to use the abstract bra-ket notation—we
don’t want to write all the indices everytime we specify an operator, and the notations of matrix algebra are
becoming inadequate to fully handle what’s going on.

Another way of making up an operator on HA ⊗HB is to take an operator Â on HA and another operator
B̂ on HB and then form the tensor product Â⊗ B̂, which is an operator on HA ⊗HB . It has this fundamental
property:

(Â⊗ B̂) |ψ⟩ ⊗ |ϕ⟩ = (Â |ψ⟩)⊗ (B̂ |ϕ⟩). (B.101)

In other words, as long as both Â ⊗ B̂ and |ψ⟩ ⊗ |ϕ⟩ are tensor products, we can apply Â to |ψ⟩ and B̂ to |ϕ⟩
separately and then put them back together. All the other properties of Â ⊗ B̂ can be derived from this. A
common example is Â⊗ Î , where Î is the identity operator on HB . It applies Â to the HA part and leaves the
HB part alone.

Some handy identities are as follows:(∑
n

cnÂn

)
⊗

(∑
m

dmB̂m

)
=
∑
n,m

cndmÂn ⊗ B̂m. (B.102)

(Â⊗ B̂)(Ĉ ⊗ D̂) = (ÂĈ)⊗ (B̂D̂). (B.103)

(|a1⟩ ⊗ |b1⟩)(⟨a2| ⊗ ⟨b2|) = (|a1⟩ ⟨a2|)⊗ (|b1⟩ ⟨b2|). (B.104)

When we have an operator Â on HA, we often abbreviate Â⊗ Î on the big Hilbert space HA ⊗HB as just Â.
Similarly, when we have an operator Â on HA and an operator B̂ on HB , we often abbreviate Â ⊗ B̂ as ÂB̂.
What we really mean by ÂB̂ in that context is then

ÂB̂ = (Â⊗ Î)(Î ⊗ B̂) = Â⊗ B̂. (B.105)

It’s a bit ambiguous but such abbreviation is standard; otherwise we’d have to write really long formulas with
tons of ⊗ and Î .
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The math may be a bit dry and tedious, but keep this general meaning in mind: we use the tensor product to
combine multiple degrees of freedom together. The tensor product is in fact how we define degrees of freedom
in quantum mechanics: if a Hilbert space can be decomposed as a tensor product HA ⊗HB ⊗ . . . , then each
constituent Hj corresponds to a degree of freedom. For example, a 3D particle has a state in the Hilbert space
Hx ⊗Hy ⊗Hz that can be expressed as

˝
ψ(x, y, z) |x⟩ ⊗ |y⟩ ⊗ |z⟩ d3r, so the three Hilbert spaces represent

three degrees of freedom; we don’t count the momenta separately. If the particle has spin, we attach another
Hilbert space for the spin via the tensor product.

Exercise B.35. Prove
tr(Â⊗ B̂) = (tr Â)(tr B̂). (B.106)

Exercise B.36. Given Â = B̂⊗ Ĉ, write the matrix representation A of Â in Eq. (B.100) in terms of the matrix
representations of B̂ and Ĉ, if

B̂ =
∑
n,n′

Bnn′ |en⟩ ⟨en′ | , Ĉ =
∑
m,m′

Cmm′ |em⟩ ⟨em′ | . (B.107)

B.9. Isomorphism

Consider two Hilbert spaces HA and HB . An operator Û : HA → HB is said to be unitary if Û †Û = ÎA
and Û Û † = ÎB , where Îx with any subscript x is the identity operator on Hx. Û is a bijective operator and also
preserves the inner product, since

⟨ϕ| Û †Û |ψ⟩ = ⟨ϕ|ψ⟩ . (B.108)
For example, for real Euclidean vectors in Rn, the dot product is an inner product, and the preservation of the
inner product means that the length of a vector is preserved through the unitary operator, and also the angle
between any two vectors is preserved. A unitary operator in that case is represented by an orthogonal matrix,
which models any rotation, permutation of components, and sign flip of each component.

Two Hilbert spaces HA and HB are said to be isomorphic, denoted as HA ∼ HB or more sloppily
HA = HB , if a unitary operator Û : HA → HB exists. Then there is a bijective relation Û between the two
spaces and the bijection preserves the inner product.

Two isomorphic Hilbert spaces are effectively the same; we consider isomorphic spaces because one may
be more natural or convenient to use than the other, much like the use of an orthogonal matrix to transform the
Cartesian coordinates.

Exercise B.37. Prove that Cn with inner product

⟨u,v⟩ ≡
n∑

j=1

u∗jvj (B.109)

is isomorphic to any complex Hilbert space H with n dimensions.

Exercise B.38. Prove
H1 ⊗H2 ∼ H2 ⊗H1. (B.110)

B.10. Partial operations

B.10.1. Partial ket and bra. Consider a tensor product HA⊗HB of Hilbert spaces. Let |b⟩ ∈ HB . Given
|b⟩, the partial ket |b⟩ : HA → HA ⊗HB is an operator defined by

|b⟩ |a⟩ ≡ |a⟩ ⊗ |b⟩ , ∀ |a⟩ ∈ HA. (B.111)

In other words, the partial ket just appends |b⟩ via a tensor product. This partial-ket operator is simply written
as |b⟩; it’s slightly sloppy but it works as far as I know. The partial bra ⟨b| : HA ⊗HB → HA is then defined
as the adjoint of the partial ket, and it turns out to be given by

⟨b| (|a⟩ ⊗ |c⟩) ≡ (⟨b|c⟩) |a⟩ , ∀ |a⟩ ∈ HA, |c⟩ ∈ HB. (B.112)

In other words, given any tensor product |a⟩ ⊗ |c⟩, the partial bra takes the inner product of |b⟩ with |c⟩ and
leaves |a⟩ alone.
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B.10.2. Partial trace. Given an operator Â : HA ⊗HB → HA ⊗HB on a tensor-product Hilbert space
HA ⊗ HB , the partial trace of Â with respect to HB produces an operator on HA and is defined by the
fundamental property

tr
[
Â(Ô ⊗ Î)

]
= tr

[(
trB Â

)
Ô
]
, (B.113)

where Ô is any operator on HA and Î is the identity operator on HB . In quantum mechanics, it is mainly used
on a density operator, such that

tr
[
ρ̂(Ô ⊗ Î)

]
= tr

[
(trB ρ̂)Ô

]
. (B.114)

This expression means that, if ρ̂ is the state of two degrees of freedom and we want to compute the expected
value of Ô for the first degree of freedom, then we can “trace out” the second degree of freedom by computing
trB ρ̂ first. The partial trace is one of the most important operations in open quantum system theory.

Given an orthonormal basis {|fm⟩} in HB , a recipe for the partial trace is

trB Â =
∑
l

⟨fl| Â |fl⟩ , (B.115)

where ⟨fl| and |fl⟩ are partial bra and ket operators. With Â in the ket-bra form given by Eq. (B.100), the partial
trace becomes

trB Â =
∑
l

⟨fl|

 ∑
n,m,n′,m′

Anmn′m′ |en, fm⟩ ⟨en′ , fm′ |

 |fl⟩ (B.116)

=
∑
l

∑
n,m,n′,m′

Anmn′m′ ⟨fl| (|en⟩ ⊗ |fm⟩)(⟨en′ | ⊗ ⟨fm′ |) |fl⟩ (B.117)

=
∑
l

∑
n,n′

Anln′l |en⟩ ⟨en′ | . (B.118)

If an operator is a tensor product Â⊗ B̂, the partial trace is especially simple:

trB(Â⊗ B̂) = (tr B̂)Â. (B.119)

This is handy if the density operator is given by ρ = ρ̂A ⊗ ρ̂B with tr ρ̂A = 1 and tr ρ̂B = 1,

trB(ρ̂A ⊗ ρ̂B) = (tr ρ̂B)ρ̂A = ρ̂A. (B.120)

We say that the state is a product state if the density operator is a tensor product. We use it to model independent
degrees of freedom, since the expected value of any Ô for one degree of freedom becomes

tr
[
(Ô ⊗ Î)(ρ̂A ⊗ ρ̂B)

]
= tr

(
Ôρ̂A

)
, (B.121)

which does not depend on ρ̂B at all.

Exercise B.39. Prove that the partial trace also has a cyclic property in the form

trB

[(
Î ⊗ B̂

)
Ô
]
= trB

[
Ô
(
Î ⊗ B̂

)]
, (B.122)

if Ô is an operator on HA ⊗HB and B̂ is an operator on HB .
(Beware that, for a partial trace, the operator being cycled needs to be in the form of Î ⊗ B̂.)

Exercise B.40. Prove

Â1

(
trB Ô

)
Â2 = trB

[(
Â1 ⊗ Î

)
Ô
(
Â2 ⊗ Î

)]
, (B.123)

where Ô is on HA ⊗HB while Â1 and Â2 are on HA.
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B.11. Direct sum

Another way of combining two vectors |a⟩ ∈ HA and |b⟩ ∈ HB in two different Hilbert spaces is the direct
sum

|a⟩ ⊕ |b⟩ . (B.124)

It is defined by the property that, given |a1⟩ , |a2⟩ ∈ HA and |b1⟩ , |b2⟩ ∈ HB ,

(⟨a1| ⊕ ⟨b1|)(|a2⟩ ⊕ |b2⟩) = ⟨a1|a2⟩+ ⟨b1|b2⟩ , (B.125)

This is similar to Eq. (B.91) for the tensor product, except that we sum the two inner products here. The set of
all such direct sums is also a Hilbert space and denoted as

HA ⊕HB ≡ {|a⟩ ⊕ |b⟩ : |a⟩ ∈ HA, |b⟩ ∈ HB}. (B.126)

We don’t use the direct sum as much as the tensor product in quantum mechanics, but it is quite useful in linear
algebra and probability theory. In those areas, we usually consider two special cases:

(1) The direct sum of two column vectors a and b, which is simply the concatenation

a⊕ b ≡
(
a
b

)
. (B.127)

(2) The direct sum of two square matrices A and B, defined as

A⊕B ≡
(
A

B

)
, (B.128)

where the rest of the entries are zero.
These definitions agree with the abstract definition if we assume the inner product ⟨y,x⟩ ≡ y†x for column
vectors and ⟨Y,X⟩ ≡ tr(Y †X) for square matrices, where † is the conjugate transpose.

One application of the direct sum is in probability theory: if we have two column vector of random variables
X and Y , we can use the direct sumX ⊕ Y to form one big column vector of all the random variables. If the
covariance matrix of X is Σ(X), the covariance matrix of Y is Σ(Y ), and there is no covariance between any
entry ofX and any entry of Y , then the covariance matrix ofX ⊕ Y is Σ(X) ⊕ Σ(Y ).

Exercise B.41. Let a be a column vector with n entries, b be a column vector with m entries, A,A′ be n × n
matrices, and B,B′ be m×m matrices. Show that

(1)

(A⊕B)(a⊕ b) = (Aa)⊕ (Bb). (B.129)

(2)

(A⊕B)(A′ ⊕B′) = (AA′)⊕ (BB′). (B.130)

(3)

(A⊕B)−1 = (A−1)⊕ (B−1). (B.131)

B.12. Positive-semidefinite operators*

An important class of operators in open quantum systems theory are called positive-semidefinite operators.
The most important example is the density operator, which models the state of an open quantum system.

For a complex Hilbert space H, an operator is said to be positive-semidefinite if

Â = Â† and ⟨ψ| Â |ψ⟩ ≥ 0 ∀ |ψ⟩ ∈ H. (B.132)

The first equality means that Â is self-adjoint, so that ⟨ψ| Â |ψ⟩ is real for any |ψ⟩ ∈ H. If it is not self-adjoint,
⟨ψ| Â |ψ⟩ may be complex, and the inequality would not make sense. Any self-adjoint Â has the eigenvalue
decomposition

Â =
∑
n

λn |en⟩ ⟨en| . (B.133)



B.14. MESSAGE TO MATHEMATICIANS 144

Then Â is positive-semidefinite if and only if all eigenvalues of Â are nonnegative, i.e., λn ≥ 0 for all n. A
shorthand for positive-semidefiniteness is

Â ≥ 0. (B.134)
Similarly, we define a positive-definite operator by

Â = Â† and ⟨ψ| Â |ψ⟩ > 0 ∀ |ψ⟩ ∈ H : |ψ⟩ ≠ 0. (B.135)
A self-adjoint operator is positive-definite if and only if all its eigenvalues are strictly positive. As a shorthand,
we write

Â > 0. (B.136)

For two positive-semidefinite operators Â, B̂, the inequality

Â ≥ B̂ (B.137)

means that Â − B̂ is positive-semidefinite; Â > B̂ means that Â − B̂ is positive-definite. The notation is
justified because such a relation is indeed a partial order (https://en.wikipedia.org/wiki/Partially_
ordered_set).

B.13. Positive-semidefinite matrices*

Complex positive-semidefinite matrices are defined in the same way if we take H = Cn to be the space of
complex column vectors and the inner product to be

⟨ϕ,ψ⟩ = ϕ†ψ. (B.138)
In other words, a matrix A is said to be positive-semidefinite if

A = A†, ψ†Aψ ≥ 0 ∀ψ ∈ Cn, (B.139)
and we write A ≥ 0. A self-adjoint matrix is positive-semidefinite if and only if all its eigenvalues are all
nonnegative.

All the above statements remain valid for a positive-definite matrix if we replace ≥ by> and assumeψ ̸= 0.
If the Hilbert space is real, things get tricker. Since we will deal with real Hilbert spaces only in the context

of matrix algebra, let’s assume that H = Rn is the Hilbert space of real column vectors, and the inner product
is defined as

⟨ϕ,ψ⟩ = ϕ⊤ψ. (B.140)
A real matrix is said to be positive-semidefinite with respect to the real Hilbert space if

ψ⊤Aψ ≥ 0 ∀ψ ∈ Rn. (B.141)

The definition no longer requires A to be self-adjoint or symmetric (A = A⊤). An example in physics is the
Onsager transport matrix (https://en.wikipedia.org/wiki/Onsager_reciprocal_relations), which
is always positive-semidefinite but may not be symmetric.

The covariance matrix of real random variables is an important example that is both positive-semidefinite
and symmetric.

In all cases, we can still write
A ≥ B (B.142)

if A−B is positive-semidefinite, or write A > B if A−B is positive-definite.

B.14. Message to mathematicians

If you are a mathematician or going into mathematical physics, you should be cautioned that I have presented
a lot of the concepts backwards and with little rigor or generality, relying a lot on orthonormal bases and matrix
representations.

For finite-dimensional Hilbert spaces (N <∞), the abstract formalism is isomorphic to matrix algebra, so
my approach is quite safe. When the Hilbert spaces are infinite-dimensional, however, mathematicians worry
a lot more about when and how infinite sums may converge. If that is the way you like your math, please consult
textbooks written by mathematicians instead, such as Refs. [39, 40].

https://en.wikipedia.org/wiki/Partially_ordered_set
https://en.wikipedia.org/wiki/Partially_ordered_set
https://en.wikipedia.org/wiki/Onsager_reciprocal_relations


APPENDIX C

Probability

C.1. Axioms

The set of all possible outcomes of an experiment, commonly denoted as Ω, is called the sample space,
e.g., Ω = {1, 2, 3, 4, 5, 6} for a dice throw.

An event is a set of outcomes and a subset of Ω, e.g., an even-number event for a dice throw is the set
{2, 4, 6}. The set of all events is called the event space F . It also has the fancy name σ-algebra in mathematics.

When both A AND B occur, we model the event as the intersection of the two sets, i.e.,

(A and B) = (A ∩B). (C.1)

When A OR B occurs, we model the event as the union of the two sets, i.e.,

(A or B) = (A ∪B). (C.2)

F is assumed to include any set that results from such operations on its elements.
If the sample space contains a countable number of outcomes, we usually assume that the event space F is

the power set of Ω, i.e., the set of all subsets of Ω. For example, for a coin flip,

Ω = {head, tail}, F = {∅, {head}, {tail},Ω}, (C.3)

and for a sample space with 3 elements,

Ω = {1, 2, 3}, F = {∅, 1, 2, 3, {1, 2}, {2, 3}, {1, 3},Ω}. (C.4)

If Ω contains an uncountable number of outcomes, e.g., when Ω = R, then a rigorous definition of F is a lot
more complicated for mathematical reasons. Fortunately, such a rigorous definition of F is seldom important
or necessary in physics; we can just assume that F contains all the subsets of Ω that we need in reality.

The probability P [A] is a function that assigns a number to each event A ∈ F . The Kolmogorov axioms
for probability are as follows:

(1) The probability of any event is nonnegative.
(2) The probability of anything happening is 1, i.e., P [Ω] = 1.
(3) Given two mutually exclusive events (A ∩B = ∅),

P [A ∪B] = P [A] + P [B]. (C.5)

Everything in probability theory can be derived from the three axioms, at least in principle.
It is useful to picture P [A] as the amount of stuff in an area, e.g., sand on a beach. Let Ω be the whole beach

and A ⊆ Ω be a subarea of the beach. Then
(1) Axiom (1) says that the amount of sand on any area is always nonnegative.
(2) Axiom (2) says that the total amount P [Ω] on the whole beach is normalized as 100% (such that the

amount on any area is always expressed as a fraction of the total amount).
(3) Axiom (3) says that, if two areas are disjoint (i.e., no overlap), we can count the total amount of sand

P [A ∪B] on the two areas by counting the amount on each area (P [A] and P [B]) and then summing
the two amounts.

Since we often deal with the three objects (Ω, F, P ) together, we call (Ω, F, P ) a probability space.

C.2. Random variables

Any function X : Ω → Rn that maps an outcome to a vector of numbers is called a random variable. For
simplicity, we assume in this chapter that Ω itself is a set of numbers, e.g., Ω = Rn, so that the outcome is a
random variable.

145
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We usually use a capital letter such as X to denote a random variable, although we will be a bit sloppier in
other chapters.

If Ω is countable, e.g., Ω = N0 = {0, 1, 2, . . . }, then we say that the random variable is a discrete variable.
We can define a probability mass function PX(x) as the probability that X is equal to a specific value x ∈ Ω:

PX(x) = P [X = x]. (C.6)

The probability of an event is then the sum of all the probabilities of outcomes in the event:

P [X ∈ A] =
∑
x∈A

PX(x). (C.7)

To compute the expected value of a random variable, we do

E(X) =
∑
x∈Ω

xPX(x). (C.8)

More generally, a function g(X) of the random variable is another random variable, and its expected value is
given by

E[g(X)] =
∑
x∈Ω

g(x)PX(x). (C.9)

If Ω = Rn, we say that X is a continuous variable, and we use a probability density fX(x) instead.
Think of fX(x)dnx as the probability that X is in a tiny n-dimensional cube around x, and dnx is the volume
of the cube. We can convert any formula in terms of PX to the corresponding formula in terms of fX using the
following rules:

(1) Replace PX(x) by fX(x)dnx.
(2) Replace

∑
x∈A by

´
A.

The probability that X is in a region A ⊆ Rn can then be expressed as the integral

P [X ∈ A] =

ˆ
A
fX(x)dnx, (C.10)

and the expected value of any function of X can be expressed as

E[g(X)] =

ˆ
g(x)fX(x)dnx. (C.11)

Regardless of the type of the random variable, the algebra of the expectation can be summarized in three rules:
(1) The expected value of a constant is the constant itself, i.e.,

E(a) = a, (C.12)

because a constant can be considered as a special case of a random variable whose outcome is
deterministic, i.e., it always gives the same value.

(2) Given any two random variables X and Y ,

E(X + Y ) = E(X) + E(Y ). (C.13)

Note that this formula works regardless of whether they are independent.
(3) We can pull any constant out of the expectation:

E(aX) = aE(X). (C.14)

The latter two rules mean that the expectation E is a linear operation. Note that the result of an expectation is a
constant, i.e., it’s no longer random, so we have

E[E(X)] = E(X). (C.15)
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A common measure of the randomness of a random variable is the variance, which is defined as

V(X) ≡ E
{
[X − E(X)]2

}
= E(X2)− [E(X)]2. (C.16)

C.3. Multiple random variables

Consider two random variables X and Y . Let the sample and event spaces for X be (ΩX , FX), and those
for Y be (ΩY , FY ). The joint sample space for (X,Y ) is the Cartesian product

Ω = ΩX × ΩY ≡ {(x, y) : x ∈ ΩX , y ∈ ΩY }. (C.17)

The joint event space F is a set of subsets of Ω; we commonly write the joint event space as the tensor product

F = FX ⊗ FY . (C.18)

For example, if ΩX = ΩY = R, then Ω = ΩX × Ωy = R2 is the two-dimensional plane, and any C ∈ F is a
two-dimensional area on the plane. In particular, the joint event (X ∈ A) ∩ (Y ∈ B) is modeled as

[(X ∈ A) ∩ (Y ∈ B)] = [(X,Y ) ∈ A×B], (C.19)

where A×B is the Cartesian product of A ∈ FX and B ∈ FY . Such a Cartesian product of events is called a
rectangle event, because it looks like a rectangle when ΩX = ΩY = R and A and B are intervals, as illustrated
in Fig. C.1.

Figure C.1. For a joint sample space ΩX × ΩY = R2, an event C ∈ F = FX ⊗ FY is
an arbitrary area on the two-dimensional plane (left). A rectangle event A × B for intervals
A ∈ FX and B ∈ FY is the rectangle {(x, y) : x ∈ A and y ∈ B} (right).

Let the joint probability measure for (X,Y ) on (ΩX × ΩY , FX ⊗ FY ) be PXY , defined as

PXY [C] ≡ P [(X,Y ) ∈ C], C ∈ FX ⊗ FY . (C.20)

Then the probability of each rectangle event is

P [(X ∈ A) ∩ (Y ∈ B)] = PXY [A×B]. (C.21)

The marginal probability measures for X and Y become

PX [A] ≡ PXY [A× ΩY ], A ∈ FX , PY [B] ≡ PXY [ΩX ×B], B ∈ FY , (C.22)

respectively. If PXY is separable for all rectangle events in the sense of

PXY [A×B] = PX [A]PY [B] ∀A ∈ FX , B ∈ FY , (C.23)

then we say that X and Y are independent.
Conversely, given a probability space (ΩX , FX , PX) for X and a probability space (ΩY , FY , PY ) for Y ,

we can form a product measure PXY on (ΩX × ΩY , FX ⊗ FY ) so that it obeys Eq. (C.23) for all rectangle
events, meaning that X and Y are assumed to be independent. Eq. (C.23) is sufficient to specify the probability
measure for all rectangle or non-rectangle events, since we can divide up any C ∈ FX ⊗ FY into tiny rectangle
events and sum up the probabilities PXY on them. We commonly write such a product measure as the tensor
product

PXY = PX ⊗ PY . (C.24)
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C.3.1. Discrete variables. The easiest case is when both X and Y are discrete. Then we can simply
consider the joint probability mass function

PXY (x, y) ≡ P [(X = x) ∩ (Y = y)], (C.25)

which gives

P [(X,Y ) ∈ C] =
∑

(x,y)∈C

PXY (x, y), PX(x) =
∑
y

PXY (x, y), PY (y) =
∑
x

PXY (x, y). (C.26)

(X,Y ) are independent if and only if the joint distribution is separable in the sense of

PXY (x, y) = PX(x)PY (y). (C.27)

C.3.2. Continuous variables. If ΩX = Rn and ΩY = Rm, we can define the joint probability density
fXY (x,y) by

ˆ
C
fX(x,y)dnxdmy = P [(X,Y ) ∈ C]. (C.28)

Then the marginal densities are

fX(x) ≡
ˆ
fXY (x,y)d

my, fY (y) ≡
ˆ
fXY (x,y)d

nx, (C.29)

and (X,Y ) are independent if and only if the joint density is separable in the sense of

fXY (x,y) = fX(x)fY (y). (C.30)

C.3.3. Independent and identically distributed (i.i.d.) variables. The construction of the joint proba-
bility space for multiple random variables is similar. In particular, n independent and identically distributed
(i.i.d.) random variables (X1, . . . , Xn) ∈ Ωn are defined as independent variables where each Xj has the same
probability measure P . The joint probability measure is then the product measure

PX1,...,Xn = P ⊗ · · · ⊗ P︸ ︷︷ ︸
n terms

≡ P⊗n. (C.31)

For example, if the random variables are discrete, then the joint probability distribution is

PX1,...,Xn(x1, . . . , xn) ≡ P [(X1 = x1) ∩ · · · ∩ (Xn = xn)] = P (x1) . . . P (xn). (C.32)

C.4. Conditioning

The probability P [A|B] of an eventA given that an eventB has occurred is called a conditional probability.
It is defined by

P [A ∩B] = P [A|B]P [B]. (C.33)

If P [B] > 0,

P [A|B] =
P [A ∩B]

P [B]
, (C.34)

but if P [B] = 0, we must also have P [A ∩ B] = 0 since P [A ∩ B] ≤ P [B], and P [A|B] conditioned on a
zero-chance event B can be anything, although conventions exist depending on the problem.

Two events A and B are said to be independent if

P [A ∩B] = P [A]P [B]. (C.35)

Remark C.1. Do not confuse independence with mutual exclusivity; there’s no relation between the two concepts.
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Consider two random variables X and Y on the sample/event spaces (ΩX × ΩY , FX ⊗ FY ). For discrete
random variables, the conditional probability distribution can be expressed in terms of the joint distribution
defined by Eq. (C.25) as

PX|Y (x|y) ≡ P [X = x|Y = y] =
PXY (x, y)

PY (y)
=

PXY (x, y)∑
x(numerator)

. (C.36)

If Y is continuous, conditioning becomes trickier, because P [Y = y] may be zero for all y. Let ΩY = Rm.
The way forward is the following [41]. Assume an event Bϵ(y) ∈ FY containing y ∈ ΩY and possessing an
m-dimensional volume ϵ, which should not depend on X . To define P [X ∈ A|Y = y], write the conditional
probability in terms of Bϵ(y) the usual way, then take the ϵ→ 0 limit:

P [X ∈ A|Y = y] ≡ lim
ϵ→0

P{(X ∈ A) ∩ [Y ∈ Bϵ(y)]}
P [Y ∈ Bϵ(y)]

. (C.37)

For example, consider the joint probability density defined by Eq. (C.28). For an infinitesimal ϵ,

P{(X ∈ A) ∩ [Y ∈ Bϵ(y)]} = ϵ

ˆ
A
fXY (x,y)d

nx, P [Y ∈ Bϵ(y)] = ϵ

ˆ
fXY (x,y)d

nx = ϵfY (y),

(C.38)
where we can take ϵ out of the integrals because it is assumed to be independent ofx. The conditional probability
becomes

P [X ∈ A|Y = y] =

´
A fXY (x,y)d

nx

fY (y)
, (C.39)

and the conditional density fX|Y (x|y) becomes

fX|Y (x|y) =
fXY (x,y)

fY (y)
=

fXY (x,y)´
(numerator)dnx

. (C.40)

Side note. The so-called Borel-Kolmogorov paradox arises [41] if we assume that the volume of Bϵ varies with
x, say, ϵg(x). Then the limit would give us

fXY (x,y)g(x)´
(numerator)dnx

, (C.41)

which is arbitrary and depends on the g(x) we choose. According to mathematicians, this paradox shows that
conditioning on the outcome of a continuous variable is ill-defined, and the so-called disintegration theorem is
needed to deal with it. Fortunately, Eq. (C.40) is correct afterall.

C.5. Conditional expectation

Given that Y = y has occurred, the conditional expected value of X is written as E(X|Y = y). For
example, if both X and Y are discrete, the conditional expectation is given by

E(X|Y = y) =
∑
x

xPX|Y (x|y). (C.42)

Notice that this is a function of y, so we can regard E(X|Y ) as a function of the random variable Y . For
example, suppose that Y is a binary random variable about whether it rains or not:

no rain : Y = 0, rain : Y = 1, (C.43)
and X is the duration of a bus ride. Then

(1) E(X|Y = 0) is the expected duration given that there’s no rain (Y = 0).
(2) E(X|Y = 1) is the expected duration given that there’s rain (Y = 1).

E(X|Y ) is a function of Y , so it is also a random variable.
Since E(X|Y ) is another random variable as a function of Y , we can take its expectation again using the

probability distribution of Y . For example, if both variables are discrete, we have

E[E(X|Y )] =
∑
y

[∑
x

xPX|Y (x|y)

]
PY (y) =

∑
x,y

xPXY (x, y) = E(X). (C.44)
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In general,

E[E(X|Y )] = E(X) (C.45)

is called the law of total expectation, which in fact works for any types of random variables. We can use this
to verify that Eq. (C.40) is the appropriate conditional density, not Eq. (C.41).

Exercise C.1. Derive the even more general law

E {b(Y )E [a(X)|Y ]} = E [b(Y )a(X)] (C.46)

for any functions a and b, assuming discrete random variables. Verify that this holds for Eq. (C.40).

The conditional variance is given by

V(X|Y = y) = E(X2|Y = y)− [E(X|Y = y)]2, (C.47)

which is simply the variance of X given that we know Y = y. Since this is a function of Y = y, we can again
regard V(X|Y ) as a random variable that is a function of Y .

A useful law is the law of total variance (https://en.wikipedia.org/wiki/Law_of_total_varia
nce):

V(X) = E[V(X|Y )] + V[E(X|Y )]. (C.48)

(1) The first term E[V(X|Y )] is obtained by first computing the variance of X conditioned on Y = y
using Eq. (C.47). Treating V(X|Y ) as a function of Y , we then compute its expectation.

(2) The second term is V[E(X|Y )] obtained by first computing E(X|Y = y) conditioned on Y = y.
Treating E(X|Y ) as a function of Y , we then compute its variance.

C.6. Gaussian random variables

A multivariate Gaussian random variable (also called normal random variable) with Ω = Rn has the
probability density

fX(x) =
1√

(2π)n detΣ
exp

[
−1

2
(x−m)⊤Σ−1(x−m)

]
, x ∈ Rn, (C.49)

wherem is the mean vector and Σ is the covariance matrix, defined as

E(X) =m, COV(Xj , Xl) ≡ E {[Xj − E(Xj)][Xl − E(Xl)]} = Σjl. (C.50)

We often write a vectoral Gaussian random variable using the shorthand

X ∼ N (m,Σ). (C.51)

Gaussian random variables have the following nice properties:
(1) Any linear combination of Gaussian random variables are also Gaussian random variables. To be

specific, if we define

Yj =
∑
l

AjlXl + bj , (C.52)

where {Ajl} and {bj} are real constants, then {Yj} are also Gaussian random variables. The means
and covariances of the new random variables become

E(Yj) =
∑
l

Ajl E(Xl) + bj , COV(Yj , Yl) =
∑
m,n

AjmΣmnAln. (C.53)

In matrix form, if we write Σjl(Y ) ≡ COV(Yj , Yl), then

E(Y ) = Am+ b, Σ(Y ) = AΣA⊤. (C.54)

https://en.wikipedia.org/wiki/Law_of_total_variance
https://en.wikipedia.org/wiki/Law_of_total_variance
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(2) A corollary is that, if we consider only l of the random variables, say,

X(1) ≡

X1
...
Xl

, (C.55)

then its marginal probability density is still Gaussian and the meansE(Xj) and covariancesCOV(Xj , Xk)
remain unchanged, i.e.,

X(1) ∼ N (m(1),Σ(1)), (C.56)

wherem(1) is the first l entries ofm and Σ(1) is the top-left l × l submatrix of Σ.
(3) If Σ is a diagonal matrix (i.e., the variables are all uncorrelated), then the Gaussian random vari-

ables are all independent from one another (i.e., fX(x) is separable into a product of n functions∏
j fXj (xj), where each fXj (xj) is Gaussian.)

Remark C.2. In general, independence always implies a diagonal covariance matrix, but the converse
need not be true; Gaussian random variables are just special.

(4) If Σ can be partitioned as

Σ =

(
Σ(1)

Σ(2)

)
, (C.57)

where Σ(1) is l × l, Σ(2) is (n− l)× (n− l), and the rest of the entries are zero, then fX(x) can be
factorized as

fX(x) = fX(1)(x(1))fX(2)(x(2)), (C.58)

X(1) ≡

X1
...
Xl

, X(2) ≡

Xl+1
...
Xn

. (C.59)

A fancier way of writing this fact is to use the direct sum ⊕ (see Sec. B.11). Instead of Eqs. (C.57)
and (C.59), we can write

Σ = Σ(1) ⊕ Σ(2), X = X(1) ⊕X(2), (C.60)

whereΣ(1) is the covariance matrix forX(1) andΣ(2) is the covariance matrix forX(2). Σ = Σ(1)⊕Σ(2)

means that the covariance between any entry of X(1) and any entry of X(2) is zero. Then Eq. (C.58)
holds.

The simplest case is when n = 1, and the probability density of X ∼ N (m,σ2) becomes

fX(x) =
1√
2πσ

exp

[
−(x−m)2

2σ2

]
, (C.61)

where σ ≡
√
Σ11 is the standard deviation.

C.7. Poisson random variables

Let N0 = {0, 1, 2, . . . } be the set of natural numbers and assume a sample space Ω = NJ
0 , where each

outcome (N1, N2, . . . , NJ) is a set of J nonnegative integers. The Poisson distribution is defined as

PN (n1, . . . , nJ) =
J∏

j=1

e−mj
m

nj

j

nj !
. (C.62)

(N1, N2, . . . , NJ) are all independent from one another, and the mean and covariance are given by

E(Nj) = mj , COV(Nj , Nk) = mjδjk. (C.63)

We denote such a vectoral Poisson random variable as
N ∼ Poisson(m). (C.64)
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C.7.1. An origin of Poisson random variables*. There are a few ways that Poisson random variables
arise. One way is the following:

(1) Perform M independent experiments, and label each experiment by m = 1, . . . ,M . In each experi-
ment, generate a binary random variable Xm with probability mass function

P [Xm = 0] = 1− ϵ, P [Xm = 1] = ϵ. (C.65)

For a concrete example, let M be the number of time slots over some time interval and Xm be the
photon number arriving at some detectors during the mth time slot.

(2) If Xm = 1, generate a discrete random variable Ym with probability mass function

P [Ym = j] = pj , j = 1, . . . , J. (C.66)

Continuing the earlier example, suppose that there are J detectors and {1, . . . , J} are the labels of the
detectors. If a photon arrives during themth time slot (Xm = 1), it is detected by one of the detectors,
Ym is the label of that detector, and P [Ym = j] = pj is the probability that the jth detector detects the
photon.

(3) At the end of the M experiments, let L be the number of times Xm hits 1:

L ≡
M∑

m=1

Xm, (C.67)

and Nj be the number of times Ym hits j:

Nj ≡
∑

m:Xm=1

δYmj , L =
J∑

j=1

Nj . (C.68)

In the earlier example, L is the total number of photons that are detected by all detectors and Nj is the
total photon number detected by the jth detector.

(4) L is binomial:

PL(l) =

(
M
l

)
ϵl(1− ϵ)M−l. (C.69)

In the limit of ϵ → 0, M → ∞, and Mϵ staying fixed, L is a Poisson random variable with mean
⟨L⟩ =Mϵ (https://en.wikipedia.org/wiki/Poisson_limit_theorem):

PL(l) → exp(−⟨L⟩)⟨L⟩
l

l!
. (C.70)

(5) Conditioned on L = l, the probability distribution of N is multinomial (https://en.wikipedia.o
rg/wiki/Multinomial_distribution):

PN |L(n1, . . . , nJ |l) = δ∑
j nj ,l

l!

n1! . . . nJ !
pn1
1 . . . pnJ

J . (C.71)

Assuming that L is Poisson, the marginal probability of N becomes Poisson:

PN (n1, . . . , nJ) =

∞∑
l=0

PN |L(n1, . . . , nJ |l)PL(l) =

∞∑
l=0

e−⟨L⟩ ⟨L⟩l

l!
δ∑

j nj ,l
l!

n1! . . . nJ !
pn1
1 . . . pnJ

J (C.72)

= e−⟨L⟩⟨L⟩
∑

j nj
pn1
1 . . . pnJ

J

n1! . . . nJ !

∞∑
l=0

δ∑
j nj ,l =

J∏
j=1

e−mj
m

nj

j

nj !
, mj = ⟨L⟩ pj . (C.73)

C.7.2. Poisson process*. If each Ym is not restricted to be a discrete random variable, we obtain a Poisson
process in general. For each Ym, let ΩY = Rn be its sample space (generalizing {1, . . . , J}), FY be its event
space (a set of subsets of ΩY ), and p : FY → [0, 1] be its probability measure (generalizing pj). The Poisson
process is now defined as a random measure N(A), where A ∈ FY is a subset of ΩY . Continuing the photon
example, we now assume that ΩY = R2 is the detector area. Then A ∈ FY is a subset of ΩY , i.e., a smaller
area on the detector, and N(A) is the photon number detected on area A. The total number detected in the
whole sample space ΩY is now L ≡ N(ΩY ), and we write ⟨L⟩ ≡ E(L) as before. The Poisson process obeys
the following properties:

https://en.wikipedia.org/wiki/Poisson_limit_theorem
https://en.wikipedia.org/wiki/Multinomial_distribution
https://en.wikipedia.org/wiki/Multinomial_distribution
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(1) N(A) for any A ∈ FY is a Poisson random variable with mean
E[N(A)] = ⟨L⟩ p(A). (C.74)

(2) N(A) and N(B) are independent if A ∩B = ∅.

C.8. Random process*

A random process in the time domain is a randomly fluctuating function of time. The easiest way of
modeling one is to assume discrete times

I ≡ {tj = t0 + j∆t : j = 1, 2, . . . , J} (C.75)

and consider a set of random variables (X(t1), X(t2), . . . , X(tJ)), each labeled by a time tj . There are two
ways of modeling them:

(1) Assume that there is an underlying probability space (Ω, F, P ) with an abstract sample space Ω such
that X : Ω × I → Rn is a function Xω(tj) of both an abstract variable ω ∈ Ω in the sample space
and a time tj ∈ I, producing a vector in Rn.

(2) Assume that eachX(tj) has a sample space Ωj ⊆ Rn, so that the sample space of the whole process is
Ω = Ω1 × · · · ×ΩJ and there is an underlying probability measure P for (X(t1), X(t2), . . . , X(tJ)).

There is not much difference between the two approaches in what follows.
With discrete time, there really isn’t much difference between a random process and a vector of random

variables. For simplicity, assume that each X(tj) is a real number, i.e., Ωj ⊆ R. We can study its mean
E [X(tj)] ≡ m(tj) (C.76)

and the covariance matrix
Σjk ≡ COV [X(tj), X(tk)] ≡ E {[X(tj)−m(tj)][X(tk)−m(tk)]}, (C.77)

just as we would for a vector of random variables.

C.8.1. Wide-sense stationary process. An additional assumption we often make in physics and engineer-
ing is that the covariance is a function of the time difference only:

COV [X(tj), X(tk)] = C(tk − tj), C : {−(J − 1)∆t, . . . , (J − 1)∆t} → R, (C.78)

where C is a single-variable function. When the covariance matrix has this property, we say that the process is
wide-sense stationary. The definition of strict stationarity is a bit more complicated (https://en.wikiped
ia.org/wiki/Stationary_process) and often unnecessary.

Since tk − tj = (k − j)∆t, each covariance-matrix entry Σjk depends on j and k only in terms of their
difference k − j, i.e.,

Σjk = C(tk − tj) ≡ ck−j , (C.79)
and it looks like

Σ =


c0 c1 c2 . . . cJ−1

c−1 c0 c1 . . . cJ−2

c−2 c−1 c0 . . . cJ−3
...

...
... . . . ...

c−(J−1) c−(J−2) . . . c−1 c0

. (C.80)

A matrix is called Toeplitz if it has this form. Moreover, assume that C(τ) is periodic with
C(τ) = C(τ + T ) ∀τ, T ≡ J∆t. (C.81)

This is a good approximation if C(τ) is concentrated near τ = 0 and C(τ) ≈ 0 for τ near ±T/2, i.e., X(tj)
andX(tk) are uncorrelated if the time difference |tk− tj | is close to half the duration of the process T/2, and T
is very long so that we can ignore the covariance for |tk − tj | beyond T/2. In other words, we assume that the
entries of Σ decay to very small numbers as we move away from the diagonal, so that the periodic assumption
is harmless. With the periodic C, cl is periodic with period J , that is,

cl = cl+J ∀l, (C.82)

https://en.wikipedia.org/wiki/Stationary_process
https://en.wikipedia.org/wiki/Stationary_process
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and Σ becomes a circulant matrix (https://en.wikipedia.org/wiki/Circulant_matrix), which looks
like

Σ =


c0 c1 c2 . . . cJ−1

cJ−1 c0 c1 . . . cJ−2

cJ−2 cJ−1 c0 . . . cJ−3
...

...
... . . . ...

c1 c2 . . . cJ−1 c0

. (C.83)

A circulant matrix has the eigenvalue decomposition

Σ = UDU †, Ujl =
1√
J
exp(−iωltj), Dlk = λlδlk, ωl = l∆ω, ∆ω ≡ 2π

J∆t
=

2π

T
, (C.84)

so that

Σjk = ck−j = C(τk) =
1

J

l0+J−1∑
l=l0

λl exp(−iωlτk), τk ≡ k∆t, (C.85)

λl =

k0+J−1∑
k=k0

ck exp(iωlτk) =

k0+J−1∑
k=k0

C(τk) exp(iωlτk). (C.86)

We may pick l0 = k0 = −⌊J/2⌋, so that ωl ∈ [−π/∆t, π/∆t) and τk ∈ [−T/2, T/2). The power spectral
density of the process is defined in terms of the eigenvalues as

S(ωl) ≡ λl∆t =

k0+J−1∑
k=k0

C(τk) exp(iωlτk)∆t. (C.87)

It is given by the Fourier transform of the covariance function C(τ). Since Σ is symmetric and positive-
semidefinite (Σ = Σ⊤ and u⊤Σu ≥ 0 for all u ∈ Rn), all its eigenvalues are nonnegative, and we have λl ≥ 0
and S(ωl) ≥ 0 for all l.

To measure the power spectral density in practice, consider the mean-subtracted process

Y (tj) ≡ X(tj)−m(tj) (C.88)

and write

S(ω) =

J−1∑
k=0

E [Y (tj)Y (tk)] exp[iω(tk − tj)]∆t. (C.89)

Notice that the left-hand side does not depend on tj , so we can do

S(ω) =
1

J

J−1∑
j=0

S(ω) =
1

T

∑
j,k

E [Y (tj)Y (tk)] exp[iω(tk − tj)]∆t
2 =

1

T
E
[∣∣∣ỸT (ω)∣∣∣2], (C.90)

where

ỸT (ω) ≡
J−1∑
k=0

Y (tk) exp(iωtk)∆t (C.91)

is the Fourier transform of the process Y . If we measure |ỸT (ω)|2/T repeatedly and take the average of the
observations, it should converge to the expected value S(ω). Under a further assumption about the random
process called ergodicity, we can also obtain S(ω) by the long-time limit

lim
T→∞

1

T

∣∣∣ỸT (ω)∣∣∣2 = S(ω). (C.92)

https://en.wikipedia.org/wiki/Circulant_matrix


C.8. RANDOM PROCESS* 155

C.8.2. Continuous-time limit. We now take the limit ∆t → 0 with finite T ≡ J∆t. The frequencies ωl

are still discrete with spacing

∆ω =
2π

T
, (C.93)

but now they go from −∞ to ∞. We should define the continuous Fourier transform as

ỸT (ωl) ≡
ˆ t0+T

t0

Y (t) exp(iωlt)dt. (C.94)

The power spectral density becomes

S(ωl) =

ˆ T/2

−T/2
C(τ) exp(iωlτ)dτ =

1

T
E
[∣∣∣ỸT (ωl)

∣∣∣2]. (C.95)

C.8.3. Continuous-frequency limit. If we keep ∆t nonzero but take J → ∞, so that time goes from −∞
to ∞, then the frequency becomes continuous with ∆ω = π/J∆t→ 0 but still stays in the range

ω ∈ [−π/∆t, π/∆t). (C.96)
and we write

S(ω) =
∞∑

k=−∞
C(τk) exp(iωτk)∆t = lim

T→∞

1

T
E
[∣∣∣ỸT (ω)∣∣∣2]. (C.97)

C.8.4. White noise. If a wide-sense-stationary zero-mean process Y (t) is uncorrelated at different times,
then we can assume

E [Y (tj)Y (tk)] = s
δjk
∆t

, S(ωl) = s. (C.98)

We call Y a white noise because the power spectral density is constant. If the sequence {Y (t1), Y (t2), . . . } is
also normal, i.e., Y ∼ N (0,Σ), then we call Y a Gaussian white noise. In the continuous-time limit, we write

E
[
Y (t)Y (t′)

]
= sδ(t− t′), (C.99)

where δ is the Dirac delta.
An important example of white noise occurs when we measure a stream of pulses in a coherent state with

constant photon flux. The mean photon number in each pulse is the infinitesimal |αj |2 = r∆t, where r is the finite
mean photon flux (mean number per second), so the mean of a quadrature must scale as

√
2Re(αe−iθ) ∝

√
∆t,

while the variance is 1/2 regardless of ∆t. Each homodyne output Xj is then a Gaussian random variable with

E (Xj) ∝
√
∆t, COV(Xj , Xk) =

1

2
δjk. (C.100)

If we divide Xj by
√
∆t, then the process becomes a signal plus a Gaussian white noise.

If we perform photon counting, on the other hand, the process is Poisson with
E(Nj) = r∆t, COV(Nj , Nk) = δjk E(Nj) = rδjk∆t. (C.101)

Then [Nj − E(Nj)]/∆t is also a white noise with power spectral density S(ω) = s = r.

C.8.5. Wiener process. Let Y be a Gaussian white noise and define another random process W by the
sum

W (t0) = 0, W (tj) =W (tj−1) + Y (tj)∆t =

j∑
k=1

Y (tk)∆t. (C.102)

In the continuous-time limit, W is called a Wiener process, also called a Brownian motion. We may think of
W (t) as a process whose rate of change is driven by white noise:

dW (t)

dt
= Y (t), W (t) =

ˆ t

0
Y (τ)dτ. (C.103)

The covariance of W is
E [W (tj)W (tk)] = smin {tj , tk}. (C.104)
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In particular, the variance E
[
W (t)2

]
= st grows linearly with time, as one expects from a Brownian motion.

Note that the Wiener process is not stationary in any sense.

Remark C.3. Beware that the variance of the white noise E[Y (tj)
2] = s/∆t scales inversely with ∆t and

becomes infinite in the continuous limit ∆t → 0. This means that we can’t assume Y (t) to be an ordinary
function in a differential equation and ordinary calculus becomes questionable because of the infinite variance.
It turns out that one should use a new calculus called stochastic calculus (https://en.wikipedia.org/w
iki/Stochastic_calculus) to deal with white noise. In our poor-man’s approach to random processes,
we just stick with discrete time and take the ∆t→ 0 limit when it looks safe to do so.

Side note. Mathematicians prefer to work with the Wiener process and not the white noise directly because they
hate the Dirac delta. In physics and engineering, the white noise is a more intuitive object as it models what we
observe in measurements.

C.9. Abstract measure theory*

Mathematicians often prefer to use abstract measure theory to study probability. While mostly unnecessary
for physicists, it is useful to learn at least the notation so that we can read their literature. The notation is also
quite elegant as we no longer need to write different expressions for discrete and continuous variables.

C.9.1. Lebesgue integral. Given a measure P on (Ω, F ), where Ω is an abstract sample space and F
is a σ-algebra of Ω (a set of subsets of Ω that satisfy certain properties to make mathematicians happy), the
Lebesgue integral of a function g : Ω → R is written asˆ

g(x)dP (x). (C.105)

Think of dP (x) as the amount of certain stuff in a tiny region of Ω around x, and
´

as a fancy way of writing a
sum over all the tiny regions that comprise Ω. If we’d like to integrate over a subset A ∈ F only, then we can
write ˆ

x∈A
g(x)dP (x) =

ˆ
[x ∈ A]g(x)dP (x), (C.106)

where

[statement] ≡

{
1, if the statement is true,
0, otherwise

(C.107)

is called the Iversen bracket. [x ∈ A] is also called the indicator function in measure theory.
If P is a probability measure, think of dP (x) as the probability that the outcome is in a tiny region around

x. The expectation of a random variable is given by

E(g) =
ˆ
g(x)dP (x), (C.108)

while the probability of an event A ∈ F can be written as

P [A] =

ˆ
x∈A

dP (x) =

ˆ
[x ∈ A]dP (x). (C.109)

If the sample space is countable, the Lebesgue integral gives

E(g) =
∑
x

g(x)P (x), P [A] =
∑
x∈A

P (x). (C.110)

If Ω ⊆ Rn, we use the conventional probability density f to write

E(g) =
ˆ
g(x)f(x)dnx, P [A] =

ˆ
x∈A

f(x)dnx. (C.111)

In other words, just replace dP (x) by P (x) and
´
x∈A by

∑
x∈A in the discrete case and replace dP (x) by

f(x)dnx in the continuous case.

https://en.wikipedia.org/wiki/Stochastic_calculus
https://en.wikipedia.org/wiki/Stochastic_calculus
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C.9.2. Lebesgue measure. The Lebesgue measure for Ω ⊆ Rn is simply a fancy name for a measure that
gives back our ordinary n-dimensional integral:ˆ

g(x)dP (x) =

ˆ
g(x)dnx. (C.112)

In other words, dP (x) = dnx for a Lebesgue measure is the volume of a tiny n-dimensional cube around x.

Remark C.4. The Lebesgue integral is a general concept for any measure P , whereas the Lebesgue measure is
a special type of measure that gives us back an ordinary integral. Both are named after Lebesgue but they are
different concepts.

C.9.3. Radon-Nikodym derivative. The Radon-Nikodym derivative generalizes the concept of the density
function. Let P and Q be two measures on the same (Ω, F ). The Radon-Nikodym derivative of P with respect
to Q, written as dP

dQ(x), is defined byˆ
g(x)dP (x) =

ˆ
g(x)

dP

dQ
(x)dQ(x) (C.113)

for any function g. In other words, it allows us to substitute an integral of g with respect to P with an integral
of gdP/dQ with respect to Q. The derivative exists if and only if

P (A) ̸= 0 implies Q(A) ̸= 0 ∀A ∈ F. (C.114)
We say that Q dominates P , written in brief as P ≪ Q, under this condition. People also say that P is
“absolutely continuous” with respect to Q.

dP/dQ is called a derivative mainly because the notation looks like one; its relations with all the other
derivatives in calculus are rather tenuous. We should think of it simply as a ratio dP (x)/dQ(x) between the
two amounts of stuffs in the same region around x. We need Q to dominate P for the ratio to be well defined
because we need dQ(x) ̸= 0 whenever dP (x) ̸= 0.

If P is a probability measure and Q is a standard measure for (Ω, F ), e.g., the Lebesgue measure, then
dP/dQ is called a probability density. If P and Q are both probability measures, dP/dQ often arises in
statistics, where it is called the likelihood ratio.

Examples:
(1) If Ω is countable, thenˆ

g(x)dP (x) =
∑
x

g(x)P (x) =
∑
x

g(x)
P (x)

Q(x)
Q(x),

dP

dQ
(x) =

P (x)

Q(x)
. (C.115)

We see in this case why we needQ to dominateP : we needP (x)/Q(x) <∞ for all x ∈ supportP ≡
{x ∈ Ω : P (x) > 0} so we need supportP ⊆ supportQ.

In particular, if Q is the counting measure such that Q(x) = 1 for all x, then P (x) is its own
Radon-Nikodym derivative.

(2) For Ω ⊆ Rn, the conventional probability density f(x) is the Radon-Nikodym derivative with respect
to the Lebesgue measure, and we write dQ(x) = dnx and dP (x) = f(x)dnx.

(3) If P ≪ Q ≪ σ, then dP/dQ is the ratio of the two Radon-Nikodym derivatives (dP/dσ)(x) and
(dQ/dσ)(x):

dP

dQ
(x) =

dP
dσ (x)
dQ
dσ (x)

. (C.116)

For example, if σ is the Lebesgue measure (dσ(x) = dnx) and dP/dσ = f and dQ/dσ = g, then
dP

dQ
(x) =

f(x)

g(x)
. (C.117)



APPENDIX D

Quantum Mechanics

D.1. Schrödinger picture

This chapter will assume a closed quantum system throughout, i.e., a collection of stuff that doesn’t interact
with anything else. The state of the system is modeled by a vector |ψ⟩ in a Hilbert space H (see Appendix B
for the math and notation). By convention, the norm of the vector should be equal to 1, viz.,√

⟨ψ|ψ⟩ = 1. (D.1)

The dynamics of the system is governed by a Hamiltonian operator Ĥ , which is Hermitian (Ĥ = Ĥ†). Then
we can define a unitary operator as

Û(t) ≡ exp
(
−iĤt

)
, (D.2)

where t ∈ R is the time variable and I’ve redefined the Hamiltonian Ĥ so that ℏ is absorbed into the new
definition and doesn’t appear in the formulas, for brevity. In the Schrödinger picture, the state evolves in time
and becomes

|ψ(t)⟩ = Û(t) |ψ⟩ (D.3)

after time t.

Exercise D.1. Prove that the quantum state remains normalized after any time t in the Schrödinger picture, viz.,
⟨ψ(t)|ψ(t)⟩ = 1 for any t.

Exercise D.2. Derive the Schrödinger equation
d |ψ(t)⟩
dt

= −iĤ |ψ(t)⟩ . (D.4)

D.2. Born’s rule

D.2.1. Simple measurement. The simplest kind of quantum measurement is modeled by an orthonormal
basis {|en⟩ : n = 1, . . . , N} of the Hilbert space H. The set of possible outcomes are denoted by n = 1, . . . , N ,
and the probability of observing a certain outcome n with this simple measurement at time t is assumed to be
given by

P (n) = | ⟨en|ψ(t)⟩ |2, (D.5)

where |ψ(t)⟩ is the quantum state at time t in the Schrödinger picture. This rule of assigning probabilities to a
quantum measurement is called Born’s rule. It gives an operational meaning to the quantum state |ψ(t)⟩.

D.2.2. von Neumann measurement. A Hermitian operator Â is often called an observable in quantum
mechanics. Any observable Â on a finite-dimensional Hilbert space can be expressed in the diagonal form

Â =
∑
n

λn |en⟩ ⟨en| , (D.6)

where each |en⟩ is an eigenvector of Âwith eigenvalue λn, all the eigenvalues are real (because Â is Hermitian),
and {|en⟩} is an orthonormal basis of the Hilbert space H. We say that a von Neumann measurement of the
observable Â is performed when the measurement outcome is a random variable with the set of all possible
outcomes given by the set of eigenvalues {λn}. If the eigenvalues are all different from one another (i.e.,

158
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nondegenerate), then the probability of observing a certain eigenvalue λn in a von Neumann measurement is
given by Born’s rule

P [A = λn] = | ⟨en|ψ(t)⟩ |2. (D.7)

If there may be multiple eigenvectors with the same eignvalue (degenerate eigenvalues), then we have to be
more careful: the probability of observing a given eigenvalue λ is

P [A = λ] =
∑

n:λn=λ

| ⟨en|ψ(t)⟩ |2, (D.8)

i.e., we need to sum all the probabilities for outcomes that give the same eigenvalue λn = λ.

Side note. In reality, a measurement is performed by a measurement apparatus (your eyes, a cat, a camera,
photodetectors, etc.), and the laws of quantum measurement don’t tell us what exactly counts as a measurement
apparatus, why we have a separate rule for the measurement apparatus, and why we don’t model it using
quantum mechanics as well. This ambiguity is called the measurement problem in quantum mechanics. There
are various interpretations of a quantum measurement but we won’t touch that topic—in quantum optics,
measurements are usually performed with photodetectors, and it’s quite clear that those are the measurement
devices that obey Born’s rule in principle.

Side note. In quantum optics, measurements are usually performed with photodetectors, which absorb the light
and convert it to energy excitations in the matter. Such measurements are called destructive. In this book, we
do not consider nondestructive measurements and what happens to the quantum state post-measurement.

Side note. Another thing to note is that the probability distribution of a measurement outcome in an experiment
is never exactly given by Born’s rule; there will always be extra noise due to technical imperfections, e.g.,
thermal noise in detectors and circuits. The “quantum noise” due to Born’s rule is often a tiny fraction of the
total noise in a device.

Exercise D.3. Prove that a measurement modeled by an orthonormal basis {|en⟩} satisfies the normalization
condition ∑

n

P (n) =
∑
n

|⟨en|ψ(t)⟩|2 = 1. (D.9)

Exercise D.4. Prove that the expected value of the measurement outcome for a von Neumann measurement of
Â is given by

⟨A⟩ ≡ ⟨ψ(t)| Â |ψ(t)⟩ . (D.10)

Prove that the variance of the measurement outcome is given by〈
∆A2

〉
≡ ⟨ψ(t)|

(
Â− ⟨A⟩

)2
|ψ(t)⟩ = ⟨ψ(t)| Â2 |ψ(t)⟩ −

[
⟨ψ(t)| Â |ψ(t)⟩

]2
. (D.11)

These are handy formulas in case we need the mean and variance only, not the full probability distribution.

D.2.3. Measurement of compatible observables. Suppose that two Hermitian operators Â and B̂ com-
mute, i.e., [

Â, B̂
]
= 0. (D.12)

We say that the two observables are compatible. Linear algebra says that there exists an orthonormal basis
{|en⟩} such that Â and B̂ can both be expressed in the diagonal form

Â =
∑
n

λn |en⟩ ⟨en| , B̂ =
∑
n

λ′n |en⟩ ⟨en| , (D.13)

using the same basis. {|en⟩} are eigenvectors of both Â and B̂, λn is the eigenvalue of Â associated with |en⟩,
while λ′n is the eigenvalue of B̂ associated with |en⟩. If we perform a simple measurement with respect to this
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basis, we can write a joint probability distribution as

P
[
A = λ and B = λ′

]
=

∑
n:λn=λ and λ′

n=λ′

| ⟨en|ψ(t)⟩ |2. (D.14)

Another way of saying this is that compatible observables can be measured simultaneously using one simple
measurement.

D.2.4. Continuous variables. For an infinite-dimensional Hilbert space, sometimes the diagonal form of
an observable is an integral

Â =

ˆ ∞

−∞
λ |A = λ⟩ ⟨A = λ| dλ, (D.15)

where {|A = λ⟩ : λ ∈ R} are the orthonormal eigenvectors of Â in the sense of

Â |A = λ⟩ = λ |A = λ⟩ ,
〈
A = λ

∣∣A = λ′
〉
= δ(λ− λ′), (D.16)

as introduced by Dirac. The completeness condition for {|A = λ⟩} can now be expressed as

Î =

ˆ ∞

−∞
|A = λ⟩ ⟨A = λ| dλ. (D.17)

The outcome of a von Neumann measurement of Â is then a continuous random variable, the set of all possible
outcomes is R, and the probability density is

fA(λ) = |⟨A = λ|ψ(t)⟩|2, (D.18)

which is a variation of Born’s rule. Remember the definition of a probability density: fA(λ)dλ is the probability
of observing the outcome within the infinitesimal interval [λ, λ+ dλ).

Definition D.1. For brevity, I call the distribution P [A = λ] or fA(λ) that arises from a von Neumann
measurement of Â the probability distribution of Â.

Exercise D.5. Prove the normalization conditionˆ ∞

−∞
fA(λ)dλ = 1 (D.19)

if fA(λ) is given by Eq. (D.18).

Exercise D.6. Let Â be an observable and its orthonormal eigenstates be {|A = λ⟩ : λ ∈ R}, so that

Â |A = λ⟩ = λ |A = λ⟩ ,
〈
A = λ

∣∣A = λ′
〉
= δ(λ− λ′),

ˆ ∞

−∞
|A = λ⟩ ⟨A = λ| dλ = Î . (D.20)

Define another observable B̂ in terms of Â as
B̂ ≡ aÂ+ b, (D.21)

where a is a nonzero real c-number and b is a real c-number.
(1) Find the orthonormal eigenstates {|B = u⟩ : u ∈ R} of B̂ in terms of |A = λ⟩ so that they also satisfy

B̂ |B = u⟩ = u |B = u⟩ ,
〈
B = u

∣∣B = u′
〉
= δ(u− u′),

ˆ ∞

−∞
|B = u⟩ ⟨B = u| du = Î . (D.22)

Answer:

|B = u⟩ = eiθ√
|a|

∣∣∣∣A =
u− b

a

〉
, (D.23)

where θ can be any real number; harmless to set θ = 0.
(2) If the probability density of Â is fA(λ), find the probability density fB(u) of B̂ in terms of fA.

Answer:

fB(u) =
1

|a|
fA

(
u− b

a

)
. (D.24)

The 1/|a| factor in front is needed so that fB remains normalized as
´∞
−∞ fB(u)du = 1.
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D.3. Heisenberg picture

Consider a simple measurement with respect to an orthonormal basis {|en⟩ : n = 1, . . . , N}. In the
Schrödinger picture, the probability of each outcome n is

P (n) = |⟨en|ψ(t)⟩|2 =
∣∣∣⟨en| Û(t) |ψ⟩

∣∣∣2 = ⟨ψ| Û †(t) |en⟩ ⟨en| Û(t) |ψ⟩ . (D.25)

We can also compute this probability using the Heisenberg picture instead. Define

Ân ≡ |en⟩ ⟨en| . (D.26)

Then the Heisenberg picture of Ân at time t is

Ân(t) ≡ Û †(t)ÂnÛ(t) = Û †(t) |en⟩ ⟨en| Û(t). (D.27)
It follows that the probability of observing n is

P (n) = ⟨ψ| Û †(t) |en⟩ ⟨en| Û(t) |ψ⟩ = ⟨ψ| Ân(t) |ψ⟩ . (D.28)

The Heisenberg picture is convenient if Ân(t) is easier to compute than |ψ(t)⟩.

Exercise D.7. Given an operator Â, the Heisenberg picture of Â is defined as

Â(t) ≡ Û †(t)ÂÛ(t), (D.29)

where Û(t) is given by Eq. (D.2). Show that it obeys the Heisenberg equation of motion

dÂ(t)

dt
= −i

[
Â(t), Ĥ

]
. (D.30)

Exercise D.8. Following Exercise D.4, show that the expected value and variance of the outcome for a von
Neumann measurement of Â are given by

⟨A⟩ = ⟨ψ| Â(t) |ψ⟩ ,
〈
∆A2

〉
= ⟨ψ| [Â(t)]2 |ψ⟩ −

[
⟨ψ| Â(t) |ψ⟩

]2
, (D.31)

where Â(t) is the Heisenberg picture of Â at time t.

D.4. Interaction picture

Suppose that the Hamiltonian is the sum of two terms:

Ĥ = Ĥeasy + η̂. (D.32)

It is often the case that the dynamics governed by Ĥeasy is simple to solve. For example, we often assume
that Ĥeasy is the Hamiltonian of free EM fields and free matter, while η̂ is the Hamiltonian that models their
interaction. Let

Ûeasy(t) ≡ exp
(
−iĤeasyt

)
, (D.33)

which is the unitary with respect to Ĥeasy alone. The central identity of the interaction picture is

ÛI(t) ≡ Û †
easy(t)Û(t) = T exp

[
−i
ˆ t

0
η̂easy(τ)dτ

]
, (D.34)

η̂easy(τ) ≡ Û †
easy(τ)η̂Ûeasy(τ), (D.35)

where T exp is called the time-ordered exponential (https://en.wikipedia.org/wiki/Ordered_expone
ntial), defined as

T exp

[
−i
ˆ t

0
η̂easy(τ)dτ

]
≡ lim

∆t→0
exp
[
−iη̂easy(t)∆t

]
exp
[
−iη̂easy(t−∆t)∆t

]
. . . exp

[
−iη̂easy(2∆t)∆t

]
exp
[
−iη̂easy(∆t)∆t

]
,

(D.36)

https://en.wikipedia.org/wiki/Ordered_exponential
https://en.wikipedia.org/wiki/Ordered_exponential
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and η̂easy(τ) is called the interaction picture of η̂ (which is the Heisenberg picture of η̂ using Ûeasy). Now the
expected value of any observable Â can be expressed as

⟨ψ(t)| Â |ψ(t)⟩ = ⟨ψ| Û †(t)ÂÛ(t) |ψ⟩ = ⟨ψ| Û †(t)Ûeasy(t)Û
†
easy(t)ÂÛeasy(t)Û

†
easy(t)Û(t) |ψ⟩ (D.37)

= ⟨ψ| Û †
I (t)Âeasy(t)ÛI(t) |ψ⟩ , (D.38)

where

Âeasy(t) ≡ Û †
easy(t)ÂÛeasy(t). (D.39)

The main reason we use the interaction picture is that the interaction-picture operator Û †
easy(. . . )Ûeasy is often

simple to compute, so η̂easy(t), ÛI(t), and Âeasy(t) are often easier to compute.

D.4.1. Derivation of Eq. (D.34). Assume the more general case where Ĥeasy(t) and η̂(t) are time-
dependent and write each unitary as a product of exponentials with tiny time step ∆t:

Û(t) ≡ T exp

{
−i
ˆ t

0
[Ĥeasy(τ) + η̂(τ)]dτ

}
(D.40)

≈ exp[−iη̂(t)∆t] exp
[
−iĤeasy(t)∆t

]
exp[−iη̂(t−∆t)∆t] exp

[
−iĤeasy(t−∆t)∆t

]
. . . exp[−iη̂(2∆t)∆t] exp

[
−iĤeasy(2∆t)∆t

]
exp[−iη̂(∆t)∆t] exp

[
−iĤeasy(∆t)∆t

]
, (D.41)

Ûeasy(t) ≡ T exp

{
−i
ˆ t

0
Ĥeasy(τ)dτ

}
(D.42)

≈ exp
[
−iĤeasy(t)∆t

]
exp
[
−iĤeasy(t−∆t)∆t

]
. . . exp

[
−iĤeasy(2∆t)∆t

]
exp
[
−iĤeasy(∆t)∆t

]
.

(D.43)

Now the trick is to use Eq. (D.43) to write

exp
[
−iĤeasy(τ)∆t

]
= Ûeasy(τ)Û

†
easy(τ −∆t), (D.44)

and then substitute this into Eq. (D.41), so that

Û †
easy(t)Û(t) ≈ Û †

easy(t) exp[−iη̂(t)∆t]Ûeasy(t)︸ ︷︷ ︸
exp[−iη̂easy(t)∆t]

Û †
easy(t−∆t) exp[−iη̂(t−∆t)∆t]Ûeasy(t−∆t)︸ ︷︷ ︸

exp[−iη̂easy(t−∆t)∆t]

Û †
easy(t− 2∆t)

. . . Ûeasy(2∆t)Û
†
easy(∆t) exp[−iη̂(∆t)∆t]Ûeasy(∆t) (D.45)

= exp
[
−iη̂easy(t)∆t

]
exp
[
−iη̂easy(t−∆t)∆t

]
. . . exp

[
−iη̂easy(∆t)∆t

]
(D.46)

→ T exp

[
−i
ˆ t

0
η̂easy(τ)dτ

]
. (D.47)

D.5. Rotating-wave approximation

When using the interaction picture, we often encounter terms that oscillate in time as exp(−iωt):
η̂easy(t) = · · ·+ (. . . ) exp(−iωt) + . . . (D.48)

where ω is a positive or negative number. In the so-called rotating-wave approximation, we throw away such
terms and keep only terms that remain constant in time. To see the rationale, consider the first-order perturbation
of the interaction-picture unitary ÛI(t) given by Eq. (D.34):

ÛI(t) ≈ Î − i

ˆ t

0
η̂easy(τ)dτ. (D.49)

The first-order term is an integral of η̂easy(τ) in time, and the integral of the oscillating term becomes

ˆ t

0
η̂easy(τ)dτ =

ˆ t

0
(. . . ) exp(−iωτ)dτ ∝


t, ω = 0,

e−iωt/2 sin(ωt/2)

ω/2
, ω ̸= 0.

(D.50)
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If ω = 0, the term grows with time t after the integration, but if ω ̸= 0, the term oscillates with t and is inversely
proportional to ω. To put it another way, exp(−iωτ) = cos(ωτ) − i sin(ωτ) consists of a cosine and a sine,
which go positive and negative. In an integral over τ , the positive parts would cancel the negative parts, leaving
only a small value. If ω = 0, on the other hand, the integral can grow with t.

The argument is admittedly heuristic, but the approximation is very popular and useful. It can sometimes
be checked by comparing results from the full model with those obtained using the approximation (although the
approximation wouldn’t be useful if the full model could be solved.)

D.6. Density operator

Very often we don’t know which state a quantum system is in exactly. We may instead have a set of possible
states

{|ψ1⟩ , |ψ2⟩ , . . . , |ψM ⟩}. (D.51)

Suppose also that we know each state |ψm⟩ would occur with probability pm. To model the state of the system
on average, we use the density operator

ρ̂ =

M∑
m=1

pm |ψm⟩ ⟨ψm| . (D.52)

Obviously we must have
M∑

m=1

pm = 1, (D.53)

so that {pm} is a probability distribution. Note that the number of possible states M here has no relation with
the dimension of the Hilbert space (M can be any number from 1 to ∞), and the set of possible states need not
be orthogonal, although we still require each possible state |ψm⟩ to be normalized, that is,

⟨ψm|ψm⟩ = 1. (D.54)

ρ̂ is convenient because the expected value of any operator Â can now be written as

⟨A⟩ =
∑
m

⟨ψm| Û †(t)ÂÛ(t) |ψm⟩ pm = tr
[
ÂÛ(t)ρ̂Û †(t)

]
. (D.55)

Instead of evolving each |ψm⟩ using Û(t), we can simply compute the Schrödinger-picture density operator
using one formula

ρ̂(t) = Û(t)ρ̂Û †(t). (D.56)

When pm = δml is a Kronecker delta, the quantum system is definitely in state |ψl⟩. Then we say that the state
in terms of the density operator ρ̂ = |ψl⟩ ⟨ψl| is pure; otherwise we say that the state is mixed.

More generally, we may assume that the quantum state |ψX⟩ depends on a classical random variable X .
The density operator is then the expected value of |ψX⟩ ⟨ψX |, written as

ρ̂ = E (|ψX⟩ ⟨ψX |). (D.57)

For example, if the sample space Ω of the random variable is discrete and the probability mass function of X is
PX(x), then the density operator is written as

ρ̂ =
∑
x∈Ω

PX(x) |ψx⟩ ⟨ψx| . (D.58)

If the sample space Ω is Rn and the probability density function is fX(x), then the density operator is written
as

ρ̂ =

ˆ
fX(x) |ψx⟩ ⟨ψx| dnx. (D.59)

Note that this randomness about the quantum state is not the same as the randomness in a measurement
outcome. A state is mixed because of technical imperfections, e.g., it depends on a classical random variable.
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The randomness due to Born’s rule, on the other hand, is fundamental: even if the state is pure, the measurement
outcome is random (except in very special cases).

One thing to note is that, given a density operator ρ̂, we usually can’t tell the set of pure states {|ψm⟩} and
the probability distribution {pm} that give rise to the ρ̂. In other words, there may be another set of pure states
{|ϕl⟩} and another probability distribution {p′l} that give the same ρ̂:

ρ̂ =
∑
m

pm |ψm⟩ ⟨ψm| =
∑
l

p′l |ϕl⟩ ⟨ϕl| . (D.60)

Since ρ̂ is a Hermitian and positive-semidefinite operator, we can always write it in the diagonal form

ρ̂ =
∑
n

λn |en⟩ ⟨en| , (D.61)

where each |en⟩ is an eigenvector of ρ̂ with eigenvalue λn. The eigenvalues, all nonnegative and summing to
1, can be regarded as a probability distribution, but that’s just one way of writing ρ̂ as a mixture of pure states,
there may be many other ways.

Exercise D.9. Prove that ρ̂ is Hermitian and positive-semidefinite. Prove that tr ρ̂ = 1.

Exercise D.10. If ρ̂ is pure, prove that only one of its eigenvalues is nonzero. Find this eigenvalue.

Exercise D.11. Derive the Schrödinger equation for a density operator
dρ̂(t)

dt
= −i

[
Ĥ, ρ̂(t)

]
. (D.62)

Exercise D.12. Following Exercise D.4, prove that the expected value of a measurement outcome is given by

⟨A⟩ = tr
[
Âρ̂(t)

]
, (D.63)

and the variance is given by〈
∆A2

〉
= tr

[(
Â− ⟨A⟩

)2
ρ̂(t)

]
= tr

[
Â2ρ̂(t)

]
−
{
tr
[
Âρ̂(t)

]}2
. (D.64)



APPENDIX E

Quantization of EM Fields: Details*

Consider the classical Maxwell equations:

∇ ·E =
ρ

ϵ0
, ∇ ·B = 0,

∂B

∂t
= −∇×E, ∂E

∂t
= c2∇×B − 1

ϵ0
J . (E.1)

Our goal is to convert these equations to Heisenberg equations of motion in the form of

dÔ(t)

dt
= − i

ℏ

[
Ô(t), Ĥ

]
(E.2)

by converting E,B, ρ, and J to operators.

E.1. Helmholtz decomposition

The equations will look simpler if we perform the Fourier transform of each field. Define the Fourier
transform of a vector field F (r) as

F(k) ≡ 1

(2π)3/2

˚
F (r) exp(−ik · r)d3r. (E.3)

The inverse Fourier transform is given by

F (r) =
1

(2π)3/2

˚
F(k) exp(ik · r)d3k. (E.4)

We use the symbol F (r) → F(k) to denote the Fourier transform. For a given k in k space, any vector field
F(k) is a vector that can be decomposed as

F(k) = ẽk,1F1(k) + ẽk,2F2(k) + ẽk,3F3(k), Fs(k) ≡ ẽ∗k,s ·F(k), (E.5)
in terms of three orthonormal vectors ẽk,1, ẽk,2, ẽk,3 that satisfy

ẽ∗k,s · ẽk,s′ = δss′ . (E.6)
It will be convenient to assume

ẽk,3 =
k

k
, k ≡ |k|, (E.7)

so the third unit vector ẽk,3 is in the direction of the wavevector k, while ẽk,1 and ẽk,2 are unit vectors that are
orthogonal to k and to each other. Define

F∥(k) ≡ ẽk,3F3(k), (E.8)
F⊥(k) ≡ ẽk,1F1(k) + ẽk,2F2(k) = F(k)−F∥(k). (E.9)

In other words, F∥(k) is the component of the vector field that is parallel to k, while F⊥(k) is the component
that is orthogonal to k. F∥ is called a longitudinal field, F⊥ a transverse field, and

F(k) = F⊥(k) +F∥(k) (E.10)
the Helmholtz decomposition. We can transform these k-space vector fields back to the real space to write the
decomposition as

F (r) = F⊥(r) + F ∥(r), (E.11)

where F⊥(r) and F ∥(r) are the inverse Fourier transforms of F⊥(k) and F∥(k), respectively.
F (r) is real if and only if

F(k) = F∗(−k). (E.12)

165



E.2. MAXWELL’S EQUATIONS WITH HELMHOLTZ DECOMPOSITION 166

If F (r) is real, then F ∥(r) is also real, since

F∥(k) = ẽk,3
[
ẽ∗k,3 ·F(k)

]
=
k

|k|

[
k

|k|
·F(k)

]
= F∗

∥(−k). (E.13)

It follows that F⊥(r) = F (r)− F ∥(r) is also real.
The transverse and longitudinal fields obey the properties

k ·F⊥ = 0, k ×F∥ = 0, (E.14)
k ·F = k · (F∥ +F⊥) = k ·F∥ = kF3, k ×F = k × (F∥ +F⊥) = k ×F⊥. (E.15)

In particular, k ×F = k ×F⊥ is orthogonal to k.
Given another vector field G(k) = G⊥(k) + G∥(k), we have

F∗
⊥ · G∥ = 0, F∗ · G = F∗

⊥ · G⊥ +F∗
∥ · G∥, (E.16)

and Parseval’s theorem gives ˚
F ∗(r) ·G(r)d3r =

˚
F∗(k) · G(k)d3k. (E.17)

E.2. Maxwell’s equations with Helmholtz decomposition

Let

E(r, t) → E(k, t), B(r, t) → B(k, t), ρ(r, t) → ϱ(k, t), J(r, t) → J (k, t). (E.18)

Maxwell’s equations in k space become

ik · E =
ϱ

ϵ0
, ik ·B = 0,

∂B
∂t

= −ik × E, ∂E
∂t

= ic2k ×B − 1

ϵ0
J . (E.19)

Applying the Helmholtz decomposition to all the fields, the equations become

ik · E∥ = ikE3 =
ϱ

ϵ0
, ik ·B = ikB3 = 0, (E.20)

∂B⊥
∂t

= −ik × E⊥,
∂E⊥
∂t

= ic2k ×B⊥ − 1

ϵ0
J ⊥, (E.21)

∂E∥

∂t
= − 1

ϵ0
J ∥. (E.22)

Notice the following:
(1) We will ignore the k = 0 case and assume k ̸= 0 and thus k ̸= 0.
(2) Gauss’s law for magnetism implies that B3 = 0, B∥ = ẽk,3B3 = 0, so the magnetic field only has the

transverse component

B = B⊥. (E.23)

(3) The longitudinal component E∥ = ẽk,3E3 of the electric field is determined by the charge density
through the equation

E3(k, t) =
ϱ(k, t)

ikϵ0
, (E.24)

which shows that E3(k, t) is not a separate degree of freedom, because its value is slaved at all
times to ϱ(k, t) that is determined by the matter. Contrast Eq. (E.24) with a differential equation
∂O(t)/∂t = . . . , which allows an arbitrary initial condition O(t = 0) for the variable. In particular,
if ϱ(k, t) = 0, then E3 = 0, and the longitudinal electric field cannot survive without a charge density.

(4) Eq. (E.24) already tells us E3(k, t), so Eq. (E.22) seems a bit redundant. To see the physical meaning
of Eq. (E.22), combine it with Eq. (E.24) to write an equation in terms of matter variables ϱ and J
only:
∂E3
∂t

=
1

ikϵ0

∂ϱ

∂t
= − 1

ϵ0
J3,

∂ϱ

∂t
+ ikJ3 = 0,

∂ϱ

∂t
+ ik ·J = 0. (E.25)
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This is simply the k-space version of the charge continuity equation

∂ρ

∂t
+∇ · J = 0, (E.26)

so Eq. (E.22) is in fact a statement about charge conservation.

E.3. Normal variables for transverse fields

Only the transverse components of the EM fields E⊥ and B⊥ can survive when there is no source, so they
are also called free fields. Their equations of motion are given by

∂B⊥
∂t

= −ik × E⊥,
∂E⊥
∂t

= ic2k ×B⊥ − 1

ϵ0
J ⊥. (E.27)

To make them look more like Heisenberg equations of motion, we introduce the scalar potential ϕ(r, t) and the
vector potentialA(r, t), which obey

E = −∇ϕ− ∂A

∂t
, B = ∇×A. (E.28)

Going to the k space with

ϕ(r, t) → φ(k, t), A(r, t) → A(k, t), (E.29)

and decomposing the vector potential as A = A∥ +A⊥, we obtain

E∥ = −ikφ−
∂A∥

∂t
, E⊥ = −∂A⊥

∂t
, B = B⊥ = ik ×A⊥. (E.30)

Eqs. (E.27) are then equivalent to

∂A⊥
∂t

= −E⊥, −∂E⊥
∂t

= −c2k2A⊥ +
1

ϵ0
J ⊥. (E.31)

Recall that each transverse component F⊥ = F1ẽk,1 + F2ẽk,2 of a vector field has two components in two
directions. Eqs. (E.31) can then be rewritten as

∂As

∂t
= −Es, −∂Es

∂t
= −c2k2As +

1

ϵ0
Js, s = 1, 2. (E.32)

For each j ≡ (k, s), As(k, t) behaves like a position variable of a harmonic oscillator, −Es(k, t) behaves like a
momentum variable, and Js(k, t) behaves like a force, except that they are all complex. Despite the complexity,
we can turn them into an equation of motion for a harmonic oscillator by defining a complex normal variable

αs(k, t) ≡ C
[
ω1/2As(k, t)− iω−1/2Es(k, t)

]
, ω ≡ ck, (E.33)

where C is a real constant, so that

∂αs

∂t
= −iωαs +

iC

ϵ0
√
ω
Js, s = 1, 2. (E.34)

This differential equation shows that each mode labeled by (k, s) is a separate degree of freedom—free in the
sense that it allows an arbitrary initial condition αs(k, 0) for each (k, s).

The normal variables fully model the dynamics of the transverse fields, since we can write A⊥ and E⊥ as
functions of the normal variables. To do so, recall that, sinceA and E in real space are real, A⊥ and E⊥ obey
the property

A⊥(k, t) = A∗
⊥(−k, t) =

∑
s

A∗
s(−k, t)ẽ∗−k,s, E⊥(k, t) = E∗

⊥(−k, t) =
∑
s

E∗
s (−k, t)ẽ∗−k,s. (E.35)
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Now consider∑
s

αs(k, t)ẽk,s = C
[
ω1/2A⊥(k, t)− iω−1/2E⊥(k, t)

]
, (E.36)∑

s

α∗
s(−k, t)ẽ∗−k,s = C

[
ω1/2A∗

⊥(−k, t) + iω−1/2E∗
⊥(−k, t)

]
= C

[
ω1/2A⊥(k, t) + iω−1/2E⊥(k, t)

]
.

(E.37)

The two equations can be combined to give

A⊥(k, t) =
1

2Cω1/2

∑
s

[
αs(k, t)ẽk,s + α∗

s(−k, t)ẽ∗−k,s

]
, (E.38)

E⊥(k, t) =
ω1/2

2C

∑
s

[
iαs(k, t)ẽk,s − iα∗

s(−k, t)ẽ∗−k,s

]
. (E.39)

These fields can be transformed back to real space to give

A⊥(r, t) =
1

(2π)3/22C

2∑
s=1

˚
ω−1/2[αs(k, t)ẽk,s exp(ik · r) + c.c.]d3k, (E.40)

E⊥(r, t) =
1

(2π)3/22C

2∑
s=1

˚
ω1/2[iαs(k, t)ẽk,s exp(ik · r) + c.c.]d3k. (E.41)

These expressions are consistent with the classical model in Chapter 2 if we take the L→ ∞ limit.

E.4. Gauge invariance of A⊥

Recall that, given any scalar field γ(r, t), a gauge change given by

ϕ′ = ϕ− ∂γ

∂t
, A′ = A+∇γ (E.42)

has no effect on the E andB fields:

E = −∇ϕ′ − ∂A′

∂t
, B = ∇×A′. (E.43)

In k space, let γ(r, t) → Γ(k, t). Since ∇γ → ikΓ, which is parallel to k, any gauge change has no effect on
the transverse component A⊥:

φ′ = φ− ∂Γ

∂t
, A′

∥ = A∥ + ikΓ, A′
⊥ = A⊥. (E.44)

Hence, there is no need to worry about gauge ambiguity when we deal with A⊥; it is unique given E andB.

E.5. Canonical quantization of the transverse fields

Consider a fixed time t = 0. The total EM energy is given by

H =
1

2

˚ (
ϵ0E ·E +

1

µ0
B ·B

)
d3r (E.45)

=
1

2

˚ (
ϵ0E∗ · E +

1

µ0
B∗ ·B

)
d3k (Parseval) (E.46)

=
1

2

˚ (
ϵ0E∗

∥ · E∥ + ϵ0E∗
⊥ · E⊥ +

1

µ0
B∗

⊥ ·B⊥

)
d3k (Helmholtz) (E.47)

=
ϵ0
2

˚ (
E∗
∥ · E∥ + E∗

⊥ · E⊥ + c2k2A∗
⊥ ·A⊥

)
d3k. (B⊥ = ik ×A⊥,A⊥ ⊥ k) (E.48)
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Define

H = H∥ +H⊥, (E.49)

H∥ ≡
ϵ0
2

˚
E∗
∥ · E∥d

3k, (E.50)

H⊥ ≡ ϵ0
2

˚ (
E∗
⊥ · E⊥ + c2k2A∗

⊥ ·A⊥
)
d3k =

˚
ϵ0ω

2C2

2∑
s=1

|αs(k)|2d3k, (E.51)

where H⊥ is the energy of the free transverse fields. We defer the quantization of H∥ in terms of E∥ to Sec. E.6
later and quantize the transverse EM fields here by setting

ϵ0ω

2C2
= ℏω, C =

√
ϵ0
2ℏ

(E.52)

and replacing αs(k) with âs(k) on some Hilbert space H⊥. Assume the commutation relation[
âs(k), â

†
s′(k

′)
]
= δss′δ

3(k − k′). (E.53)

Then

Ĥ⊥ =

˚
ℏω

2∑
s=1

â†s(k)âs(k)d
3k, (E.54)

and the operators for the transverse vector potential and the transverse electric field at t = 0 can be defined as

Â⊥(k) ≡
√

ℏ
2ϵ0ω

2∑
s=1

[
âs(k)ẽk,s + â†s(−k)ẽ∗−k,s

]
, (E.55)

Ê⊥(k) ≡
√

ℏω
2ϵ0

2∑
s=1

[
iâs(k)ẽk,s − iâ†s(−k)ẽ∗−k,s

]
, (E.56)

which are consistent with Eqs. (E.38) and (E.39) at t = 0. The Heisenberg equations of motion for Â⊥(k, t)

and Ê⊥(k, t) can be derived from

âs(k, t) = âs(k) exp(−iωt). (E.57)

In real space,

Â⊥(r, t) ≡
1

(2π)3/2

˚
Â⊥(k, t) exp(ik · r)d3k (E.58)

=
1

(2π)3/2

2∑
s=1

˚ √
ℏ

2ϵ0ω

[
âs(k, t)ẽk,se

ik·r + H.c.
]
d3k, (E.59)

Ê⊥(r, t) ≡
1

(2π)3/2

˚
Ê⊥(k, t) exp(ik · r)d3k (E.60)

=
1

(2π)3/2

2∑
s=1

˚ √
ℏω
2ϵ0

[
iâs(k, t)ẽk,se

ik·r + H.c.
]
d3k, (E.61)

which are consistent with Eqs. (E.40) and (E.41) as well as the classical and quantum models in Chapters 2 and
3 for free EM fields, where ĤEM = Ĥ⊥ is assumed.
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E.6. Quantization of the longitudinal electric field

The quantization ofH∥ in terms of the longitudinal E∥ = ẽk,3E3 is quite different. When there is no matter,
E3 = 0, and there is no need to quantize it. When there is matter, we should introduce a new Hilbert spaceHmatter
and additional terms to the Hamiltonian that model the matter dynamics and the light-matter interaction. In that
case, the simplest way of quantizing E3 is to follow Eq. (E.24) and assume that the longitudinal component at
t = 0 is equal to

Ê3(k) =
ϱ̂(k)

ikϵ0
, (E.62)

where ϱ̂(k) is the charge-density operator on Hmatter. The Heisenberg picture

Ê3(k, t) =
ϱ̂(k, t)

ikϵ0
(E.63)

is then consistent with the classical Eq. (E.24). This model means that we do not need to introduce any new
degree of freedom for the longitudinal electric field, and it suffices to stick to the Hilbert spaces H⊥ for the
transverse fields and Hmatter for the matter. Ê3(k) is an operator on Hmatter, and the quantized Ĥ∥ is also an
operator on Hmatter:

Ĥ∥ =
ϵ0
2

˚
Ê†
3(k)Ê3(k)d

3k =
1

2ϵ0

˚
1

k2
ϱ̂†(k)ϱ̂(k)d3k. (E.64)

E.7. Current source

Let Ĥmatter be the matter Hamiltonian on a matter Hilbert space Hmatter and let the interaction Hamiltonian
be

η̂ = −
˚

Â⊥(r) · Ĵ(r)d3r = −
˚

Â†
⊥(k) · Ĵ (k)d3k, (E.65)

where Ĵ(r) is a current-density operator on Hmatter. Ĥ∥ is assumed to be part of Ĥmatter. The Heisenberg
equation of motion for âs(k, t) under the Hamiltonian Ĥmatter + Ĥ⊥ + η̂ becomes

dâs(k, t)

dt
= −iωâs(k, t) + i

1√
2ϵ0ℏω

Ĵs(k, t), (E.66)

which is consistent with the classical Eq. (E.34).
To model the current as classical, as discussed in Sec. 5.2, we go to the interaction picture with Ĥeasy =

Ĥmatter + Ĥ⊥, leading to

η̂easy(t) = −
˚

Â⊥(r, t) · Ĵ(r, t)d3r. (E.67)

Then we approximate Ĵ(r, t) by a c-number function J(r, t).
Do note that the model here is just one possible model of light-matter interaction. Although it serves our

purpose in this book, there are many other models that differ in nontrivial ways [42]. For example, when light
is coupled to atoms or charged particles in the nonrelativistic limit, the interaction Hamiltonian is a bit more
complicated.

E.8. Coulomb gauge

So far we have completely avoided the quantization of φ and A∥, which may appear in the classical
Hamiltonian when there is matter. The simplest way is to assume the Coulomb gauge

∇ ·A = 0, (E.68)
which is equivalent to

A∥ = 0, A = A⊥. (E.69)
The longitudinal electric field becomes

E∥ = −ikφ, E3 = −ikφ, φ = − 1

ik
E3 =

ϱ

k2ϵ0
. (E.70)
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Then there is no need to quantize A∥ and we just treat φ̂ as a function of ϱ̂ if needed (i.e., φ̂(k) = ϱ̂(k)/(k2ϵ0)
is an operator on Hmatter). The quantized vector potential becomes

Â(r, t) = Â⊥(r, t), (E.71)

meaning that we can omit the ⊥.
The gauge issue is both deep and fundamental in quantum field theory, although it is outside the scope of

this book to discuss it. It suffices to point out that the “canonical” Coulomb-gauge treatment here turns out to be
equivalent to other treatments that assume other gauges and fully compatible with special relativity [42], even
though the quantum formalism treats time differently and its Lorentz invariance is not obvious.



APPENDIX F

EM Fields in Matter*

Matter responds to EM fields by creating a bound charge density ρb(r, t) and a bound current density
J b(r, t). We model the effect of the bound charges on the EM fields by assuming a polarization field P (r, t)
that obeys

∇ · P = −ρb,
∂P

∂t
= J b. (F.1)

Magnetization is negligible at optical frequencies. With these assumptions, (ρb,J b) obey the continuity equation
∂ρb
∂t

+∇ · J b = 0, (F.2)

as expected. Assuming that there is no extra charge or current other than the bound quantities, Gauss’ law
becomes

∇ ·E =
ρb
ϵ0

= − 1

ϵ0
∇ · P , ∇ ·D = 0, (F.3)

where

D ≡ ϵ0E + P (F.4)

is called the displacement field. The modified Ampere’s law becomes

∇×B = µ0J b + µ0ϵ0
∂E

∂t
= µ0

∂P

∂t
+ µ0ϵ0

∂E

∂t
= µ0

∂D

∂t
. (F.5)

Remark F.1. Do not confuse the polarization field with the polarization of a wave; they are completely different
things. Unfortunately both terms are standard.

We can study how the electric field responds to a given P by looking at the equation

−∇× (∇×E)− 1

c2
∂2E

∂t2
= µ0

∂2P

∂t2
. (F.6)

To fully solve for the EM fields, we also need a model of how P responds to the EM fields by studying the
dynamics of the matter.

A material is called dielectric when P is a function of E only. The simplest model is

P (r, t) = ϵ0χ
(1)E(r, t), (F.7)

so the polarization field is assumed to respond instantly and locally to the electric field, that is, P (r, t) at each
position r and time t depends only on the electric field at that particular position and time. Moreover, P here
is assumed to be linear with respect to E, and we call this a linear dielectric model. As a result of Eq. (F.7),
D = ϵ0(1 + χ(1))E, ∇ ·E = 0, and we arrive at the wave equation

∇2E − 1

c2
∂2E

∂t2
=
χ(1)

c2
∂E

∂t
. (F.8)

This is a wave equation with speed c/n if we assume the refractive index

n =

√
1 + χ(1). (F.9)

The net effect is that the wave travels at a different speed c/n in a dielectric, but it is important to keep in mind
the underlying mechanism: the EM fields interact with the matter through the polarization field, and the matter
is an important participant of the wave dynamics.
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To model loss, we assume that the matter consists of damped oscillators. The easiest way is to change
Eq. (F.7) to

P (r, t) = ϵ0

ˆ ∞

−∞
χ(1)(t− t′)E(r, t′)dt′, (F.10)

where χ(1) is a Green’s function (also called an impulse-response function) that relates the electric field to the
polarization field. Causality implies that

χ(1)(t− t′) = 0, t′ > t, (F.11)

so that P (r, t) depends only on the past values of the electric field {E(r, t′) : t′ ≤ t} before time t. It’s easier
to study this relation in the frequency domain

P̃ (r, ω) ≡ 1√
2π

ˆ ∞

−∞
P (r, t)eiωtdt = ϵ0χ̃

(1)(ω)Ẽ(r, ω), (F.12)

and then study χ̃(1)(ω) only within the frequency range of interest. A nonzero imaginary part of χ̃(1)(ω) would
correspond to loss or gain. The easiest way to see this is to consider the average power per unit volume lost by
the EM field to the matter for a sinusoidal plane wave (the overline denotes averaging over a long time):

Power
Volume

= J b ·E =
∂P

∂t
·E ∝

[
(−iω)χ̃(1)(ω)αe−iωt + c.c.

]
(αe−iωt + c.c.) (F.13)

= −iωχ̃(1)(ω)|α|2 + c.c. ∝ Im χ̃(1)(ω). (F.14)



APPENDIX G

Open Quantum Systems*

An open system refers to a system that interacts with an environment. The hope of open system theory is
that, since we care more about the system and less about the environment, our model can be simplified if we
study only the effect of the environment on the system of interest.

The subject is huge and this chapter provides only a quick summary; more specialized textbooks, such as
Refs. [43, 21, 19, 44, 45, 46, 47], should be consulted for details.

We stick to the Schrödinger picture in this chapter. It is not impossible to use the Heisenberg picture for
open quantum systems [48] but the Schrödinger picture is much more popular.

G.1. Density operator

We have introduced the density operator earlier in Sec. D.6 in terms of an average quantum state. Another
way of arriving at a density operator is to consider a larger Hilbert space H⊗HB , where H models the degrees
of freedom of a system and HB models those of the environment. The environment is also called a bath, a
reservoir, or an ancilla (fancy word for an aid), depending on the context. Assume that the system and the
environment are in a pure state |Ψ⟩ ∈ H⊗HB in the larger Hilbert space, normalized as ⟨Ψ|Ψ⟩ = 1. Then the
expectation of any system observable Â⊗ Î becomes

tr
[(
Â⊗ Î

)
|Ψ⟩ ⟨Ψ|

]
= tr

[
Â trB (|Ψ⟩ ⟨Ψ|)

]
= tr

(
Âρ̂
)
, (G.1)

where trB is the partial trace with respect to HB and

ρ̂ ≡ trB (|Ψ⟩ ⟨Ψ|) (G.2)

is the density operator on the system Hilbert space H. In other words, with the density operator, the expectation
with respect to any system observable Â can be expressed in terms of operators Â and ρ̂ on the smaller Hilbert
space H only. We also call ρ̂ the state of the system.

In general, we call any operator a density operator if it satisfies all of the following properties:

ρ̂ = ρ̂†, (Hermitian) (G.3)
⟨ψ| ρ̂ |ψ⟩ ≥ 0 ∀ |ψ⟩ ∈ H, (positive-semidefinite) (G.4)

tr ρ̂ = 1. (unit trace) (G.5)

Exercise G.1. Prove that Eq. (G.2) is a density operator, i.e., it satisfies Eqs. (G.3)–(G.5).

G.1.1. Purification. A fundamental converse of Eq. (G.2) called the purification theorem says that, given
any density operator ρ̂, there exists a pure state |Ψ⟩ in some larger Hilbert space H⊗HB such that the right-hand
side of Eq. (G.2) is equal to the given ρ̂. |Ψ⟩ is called a purification of ρ̂. Beware that, given a ρ̂, the purification
may not be unique; there may be many purifications that give the same ρ̂.

Remark G.1. The term purification here does not mean any physical act of purifying something, like purifying
water or turning a mixed state to a pure state. It merely means the mathematical task of finding a pure state |Ψ⟩
that results in the given density operator ρ̂ upon the partial trace.

Exercise G.2. Given a purification |Ψ⟩ of ρ̂, prove that

Î ⊗ Û |Ψ⟩ (G.6)

is also a purification, where Û is any unitary operator on HB .
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G.2. Generalized Born’s rule

G.2.1. Projection-valued measure (PVM). For any Hilbert space, including infinite-dimensional ones,
we can use one concept called the projection-valued measure (PVM) to model all the measurement types
discussed in Sec. D.2. Let Ω be the sample space for the measurement outcome andE an associated event space
(see Appendix C); we often write them together as (Ω, E). A projection-valued measure Π̂ takes any event
S ∈ E as an argument and produces an operator Π̂(S), such that the probability P [S] of the event S is given by
the formula

P [S] = tr
[
Π̂(S)ρ̂

]
, (G.7)

where ρ̂ is the density operator in the Schródinger picture. A measurement that can be modeled by a PVM is
called a projective measurement.

Π̂ is called projection-valued because Π̂(S) for any S is a projection operator, namely, it satisfies

∀S ∈ E : Π̂(S)† = Π̂(S), Π̂(S)2 = Π̂(S). (G.8)

Further properties of Π̂ ensure that P is a probability measure satisfying the Kolmogorov axioms in Sec. C.1,
such as

Π̂(Ω) = Î , Π̂(S1 ∪ S2) = Π̂(S1) + Π̂(S2) if S1 ∩ S2 = ∅. (G.9)

An additional property is

Π̂(S1)Π̂(S2) = Π̂(S2)Π̂(S1) = Π̂(S1 ∩ S2). (G.10)

Examples:
(1) Simple measurement with respect to orthonormal basis {|en⟩}. Then Ω = {1, . . . , N},

Π̂(n) = |en⟩ ⟨en| , Π̂(S) =
∑
n∈S

|en⟩ ⟨en| . (G.11)

(2) von Neumann measurement of Â =
∑

n λn |en⟩ ⟨en|. Then Ω = {λn} is the set of eigenvalues,

Π̂(λ) =
∑

n:λn=λ

|en⟩ ⟨en| , Π̂(S) =
∑

n:λn∈S
|en⟩ ⟨en| . (G.12)

(3) von Neumann measurement of continuous variable Â =
´
λ |A = λ⟩ ⟨A = λ| dλ. Then Ω = R,

Π̂(S) =

ˆ
λ∈S

|A = λ⟩ ⟨A = λ| dλ. (G.13)

Exercise G.3. Show that, if Π̂ is a PVM, then its Heisenberg picture defined by

Π̂(S, t) ≡ Û †(t)Π̂(S)Û(t), S ∈ E (G.14)

where Û is a unitary operator, is also a PVM, i.e., it satisfies Eqs. (G.8)–(G.10).

For a finite-dimensional Hilbert space, the PVM concept is an overkill compared with the simple measure-
ment in terms of an orthonormal basis, but it becomes the preferred choice of mathematicians when dealing
with a continuous observable on an infinite-dimensional space, to avoid the heuristic Dirac trick.

G.2.2. Positive operator-valued measure (POVM). As discussed in Chap. 8, the most general type of
measurement may enlist an ancilla for help. To model any kind of measurement, including ancilla-assisted
measurements as well as projective measurements, We can use an elegant concept called the positive operator-
valued measure (POVM).

Let the Schrödinger-picture density operator of a system in state ρ̂ augmented by an ancilla in state ρ̂B
be ρ̂ ⊗ ρ̂B on the joint Hilbert space H ⊗ HB . The probability measure for the outcome from a projective
measurement of the augmented system is

P [S] = tr
[
Π̂(S)(ρ̂⊗ ρ̂B)

]
, (G.15)
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where Π̂ is the PVM on H⊗HB that models the measurement. The formula can be rewritten as

P [S] = tr
[
Π̂(S)(ρ̂⊗ ρ̂B)

]
= tr

[
Π̂(S)

(
Î ⊗ ρ̂B

)(
ρ̂⊗ ÎB

)]
= tr

[
M̂(S)ρ̂

]
, (G.16)

where Î is the identity operator on H and

M̂(S) = trB

[
Π̂(S)

(
Î ⊗ ρ̂B

)]
(G.17)

is an operator on the smaller Hilbert space H. M̂ is called a POVM. Like a PVM, it takes any event S ∈ E as
an argument, although M̂(S) may not be a projection operator anymore.

In quantum information theory, it is common to draw the so-called quantum circuits, such as Fig. G.1, to
represent the concepts. In the figure,

(1) each line represents a Hilbert space,
(2) each line is labeled by the initial state on the left,
(3) multiple lines represent the tensor product of the Hilbert spaces,
(4) time flows from left to right,
(5) and the cartoon on the right represents a measurement.

Figure G.1. Quantum circuits representing a measurement. Left (ancilla-assisted form): a
projective measurement modeled by a PVM Π̂ on a system in state ρ̂ together with an ancilla in
state ρ̂B . The probability distribution of the outcome is given by Eq. (G.15). Right: the same
measurement can also be modeled by a POVM given by Eq. (G.17).

In general, we call any M̂ a POVM if it satisfies the following properties:

M̂(S) ≥ 0, M̂(Ω) = Î , M̂(S1 ∪ S2) = M̂(S1) + M̂(S2) if S1 ∩ S2 = ∅. (G.18)

G.2.3. Naimark dilation. A fundamental converse of Eq. (G.17) called the Naimark dilation theorem says
that, given any POVM that satisfies Eqs. (G.18), there exist an ancilla density operator ρ̂B on some Hilbert
space HB and a PVM Π̂ on H⊗HB that satisfy Eq. (G.17) [43]. Eq. (G.17) and the converse Naimark theorem
imply that any measurement, simple or generalized, can be modeled by a POVM, and conversely, any POVM
has a physical implementation using an ancilla, at least in principle.

While it is nice to know that any POVM is physically realizable, finding a physical setup to do it in practice
is a much harder problem.

Exercise G.4. Show that a PVM is a special case of a POVM. Find an example of a POVM that is not a PVM.

Exercise G.5. Show that the Heisenberg picture of a POVM is still a POVM.

Exercise G.6. Show that homodyne detection, introduced in Chap. 8, can be modeled by a PVM, while dual-
homodyne detection and heterodyne detection are examples of ancilla-assisted measurements. Find Π̂, ρ̂B , and
M̂ for the three measurements.

G.3. Decoherence

G.3.1. Trace-preserving completely positive (TPCP) map. In Chap. 7, we considered optical loss in
terms of a two-input-two-output beam-splitter model. This model turns out to be a representative example of
decoherence, which can be defined as an interaction of a system with an inaccessible environment.

To construct a general model of decoherence, consider again a system augmented by an ancilla with a joint
state ρ̂⊗ ρ̂B on the joint Hilbert space H⊗HB . (In the context of decoherence, the ancilla is not really helping
us with anything, so it is more commonly called an environment, a bath, or a reservoir, although we mostly
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stick with the term ancilla from now on for consistency.) Suppose that the augmented system evolves in time
according to a unitary operator Û on H⊗HB , so that the final-time Schrödinger-picture state is

Û(ρ̂⊗ ρ̂B)Û
†. (G.19)

Now we make a new decomposition of the joint Hilbert space as

H⊗HB ∼ HC ⊗HD, (G.20)

where ∼ denotes an isomorphic relation (see Sec. B.9), and assume that HC is accessible while HD is
inaccessible at the final time. We make this new decomposition for generality—we see in Chap. 7 that, for
optical loss, the accessible Hilbert space at the final time is the output mode, which lives in a different Hilbert
space than that of the accessible input mode. Of course, depending on the problem, we can also take HC = H
and HD = HB .

We call the state on HC at the final time the final system state. It is given by the partial trace

trD

[
Û(ρ̂⊗ ρ̂B)Û

†
]
≡ F ρ̂. (G.21)

This relation defines a map F from the initial system state ρ̂ on H to the final system state on HC . F is called
a trace-preserving completely positive (TPCP) map. Some quantum circuits representing Eq. (G.21) are shown
in Fig. G.2.

Figure G.2. Quantum circuits representing a trace-perserving completely positive (TPCP) map
given by Eq. (G.21). The label x on top of each line indicates that the Hilbert space represented
by the line is Hx. The left figure is the ancilla-assisted form and the right figure is the simplified
form.

Let O(H) be the space of operators on a Hilbert space H. Then the domain of F is O(H), the codomain
is O(HC), and we write F : O(H) → O(HC). Such a map is sometimes called a superoperator, as it is an
operator on operators.

F in Eq. (G.21) is trace preserving because

tr (F ρ̂) = trC trD

[
Û(ρ̂⊗ ρ̂B)Û

†
]
= tr

[
Û(ρ̂⊗ ρ̂B)Û

†
]
= (tr ρ̂)(tr ρ̂B) = tr ρ̂, (G.22)

where we have assumed tr ρ̂B = 1. In other words, the trace of the final system state is equal to the trace of
the initial system state ρ̂. We demand tr ρ̂ = 1 for a density operator, so tr(F ρ̂) = 1 is satisfied if F is trace
preserving.

Side note. The “completely positive” (CP) part of the name refers to a certain mathematical property of the
map https://en.wikipedia.org/wiki/Completely_positive_map. To describe this property, let
Hn be yet another Hilbert space with dimension n <∞ and O(H⊗Hn) be the space of operators on H⊗Hn.
We define a new map F ⊗ In : O(H⊗Hn) → O(HC ⊗Hn) by

(F ⊗ In)(Â⊗ B̂) ≡
(
FÂ
)
⊗ B̂ ∈ O(HC ⊗Hn). (G.23)

This relation for any Â ⊗ B̂ is enough to define F ⊗ In : O(H ⊗ Hn) → O(HC ⊗ Hn) in general. Now
a CP map is defined as a map F such that, for any n < ∞, F ⊗ In maps positive-semidefinite operators in
O(H⊗Hn) to positive-semidefinite operators in O(HC ⊗Hn).

Physically, this CP property together with the trace-preserving property imply that the application of the
map F ⊗ In on a density operator on any larger Hilbert space should give another density operator.

If the definition of the CP property sounds too complicated for your taste, I don’t blame you—we don’t
actually use the definition much in physics. Instead, we usually think of a CP map as a shorthand for the
left-hand side of Eq. (G.21).

https://en.wikipedia.org/wiki/Completely_positive_map
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G.3.2. Kraus form. There’s a more succinct way of writing a TPCP map called a Kraus form or a Kraus
representation. First write the ancilla state ρ̂B in the diagonal form

ρ̂B =
∑
n

pn |en⟩ ⟨en| , (G.24)

where {pn} are some positive numbers and {|en⟩} are a set of vectors in HB . Write also the identity operator
ÎD on HD as a completeness relation

ÎD =
∑
m

|fm⟩ ⟨fm| (G.25)

in terms of a set of vectors {|fm⟩} in HD. Then we can write the TPCP map as

F ρ̂ =
∑
m,n

K̂mnρ̂K̂
†
mn, (G.26)

where

K̂mn ≡ √
pn ⟨fm| Û |en⟩ (G.27)

is an operator K̂nm : H → HC called a Kraus operator. ⟨fm| and |en⟩ in Eq. (G.27) should be interpreted as
a partial bra and a partial ket, respectively (see Sec. B.10). The expression of a map in the form of Eq. (G.26),
where we sandwich the initial system state ρ̂ between two operators K̂mn and K̂†

mn and then take the sum, is
called a Kraus form or an operator-sum form.

Beware that the Kraus form of a TPCP map may not be unique, i.e., there may be many sets of operators
that give the same CP map F . For example, the diagonal form of ρ̂B given by Eq. (G.24) and the completeness
relation given by Eq. (G.25) may not be unique, so the Kraus operators {K̂mn} are different depending on the
forms we choose. By virtue of the purification theorem, we can also assume a pure ancilla state ρ̂B = |ψ⟩ ⟨ψ|
on a large enough Hilbert space, so that a Kraus operator becomes

K̂m = ⟨fm| Û |ψ⟩ (G.28)

with only one index.

G.3.3. Stinespring dilation. In general, any map F in the Kraus form

F ρ̂ ≡
∑
m

K̂mρ̂K̂
†
m (G.29)

for some Kraus operators {K̂m} can be shown to be CP. A fundamental converse of Eq. (G.29) called the
Stinespring dilation theorem says that, if a map F is CP, then it can always be expressed in a Kraus form for
some Kraus operators {K̂m}. If the map is also trace preserving, then the Kraus operators must also satisfy∑

m

K̂†
mK̂m = Î . (G.30)

It turns out that, given a set of Kraus operators that satisfy Eq. (G.30), one can always cook up an ancilla
state ρ̂B = |ψ⟩ ⟨ψ| and some unitary operator Û so that Eq. (G.28) holds and the map can be written in an
ancilla-assisted form on the left-hand side of Eq. (G.21) [46, Theorem 5.1]. In other words, any TPCP map is
physically realizable, at least in principle.

G.4. Time evolution

G.4.1. Quantum Markov chain. For a system that interacts with n ancillas sequentially, the final system
state in the Schrödinger picture can be expressed as sequential applications of TPCP maps F1,F2 . . . ,Fn:

ρ̂n = Fn . . .F2F1ρ̂0, (G.31)

where ρ̂0 is the initial state on a Hilbert space H0 and Fj : O(Hj−1) → O(Hj). Each TPCP map can be
expressed as

Fj ρ̂j−1 = trDj

[
Ûj(ρ̂j−1 ⊗ σ̂j)Û

†
j

]
, (G.32)
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where σ̂j is an ancilla state on HBj , Ûj is a unitary operator on Hj−1 ⊗HBj , we assume

Hj−1 ⊗HBj ∼ Hj ⊗HDj , (G.33)

and trDj is the partial trace with respect to HDj . Some quantum circuits representing Eqs. (G.31) and (G.32)
are shown in Fig. G.3.

Figure G.3. Quantum circuits representing the quantum Markov chain modeled by Eqs. (G.31)
and (G.32). The left figure is the ancilla-assisted form and the right figure is the simplified
form.

Physically, Eqs. (G.31) and (G.32) imply that, at each time step, the ancilla is always in a fresh state σ̂j
independent of the system and the other ancillas for the other time steps.

Another perspective is to think of the n ancillas as one big bath. Then Eqs. (G.31) and (G.32) imply that the
bath “forgets” any previous interaction with the system and becomes independent of the system at the beginning
of each time step.

We call Eq. (G.31) a Markov chain because it is a generalization of the classical Markov chain. Let
(X0, X1, . . . , Xn) be a classical random process with discrete time j = 0, 1, . . . , n. Assume also countable
sample spaces for simplicity. The probability distribution of Xn can be expressed as

PXn(xn) =
∑

xn−1,...,x0

PXn|Xn−1,...,X0
(xn|xn−1, . . . , x0)PXn−1|Xn−2,...,X0

(xn−1|xn−2, . . . , x0) . . .

PX1|X0
(x1|x0)PX0(x0). (G.34)

Make the Markov approximation

PXj |Xj−1,...,X0
(xj |xj−1, . . . , x0) = PXj |Xj−1

(xj |xj−1), (G.35)

which means that each PXj |Xj−1,...,X0
depends only on the immediate previous value Xj−1 and “forgets” the

earlier values. Then we can write

PXn =
∑
xn−1

PXn|Xn−1
(xn|xn−1) · · ·

∑
x1

PX2|X1
(x2|x1)

∑
x0

PX1|X0
(x1|x0)PX0(x0). (G.36)

We can now think of each operation

PXj (xj) =
∑
xj−1

PXj |Xj−1
(xj |xj−1)PXj−1(xj−1) (G.37)

as a map from a distribution PXj−1 to another distribution PXj ; each Fj in Eq. (G.31) is a generalization of
such a map. The “Markovianity” in the quantum case comes from the independent ancilla assumed in each time
step.

G.4.2. Master equation. Let

tj = t0 + j∆t, j = 0, 1, 2, . . . , (G.38)

be the discrete time with step size ∆t,

ρ̂(tj) = ρ̂j (G.39)

be the Schrödinger-picture density operator of the system at time tj , and assume that the system at each time
always lives on the same Hilbert space H, so that Fj : O(H) → O(H). Write the map as

Fj = exp[L(tj)∆t], (G.40)
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where L(tj) : O(H) → O(H) is another map and ∆t is the duration of the time step. In the limit ∆t→ 0, we
can model the time evolution in Eq. (G.31) in the form of a differential equation

dρ̂(t)

dt
= lim

∆t→0

ρ̂(tj)− ρ̂(tj−1)

∆t
= L(t)ρ̂(t). (G.41)

This equation is called a (Markovian) master equation. In the continuous-time limit, we can write Fn . . .F1

formally as

Fn . . .F1 → T exp

[ˆ tn

0
L(t)dt

]
≡ G(tn), (G.42)

where T denotes time ordering (https://en.wikipedia.org/wiki/Path-ordering#Time_ordering).
If L(t) does not depend on time, the set G ≡ {G(t) : t ≥ 0} is called a quantum Markov semigroup, and we
can write each element of the semigroup as

G(t) = exp (Lt), (G.43)

where L is called the generator of the semigroup. G(t) for each t is a TPCP map, and G is called a semigroup
because of the property G(t)G(t′) = G(t+ t′). G is only a semigroup, not a group, because the set G may not
contain the inverse of each G(t).

Gorini, Kossakowski, Sudarshan [49], and Lindblad [50] (GKSL) found that the generator of any quantum
Markov semigroup can be expressed as

Lρ̂ = −i
[
Ĥ, ρ̂

]
+
∑
j

γj

(
L̂j ρ̂L̂

†
j −

1

2
L̂†
jL̂j ρ̂−

1

2
ρ̂L̂†

jL̂j

)
, (G.44)

where Ĥ is a Hamiltonian, each γj is a positive real constant, and each L̂j is called a jump operator. Conversely,
as long as Ĥ is Hermitian and each γj is positive, the right-hand side is the generator of some quantum Markov
semigroup.

Beware that the GKSL form is not unique, i.e., there exist many different Hamiltonians and jump operators
that give the same generator L.

The quantum Markovian master equation generalizes the Fokker-Planck equation and the Chapman-
Kolmogorov equation in the classical case [51].

Remark G.2. To model time evolution using multiple TPCP maps Fn . . .F1, ∆t for each Fj needs to be long
enough for the bath to forget the interaction and begin in a fresh ancilla state for the next map. Yet, here we
have taken the limit of ∆t→ 0 to derive the master equation. It is therefore important to keep in mind that the
master equation, while mathematically well defined, is an approximation of the fundamental physics. It does
model many phenomena quite well, such as the Brownian motion, but may cease to be accurate when the physics
becomes “non-Markovian.”

The fundamental dynamics of a closed system (i.e., no ancilla) is described by the Liouville equation in the
classical case or the Schrödinger equation in the quantum case, and we do get precise Markovianity. For any
other open system, however, Markovianity is an approximation, not a clear-cut property. It can get more or less
accurate depending on how we make the system-ancilla partition.

Side note. The right-hand side of Eq. (G.44) is often called the Lindblad generator or Lindbladian, while the
master equation in terms of the right-hand side of Eq. (G.44) is often called the Lindblad master equation, but
that would not be fair to GKS, who discovered the form independently at around the same time.

G.5. Indirect measurement

Suppose that a system with initial state ρ̂ interacts with an ancilla with initial state ρ̂B through a unitary
operator Û . Then we perform a partial measurement in terms of a POVM M̂D on HD only, with sample and
event spaces (Ω, E). This measurement scheme is called an indirect measurement. For example, we often
measure an atomic or solid-state system by sending an optical probe beam with multiple modes to interact with
the system, before measurements of the output optical modes.

https://en.wikipedia.org/wiki/Path-ordering#Time_ordering


G.6. POSTERIOR STATE 181

With an indirect measurement, the measurement on the ancilla can be destructive while the system remains
intact, so we can study what happens to the system after the measurement. The central concept for this problem
is the hybrid state, defined as

trD

{[
ÎC ⊗ M̂D(S)

]
Û(ρ̂⊗ ρ̂B)Û

†
}
≡ F(S)ρ̂, S ∈ E, (G.45)

where Îs for any subscript s is the identity operator on Hs. We call F : E × O(H) → O(HC) a map-
valued measure, since F(S) : O(H) → O(HC) for each event S is a CP map, while F(S)ρ̂ for each S is a
positive-semidefinite operator on HC . The probability of S becomes

P [S] = tr [F(S)ρ̂], (G.46)

while the unconditional quantum state on HC if we ignore the measurement outcome is F(Ω)ρ̂, where F(Ω) is
a TPCP map. The normalization condition for the hybrid state is hence

tr [F(Ω)ρ̂] = tr ρ̂ = 1. (G.47)

F(S)ρ̂ behaves like a joint probability distribution, except that one part is classical and one part is quantum
(hence the name hybrid state). It gives a classical probability measure if we ignore the quantum part by taking
the trace and gives a quantum density operator if we ignore the classical part by plugging S = Ω.

Figure G.4. Quantum circuits representing Eq. (G.45) for the hybrid state F(S)ρ̂ produced by
an indirect measurement. A double line represents a classical variable and the symbol on top
is the event S. The left figure is the ancilla-assisted form and the right figure is the simplified
form.

We can write Eq. (G.45) in the Kraus form as well. First rewrite M̂D(S) in terms of its square root (see
Sec. B.6) as

M̂D(S) =

√
M̂D(S)

√
M̂D(S), ÎC ⊗ M̂D(S) =

[
ÎC ⊗

√
M̂D(S)

][
ÎC ⊗

√
M̂D(S)

]
. (G.48)

Then we can use the cyclic property of the partial trace given by Eq. (B.122) to write

F(S)ρ̂ = trD

{[
ÎC ⊗

√
M̂D(S)

]
Û(ρ̂⊗ ρ̂B)Û

†
[
ÎC ⊗

√
M̂D(S)

]}
=
∑
m,n

K̂mn(S)ρ̂K̂mn(S)
†, (G.49)

where the Kraus operator

K̂mn(S) ≡
√
pn ⟨fm|

[
ÎC ⊗

√
M̂D(S)

]
Û |en⟩ (G.50)

generalizes Eq. (G.27).

G.6. Posterior state

Let the first measurement outcome be X . If we make another measurement on the system with POVM M̂C

on HC and the outcome is Y , the joint probability of Y ∈ R and X ∈ S becomes

P [(Y ∈ R) and (X ∈ S)] = tr
[
M̂C(R)F(S)ρ̂

]
. (G.51)

The probability of Y ∈ R conditioned on X ∈ S is then

P [Y ∈ R|X ∈ S] ≡ P [(Y ∈ R) and (X ∈ S)]

P [X ∈ S]
=

tr
[
M̂C(R)F(S)ρ̂

]
tr [F(S)ρ̂]

. (G.52)
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Hence, we can regard

ρ̂S ≡ F(S)ρ̂

tr (numerator)
(G.53)

as the posterior system state conditioned on the event X ∈ S, so that any subsequent measurement can be
modeled as

P [Y ∈ R|X ∈ S] = tr
[
M̂C(R)ρ̂S

]
. (G.54)

Eq. (G.53) is sometimes called a quantum Bayes theorem. It generalizes the phenomenon of measurement-
induced collapse in ordinary quantum mechanics.

Side note. There are many proposals to generalize Bayes theorem in quantum mechanics; Eq. (G.53) is only
one special case.

We can also condition on a measurement outcome X = x. This is most easily done if X is discrete: just
take S = x, so that the posterior state becomes

ρ̂x =
F(x)ρ̂

tr (numerator)
, x ∈ Ω. (G.55)

If X is continuous, however, the definition of a posterior state is a bit trickier, similar to the classical problem
in Sec. C.4. To proceed, we assume that the POVM in Eq. (G.45) can be expressed as

M̂D(S) =

ˆ
x∈S

f̂D(x)dµ(x) (G.56)

for a classical reference measure µ and an operator-valued density f̂D : Ω → O(HD). Then we can think of
the POVM as a function of the outcome x as

M̂D(x) = f̂D(x)dµ(x). (G.57)

For example, for a von Neumann measurement of Â =
´
x |A = x⟩ ⟨A = x| dx, we can use the Dirac trick to

write

M̂D(S) =

ˆ
x∈S

|A = x⟩ ⟨A = x| dx, M̂D(x) = |A = x⟩ ⟨A = x| dx. (G.58)

Given f̂D(x), we write F(x) for an outcome x as

F(x) = dµ(x) trD

{[
ÎC ⊗ f̂D(x)

]
Û(ρ̂⊗ ρ̂B)Û

†
}

︸ ︷︷ ︸
≡f(x)ρ̂

, (G.59)

so that

tr [F(x)ρ̂] = dµ(x) tr [f(x)ρ̂] (G.60)

and tr[f(x)ρ̂] gives the probability density. The posterior state becomes

ρ̂x =
F(x)ρ̂

tr[F(x)ρ̂]
=

f(x)ρ̂

tr[f(x)ρ̂]
, (G.61)

where dµ(x) drops out of the final expression.

G.7. Sequential measurements

We can model sequential measurements with outcomes (X1, . . . , Xn) ∈ Ω1 × · · · × Ωn by assuming the
hybrid state

F(Sn, . . . , S1)ρ̂ = Fn(Sn) . . .F1(S1)ρ̂, (G.62)

where ρ̂ is the initial system state, each Fj is a map-valued measure in the form of Eq. (G.45), and each Sj is
an event for the jth measurement outcome Xj . Each Fj can also model any time evolution and decoherence
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besides the measurement by including additional degrees of freedom in the ancilla and modifying the ancilla
state and the unitary in Eq. (G.45) accordingly. The joint probability of all the events becomes

P [(Xn ∈ Sn) and . . . and (X1 ∈ S1)] = tr [Fn(Sn) . . .F1(S1)ρ̂]. (G.63)

If we ignore all the outcomes and plug the sample space Ωj for each outcome into Sj , we get back the Markov
chain in Sec. G.4.1:

ρ̂n = Fn(Ωn) . . .F1(Ω1)ρ̂. (G.64)

We can also compute the posterior state by

ρ̂Sn,...,S1 ≡ Fn(Sn) . . .F1(S1)ρ̂

tr (numerator)
, (G.65)

or by the iterative relation

ρ̂Sj ,...,S1 =
Fj(Sj)ρ̂Sj−1,...,S1

tr(numerator)
(G.66)

for the posterior state ρ̂Sj ,...,S1 at each time. Fig. G.5 shows some quantum circuits representing Eq. (G.63).

Figure G.5. Quantum circuits representing sequential measurements modeled by Eq. (G.63).
The left figure is the ancilla-assisted form and the right figure is the simplified form.

G.8. Continuous measurement

The outcomes of sequential measurements form a discrete-time random process (X1, . . . , Xn). There is
a beautiful theory of continuous measurement, pioneered by Belavkin, that takes the continuous-time limit of
the sequential-measurement model, so that the outcomes become a continuous-time random process [45]. The
resulting equation for the posterior state is called a stochastic master equation, a generalization of the master
equation we introduced in Sec. G.4.2.

The stochastic master equation is less popular and arguably less useful, however, because
(1) It requires stochastic calculus, a hairy subject.
(2) It isn’t any easier to solve than the discrete-time Eqs. (G.65) or (G.66) in most cases. One often needs

to solve the stochastic master equation numerically assuming discrete time, but then one may as well
solve Eqs. (G.65) or (G.66) without ever worrying about stochastic calculus.

(3) Outcomes from real-life measurements are always recorded at discrete times and a continous-time
process is only an approximation, so a stochastic master equation is an approximation in any case.

G.9. Measurement-based feedback

An experimenter can take the measurement outcomes and modify the future dynamics based on the out-
comes. We can model measurement-based feedback by assuming that each Fj depends on the previous events
Sj−1, . . . , S1. For example, consider two sequential measurements. Then the conditional probability is

P [S2|S1] = tr [F2(S2|S1)ρ̂S1 ], ρ̂S1 =
F1(S1)ρ̂

tr(numerator)
, (G.67)

and the joint probability distribution becomes

P [S2 and S1] = P [S2|S1]P [S1] = tr [F2(S2|S1)F1(S1)ρ̂]. (G.68)

Fig. G.6 shows the quantum circuits that represent the feedback.
This argument can be generalized for multiple measurements, so that Eqs. (G.62)–(G.66) remain valid if

each Fj(Sj) depends on the previous events, and we can rewrite it as Fj(Sj |Sj−1, . . . , S1).



G.10. PRINCIPLE OF DEFERRED MEASUREMENT 184

Figure G.6. The first event S1 can be used to modify future dynamics by perturbing Û2(S1) or F2(S2|S1).

G.10. Principle of deferred measurement

Similar to the theorems of purification, Naimark, and Stinespring, it turns out that, through the so-called
principle of deferred measurement [47], we can also model sequential measurements and measurement-based
feedback by ordinary quantum mechanics without resorting to CP maps.

To see how it works, first consider a simple example of a system on H and an optical mode as the ancilla on
HB . Let the initial state of the augmented system be ρ̂ on H⊗HB and consider the following experiment:

(1) The experimenter measures the photon number n̂ =
∑

n n |n⟩ ⟨n| of the optical mode.
(2) The experimenter then uses the outcome n to modify the dynamics of the system, so that the unitary

operator of the system after the measurement becomes a function Û(n) of n.
This experiment turns out to be equivalent to the following:

(1) The system and the optical mode interact according to the so-called controlled unitary operator

V̂ ≡
∑
n

Û(n)⊗ |n⟩ ⟨n| . (G.69)

(2) Then the experimenter measures the photon number of the optical mode.
To show that the two experiments are equivalent, we observe that the hybrid state for the first experiment

F1(n)ρ̂ ≡ Û(n)
{
trB

[(
Î ⊗ |n⟩ ⟨n|

)
ρ̂
]}
Û(n)† (G.70)

is equal to the hybrid state for the second experiment

F2(n)ρ̂ ≡ trB

[(
Î ⊗ |n⟩ ⟨n|

)
V̂ ρ̂V̂ †

]
. (G.71)

With the same hybrid state F1(n)ρ̂ = F2(n)ρ̂, the joint probability distribution P (m,n) = tr[M̂(m)Fj(n)ρ̂]
after any subsequent measurement with outcome m is the same, so the two experiments are indistinguishable.
In other words, we do not have to use a CP map trB

[(
Î ⊗ |n⟩ ⟨n|

)
ρ̂
]

to describe the measurement before the

feedback; we can use a controlled unitary V̂ on a larger Hilbert space to model the procedure and assume that
the measurement is performed afterwards. The general idea is depicted in Fig. G.7.

Figure G.7. Sequential measurements and measurement-based feedback (left) can be modeled
by controlled unitaries and deferred measurements (right).

Exercise G.7. Show that V̂ given by Eq. (G.69) is a unitary operator.

Exercise G.8. Show that Eqs. (G.70) and (G.71) are equal.

We now prove the principle for sequential measurements in general, at least for discrete outcomes and
finite-dimensional Hilbert spaces.



G.10. PRINCIPLE OF DEFERRED MEASUREMENT 185

(1) Write each map in the ancilla-assisted form as

Fj(xj |yj)ρ̂j−1 = trDj

{[
Îj ⊗ Π̂j(xj)

]
Ûj(yj)(ρ̂j−1 ⊗ σ̂j)Ûj(yj)

†
[
Îj ⊗ Π̂j(xj)

]}
(G.72)

= trDj

{[
Îj ⊗ Π̂j(xj)

]
Ûj(yj) |ψj⟩ ρ̂j−1 ⟨ψj | Ûj(yj)

†
[
Îj ⊗ Π̂j(xj)

]}
(G.73)

σ̂j = |ψj⟩ ⟨ψj | , yj ≡ (xj−1, . . . , x1). (G.74)

Note that
(a) ρ̂j is on Hj , σ̂j is on HBj , Ûj is on

Hj−1 ⊗HBj ∼ Hj ⊗HDj , (G.75)

and Π̂j is on HDj .
(b) In Eq. (G.73),

|ψj⟩ : Hj−1 → Hj−1 ⊗HBj , ⟨ψj | : Hj−1 ⊗HBj → Hj−1 (G.76)

are understood to be a partial ket and a partial bra, respectively.
(c) We have assumed a suitable ancilla so that the measurement can be modeled by a PVM Π̂j .
(d) σ̂j can always be assumed to be pure on a large enough Hilbert space by virtue of the purification

theorem.
(e) We have used Π̂j(xj) = Π̂j(xj)

2 for a PVM and the cyclic property of the partial trace given by
Eq. (B.122).

(f) Without loss of generality, |ψj⟩ can be assumed to be independent of the previous outcomes
yj . Proof: Because any two pure states can be related by a unitary operator, we can write any
yj-dependent pure state as

|ϕ(yj)⟩ = û(yj) |ψj⟩ (G.77)

in terms of a yj-dependent unitary û(yj) and a fixed |ψj⟩, and û(yj) can be absorbed into Ûj(yj)

by a redefinition of Ûj .
(g) With no practical loss of generality, we can also assume Π̂j to be independent of yj . Let’s prove

it for simple measurements with

π̂j(x|yj) = |ex(yj)⟩ ⟨ex(yj)| , (G.78)

where {|ex(yj)⟩} for each yj is an orthonormal basis of HDj . Since two orthonormal bases of
a Hilbert space can always be related by a unitary operator, we can write any PVM for a simple
measurement as

π̂j(x|yj) = |ex(yj)⟩ ⟨ex(yj)| = û(yj)
∣∣e′x〉 〈e′x∣∣ û(yj)† = û(yj)Π̂j(x)û(yj)

† (G.79)

in terms of a yj-dependent unitary û(yj) and a fixed PVM Π̂j(x) = |e′x⟩ ⟨e′x|. Then[
Îj ⊗ π̂j(x|yj)

]
Ûj(yj) =

[
Îj ⊗ û(yj)Π̂j(x)û(yj)

†
]
Ûj(yj), (G.80)

the û(yj)† on the right can be absorbed into Ûj(yj) while the û(yj) on the left goes away after
the partial trace trDj .

Side note. As long as we stick to a finite-dimensional Hilbert space, the proof for projective
measurements is pretty much the same. For an infinite-dimensional Hilbert space, however,
two arbitrary PVM’s need not be unitarily related (e.g., for quadrature and photon-number
measurements) and we have to restrict ourselves to a set of unitarily related PVM’s {π̂j(·|y) =
û(y)Π̂j(·)û(y)† : y ∈

∏j−1
k=1Ωk}. It’s not that bad a restriction—for example, we know from

Chap. 8 that optical homodyne detection is implemented with a local oscillator and square-law
detectors, so the local oscillator can be regarded as an ancilla and a real homodyne detector
is unitarily related to photon counting afterall. For the homodyne detector to implement a
quadrature measurement exactly, the local oscillator needs to be infinitely strong, but we don’t
have that in reality.
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(2) With n such maps, we use Eq. (B.123) to defer each partial trace repeatedly to obtain

Fn(xn|yn) . . .F1(x1)ρ̂ = trDn . . . trD1

(
Ŵ1ρ̂Ŵ

†
1

)
, (G.81)

Ŵn ≡
[
În ⊗ Π̂n(xn)

]
Ûn(yn) |ψn⟩ , (G.82)

Ŵj ≡
[
Ŵj+1 ⊗ Π̂j(xj)

]
Ûj(yj) |ψj⟩ , j = n− 1, . . . , 1, (G.83)

where
Ŵn : Hn−1 → Hn−1 ⊗HBn ∼ Hn ⊗HDn , Ŵj : Hj−1 → Hn ⊗HDn ⊗ · · · ⊗ HDj . (G.84)

(3) Key step: we repeatedly defer each Π̂j to a later time using the identity

Â(x)⊗ Π̂(x) =
[
Î ⊗ Π̂(x)

]∑
z

Â(z)⊗ Π̂(z), (G.85)

which comes from Π̂(x)Π̂(z) = Π̂(x)δxz for a PVM with discrete outcomes x and z. We obtain

Ŵ1 =
[
În ⊗ Π̂n(xn)⊗ · · · ⊗ Π̂1(x1)

]
ŵn . . . ŵ1, (G.86)

ŵj ≡
∑

zj−1,...,z1

Ûj(zj−1, . . . , z1) |ψj⟩ ⊗ Π̂j−1(zj−1)⊗ · · · ⊗ Π̂1(z1), (G.87)

where
ŵ1 : H0 → H0 ⊗HB1 ∼ H1 ⊗HD1 , (G.88)
ŵj : Hj−1 ⊗HDj−1 ⊗ . . .HD1 → Hj ⊗HDj ⊗ . . .HD1 , j = 2, . . . , n. (G.89)

(4) The final result is

Fn(xn|yn) . . .F1(x1)ρ̂ = trDn . . . trD1

{[
În ⊗ Π̂n(xn)⊗ · · · ⊗ Π̂1(x1)

]
τ̂n

}
, (G.90)

τ̂j = V̂j(τ̂j−1 ⊗ σ̂j)V̂
†
j , j = 1, . . . , n, τ̂0 = ρ̂, (G.91)

V̂j ≡
∑

zj−1,...,z1

Ûj(zj−1, . . . , z1)⊗ Π̂j−1(zj−1)⊗ · · · ⊗ Π̂1(z1), (G.92)

where each τ̂j−1 is on H0 ⊗HB1 ⊗ · · · ⊗ HBj−1 , τ̂j−1 ⊗ σ̂j is on H0 ⊗HB1 ⊗ · · · ⊗ HBj , V̂j is on
H0 ⊗HB1 ⊗ · · · ⊗ HBj ∼ Hj ⊗HDj ⊗ · · · ⊗ HD1 , (G.93)

and Eq. (G.92) applies to the latter order. The dynamics is now fully unitary, as modeled by the
controlled unitaries {V̂j}, while all the measurements have been deferred to the final time, as modeled
by În ⊗ Π̂n(xn)⊗ · · · ⊗ Π̂1(x1).

(5) The principle can be verified by observing that the two models give the same probability distribution:

PXn,...,X1(xn, . . . , x1) = tr [Fn(xn|yn) . . .F1(x1)ρ̂] = tr
{[
În ⊗ Π̂n(xn)⊗ · · · ⊗ Π̂1(x1)

]
τ̂n

}
. (G.94)

Exercise G.9. Prove that V̂j is unitary and În ⊗ Π̂n(xn)⊗ · · · ⊗ Π̂1(x1) is a PVM.

G.11. Church of the larger Hilbert space

We stress that open quantum system theory does not modify quantum physics in any way; the former
merely introduces a suite of mathematical tools to describe the latter more succinctly when we partition the
universe—somewhat arbitrarily and artificially—into a system of interest and some ancillas. In fact, for some
problems, it may be easier and more general to stick to ordinary quantum mechanics in terms of pure states,
unitaries, and projective measurements. The price to pay is that the Hilbert space needs to be large enough to
accommodate all the system and ancillary degrees of freedom, so brute-force simulations may be challenging.

The fact that ordinary quantum mechanics, with a sufficiently large Hilbert space, can be used to model
open quantum systems is sometimes called “the church of the larger Hilbert space.” The principle of deferred
measurement, in particular, underlies the Everett interpretation of quantum mechanics, which says that any
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observer can be modeled as a quantum ancilla and the measurement modeled as a quantum interaction between
the system and the ancilla, so that Born’s rule is unnecessary—an illusion.

Despite this radical viewpoint, Born’s rule remains very convenient. In Sec. G.10, we still have to use
Born’s rule for the final PVM to verify the principle of deferred measurement. Everett’s interpretation also
doesn’t explain why Born’s rule works so well in practice. Born’s rule is an oddball in quantum foundations
that awaits a more satisfying explanation.



APPENDIX H

Statistics*

H.1. Introduction

The goal of any experiment, especially in sensing and imaging, is to infer unknowns from noisy data. The
measurement is not the end of the story, and the data need to be further processed. The accuracy of our inference
thus depends not only on the quality of the measurement but also the method of the processing. To devise a
performance metric that accounts for both, the signal-to-noise ratio (SNR) we used in previous chapters turns
out to be inadequate. From this chapter and the next few, we introduce the necessary statistics so that we have
more holistic ways of assessing the performance of an experiment, including the data processing.

Remark H.1. We can make a distinction between probability and statistics as two disciplines:
• Probability theory, as outlined in Appendix C, assumes one probability measure and studies its various

properties, such as the probability of an event and the expected values of random variables.
• Statistics (in the sense of a discipline studied by statisticians) assumes a set of probability measures

called the statistical model, all with the same sample space Ω and event space E. An observation is
assumed to be a random variable that comes from one of the probability measures, and our goal is to
learn certain properties of the model from the observation.

In statistics, the terms inference, decision, detection, hypothesis testing, and estimation are all fancy words
for the act of guessing in various contexts.

H.2. Statistical model

To define a statistical model, we introduce a new variable called the parameter θ ∈ Θ to label a set of
probability measures, where Θ is called the parameter space. Then a statistical model is defined as a set of
probability measures

{Pθ : θ ∈ Θ}, (H.1)

where each Pθ : E → [0, 1] for a given θ is a candidate measure for our observation. For most problems,
there exists a θ-independent reference measure σ that dominates all measures in the model, and we call the
Radon-Nikodym derivative (see Sec. C.9)

fθ(x) ≡
dPθ

dσ
(x) (H.2)

the probability density.
(1) If the observation is discrete, then we take σ to be the counting measure so that

dσ(x) = 1, dPθ(x) = fθ(x) = Pθ(x), (H.3)

and the expectation of a random variable g(x) conditioned on θ becomes

Eθ(g) ≡
ˆ
g(x)dPθ(x) =

∑
x

g(x)Pθ(x). (H.4)

(2) If Ω ⊆ Rn, we take σ to be the Lebesgue measure so that fθ(x) is the conventional probability density,
and we write

dσ(x) = dnx, dPθ(x) = fθ(x)d
nx, Eθ(g) =

ˆ
g(x)fθ(x)d

nx. (H.5)

Remark H.2. Beware that θ in Pθ or fθ does not denote a random variable for a probability mass function or
probability density, unlike the notation in Appendix C; here θ is an additional label of the measure.
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Two basic examples of a parameter space Θ:
(1) If Θ is discrete, e.g., Θ = {0, 1, 2, . . . }, then the parameter is more commonly called a hypothesis,

and the inference is commonly called hypothesis testing.
The simplest example is when there are only two elements in Θ, commonly denoted as Θ = {0, 1}.

Then there are only two probability measures P0 andP1 in the model, and the inference is called binary
hypothesis testing or detection. θ = 0 is commonly called the null hypothesis, and θ = 1 is called the
alternative hypothesis. Examples:
(a) Radar detection: The radar readings are the observations. θ = 0 denotes the hypothesis that a

target is absent, while θ = 1 denotes the hypothesis that a target is present.
(b) Tumor detection: The X-ray images are the observations. θ = 0 denotes the hypothesis that a

tumor is absent, while θ = 1 denotes the hypothesis that a tumor is present.
(c) Gravitational-wave detection: The data from our optical measurements are the observations.

θ = 0 denotes the hypothesis that no gravitational wave hits the detector, while θ = 1 denotes the
hypothesis that a gravitational wave is there.

Remark H.3. Outside statistics, the words detection and detector refer to a generic measurement and
a generic measurement device, e.g., homodyne detection and gravitational-wave detector, whereas
detection in statistics means something more specific: the detection of a target in binary hypothesis
testing.

(2) If Θ is continuous, e.g., Θ = Rp or a subset with non-empty interior, then θ ∈ Θ is commonly called
a parameter and Θ a parameter space. The inference is commonly called parameter estimation.
Examples:
(a) Radar, X-ray: suppose that a target is present. We’d like to estimate its size and shape, which are

modeled by real numbers.
(b) Gravitational-wave estimation: estimate the gravitational waveform as a function of time.
(c) Astronomy, microscopy, spectroscopy: estimate the positions, brightnesses, shapes, and intensity

distributions of stars, particles, or spectral lines.
If Θ is multidimensional, e.g., Θ ⊆ Rp with p > 1, then the task is sometimes called multipa-

rameter estimation, as there are multiple components in each parameter θ. We model it by a vectoral
θ.

(3) In practice, one may wish to perform both hypothesis testing and parameter estimation from one set
of data, e.g., tumor detection and measurement from an X-ray image, in which case the task is called
composite hypothesis testing.

H.3. Decision rule

Our next task is to model our guess of the parameter mathematically. Given an observation x ∈ Ω, we
model our guess by a function

θ̌ : Ω× Ω′ → Θ (H.6)
called a decision rule, also called an estimator in parameter estimation. The decision may depend not only on
the observation x ∈ Ω but also an independent ancilla random variable y ∈ Ω′. When a decision rule involves
such an ancilla, we say that the rule is randomized, otherwise it is deterministic. In other words, a deterministic
rule will always give the same guess θ̌(x) for the same observation x, while a randomized rule θ̌(x, y) depends
also on the random ancilla y so the guess may be different in each trial for the same observation x. We allow
randomized rules because they may be advantageous in special cases, to hedge among a bunch of deterministic
rules.

H.4. Loss function

To carry out the first step of quantifying the statistical performance, we define a loss function l(θ, θ̌) that
quantifies the difference between the true parameter θ and our guess θ̌(x). Examples:

(1) For hypothesis testing, the zero-one loss is common:

l(θ, θ̌) = 1− δθθ̌ =

{
0, θ̌ = θ,

1, θ̌ ̸= θ.
(H.7)
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(2) For parameter estimation where θ ∈ Θ ⊆ R is a scalar parameter, the square loss is common:

l(θ, θ̌) =
(
θ − θ̌

)2
. (H.8)

(3) If Θ is a normed vector space, then we can use the norm to quantify the distance:

l(θ, θ̌) =
∥∥θ − θ̌

∥∥2. (H.9)
For example, if Θ is an inner product space, we can pick∥∥θ − θ̌

∥∥2 = 〈θ − θ̌, θ − θ̌
〉

(H.10)

in terms of the inner product. In particular, the standard l2 norm for Rp is∥∥θ − θ̌
∥∥2 = p∑

j=1

(
θj − θ̌j

)2
, (H.11)

or one may pick ∥∥θ − θ̌
∥∥2 =∑

j,k

(
θj − θ̌j

)
Gjk

(
θk − θ̌k

)
, (H.12)

where G is a positive-definite matrix.

Side note. In some areas of machine learning, people prefer to define a reward function instead. Just put a
minus sign on a loss function to obtain a reward function, or in general apply any decreasing function to convert
a loss to a reward and vice versa.

H.5. Errors of a decision

Often we do not know the ground truth θ. After we have made an observation (x, y) and a decision θ̌(x, y),
we need to quantify the uncertainty about the particular decision. In other words, we would like to put an
error bar on our experimental result. The concepts of p-value, confidence interval, Bayesian posterior errors,
bootstrap, etc., are all invented for that purpose, but we won’t go into the details of them; see, for example,
Ref. [52].

H.6. Errors of a rule

The decision rule θ̌(x, y) is a function of the observation x and the ancilla y, which are independent random
variables sampled from the product probability measure (see Sec. C.3)

Pθ ≡ Pθ ⊗ P ′. (H.13)

With random x and y, θ̌ and l(θ̌, θ) become random variables. To study the average loss of a rule over many
trials, we consider the expected loss:

R(θ, θ̌) ≡ Eθ

[
l(θ, θ̌)

]
=

ˆ
l(θ, θ̌(x, y))dPθ(x, y), (H.14)

where Eθ denotes the expectation with respect to Pθ for a fixed θ. We will simply call this R the error. It is
sometimes called the risk function in the literature. The error R(θ, θ̌) is a function of the true parameter θ and
also the rule θ̌, but it no longer depends on the observation x and the ancilla y. For example,

(1) if we use the zero-one loss for binary hypothesis testing, then

R(0, θ̌) = E0

(
1− δθ̌0

)
=

ˆ
(x,y):θ̌(x,y)=1

dP0(x, y) = P0

[
θ̌ = 1

]
(H.15)

is the probability of a false alarm, also called a false positive or a type-I error. In this case, θ = 0 is
the truth, while {(x, y) : θ̌(x, y) = 1} is the set of (augmented) observations that make us decide on
the alternative hypothesis. Similarly,

R(1, θ̌) = E1

(
1− δθ̌1

)
=

ˆ
(x,y):θ̌(x,y)=0

dP1(x, y) = P1

[
θ̌ = 0

]
(H.16)

is the probability of a miss, also called a false negative or a type-II error. In this case, θ = 1 is the truth,
while {(x, y) : θ̌(x, y) = 0} is the set of observations that make us decide on the null hypothesis.
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(2) For scalar parameter estimation, the mean-square error is

R(θ, θ̌) =

ˆ [
θ − θ̌(x, y)

]2
dPθ(x, y). (H.17)

The error R(θ, θ̌) is a function of the parameter θ ∈ Θ and may be difficult to study if the parameter space Θ is
large. To further simplify it, we define the average error

Rπ(θ̌) ≡
ˆ
R(θ, θ̌)dπ(θ) (H.18)

with respect to a prior probability measure π on (Θ, G) for the parameter, whereG is an event space for Θ, and
the worst-case error:

max
θ∈Θ

R(θ, θ̌). (H.19)

These two errors are summaries about R(θ, θ̌)—they are now functions of the decision rule θ̌ only. They obey
the inequality

max
θ∈Θ

R(θ, θ̌) ≥ Rπ(θ̌) (H.20)

for any prior π. Fig. H.1 illustrates the three errors.

Figure H.1. Given a decision rule θ̌, R(θ, θ̌) is the error as a function of the parameter θ,
Rπ(θ̌) is the average with respect to a prior measure π for θ, and maxθ R(θ, θ̌) is the worst-case
error.

Side note. For rigor, mathematicians often use inf and sup instead of min and max, since the latter may not
exist for certain sets, but for practitioners it is splitting infinitesimal hairs. We write min and max exclusively
in this book.

H.7. Errors of an experiment

A nice fact about the average errorRπ(θ̌) and the worst-case error maxθ R(θ, θ̌) is that there exists a strategy
that minimizes each. The decision rule θ̌ that minimizes the average error Rπ(θ̌) is a deterministic rule called
Bayesian or Bayes, given by

θ̌Bayes(x) = arg min
ϕ∈Θ

ˆ
l(θ, ϕ)dQx(θ), (H.21)

whereQx is the posterior measure on the parameter space (Θ, G) conditioned on the observation x, determined
by the Bayes theorem

Qx(A) =

´
θ∈A fθ(x)dπ(θ)´
θ∈Θ fθ(x)dπ(θ)

, A ∈ G, (H.22)

and
´
l(θ, ϕ)dQx(θ) is the posterior error. For example, for the square loss, the Bayes rule is the conditional

expectation

θ̌Bayes(x) =

ˆ
θdQx(θ). (H.23)
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In general, the minimum average error

RBayes(π) ≡ min
θ̌
Rπ(θ̌) = Rπ(θ̌Bayes) (H.24)

achieved by the Bayes rule is called the Bayes error.
The rule θ̌minimax that minimizes the worst-case error maxθ∈ΘR(θ, θ̌) is called minimax, such that the

minimum worst-case error

Rminimax ≡ min
θ̌

max
θ∈Θ

R(θ, θ̌) = max
θ∈Θ

R(θ, θ̌minimax) (H.25)

is called the minimax error. Eq. (H.20) leads to

Rminimax ≥ Rπ(θ̌minimax) ≥ min
θ̌
Rπ(θ̌) = RBayes(π). (H.26)

Under certain conditions, the two errors RBayes(π) and Rminimax can coincide for a certain prior π called the
least favorable prior. Then the Bayes rule for the least favorable prior is the same as the minimax rule. See, for
example, Ref. [53] for further details.

Side note. The worst-case error and the minimax rule are much more difficult to study mathematically but are
favoured by statisticians who don’t like to assume a prior, as well as computer scientists.

Errors such as RBayes and Rminimax no longer depend on the decision rule, so they are figures about an
experiment assuming that optimal data processing can be performed. These errors can be used as benchmarks
for quantifying and comparing the performances of measurement devices for sensing and imaging. They are far
more meaningful than the SNR we used in previous chapters, because the errors have taken the data processing
into account and represent the final-stage performance of a measurement task.

While it is generally true that, assuming optimal processing for a given device, the higher the SNR, the
lower the errors, the specific relations between the SNR and the errors can be quite nontrivial and depend on
the statistical model. For different devices with different noise types, e.g., photon counting versus homodyne
detection, their SNRs can’t tell us precisely which one has lower errors after data processing, and we should use
the errors as the more conclusive benchmarks.

H.8. Side note: caveats and virtues of statistics

Statistics is as challenging as it is important. Some key challenges:
(1) System identification: An accurate and useful statistical model requires a careful calibration of the

experiment.
(2) Curse of dimensionality: A huge number of unknown parameters may be needed for an accurate

statistical model. In other words, the parameter space Θ for a statistical model may have a huge
number of dimensions. For example, the space of candidate gravitational waves is a function space,
often modeled as a space with very high dimensions or even an infinite-dimensional space.

(3) Even if one has a decent model, the optimal rules and quantities may be difficult to compute. The
difficulties are on many levels:
(a) Theoretical complexity: While the fundamental decision theory is in place, there may not be

closed-form or accurate solutions to the optimal rules and quantities.
(b) Human skill: Even if good solutions exist in the literature, a practitioner may find the theory

challenging to digest or they may harbor misconceptions to use it correctly.
(c) Human effort: Even if a practitioner understands the theory (or finds a collaborator who does),

the solutions may require a lot of effort to derive, or the computer code may require a lot of effort
to write.

(d) Computational complexity: Even if the code can be written, it may require a lot of computational
resources to run.

(4) Spherical cows: If we dumb down our statistical model to make the theory easier, we run the risk of
having a naive “spherical-cow” model of the reality (https://en.wikipedia.org/wiki/Spheri
cal_cow). This is a major criticism of the traditional “model-based” approach in statistics [54].

A famous aphorism is “All models are wrong, but some are useful” (https://en.wikipedia.o
rg/wiki/All_models_are_wrong).

https://en.wikipedia.org/wiki/Spherical_cow
https://en.wikipedia.org/wiki/Spherical_cow
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong
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A major recent trend in data processing is, of course, “machine learning” and neural networks, which enable
one to skip the statistical model and arrive directly at a decision rule by training with datasets. While they solve
many of the aforementioned challenges, model-based statistics is still valuable for our purpose:

(1) Decent physical models: Compared to other disciplines such as social sciences, a good news for
physics and engineering is that we often know our physical laws and devices pretty well, and simple
statistical models such as Gaussian or Poisson are decent.

(2) Experimental design: The performance of any machine-learning technique for an experiment is
difficult to assess until one runs it with some data, requiring a lot of time and effort. Without a simpler
theory to guide us, it becomes difficult to design or modify an experiment to optimize or improve the
end-stage performance.

(3) Fundamental limits: Even if one uses machine-learning techniques, theoretical statistics can still
inform us the fundamental limits of large classes of data-processing techniques, in the same manner
as the laws of thermodynamics.

With all the virtues and caveats of statistics in mind, we proceed with simple statistical problems in the next few
chapters.



APPENDIX I

Binary Hypothesis Testing*

The simplest problem in statistics is binary hypothesis testing with parameter spaceΘ = {0, 1} and only two
candidate probability measures P0 and P1 for the observation. To pick a decision rule, there are two common
rules used in statistics: the Neyman-Pearson rule and the Bayes rule.

I.1. Neyman-Pearson rule

The rule calls for the false-alarm probability to be restricted below a tolerance levelα and the miss probability
to be minimized. In other words, the rule can be expressed as

θ̌NP ≡ arg min
θ̌:P0[θ̌=1]≤α

P1[θ̌ = 0]. (I.1)

We call the resulting miss probability
RNP(α) ≡ min

θ̌:P0[θ̌=1]≤α
P1[θ̌ = 0] (I.2)

the Neyman-Pearson error. It can be shown that the Neyman-Pearson rule can be implemented by the so-called
likelihood-ratio test [55, 56]. It is in terms of the likelihood ratio, a special case of the Radon-Nikodym
derivative introduced in Sec. C.9:

Λ(x) ≡ dP1

dP0
(x) =

f1(x)

f0(x)
. (I.3)

In terms of the likelihood ratio, the likelihood-ratio test is the decision rule

θ̌(x, y) =

{
0, Λ(x) < T (y),

1, Λ(x) ≥ T (y),
(I.4)

where T is the test threshold, which may depend on the ancilla y.
The likelihood-ratio test illustrates the trade-off in minimizing the two errors P0[Λ ≥ T ] and P1[Λ < T ].

Raising the threshold T would decrease the false-alarm probability P0[Λ ≥ T ] but increase the miss probability
P1[Λ < T ], while lowering the threshold would do the opposite. It therefore makes sense that the optimal
choice of T should make the false-alarm probability

P0[θ̌ = 1] = P0[Λ ≥ T ] = α (I.5)
hit the tolerance level α. For a given α, a randomized threshold T may be necessary if the observation and thus
Λ are discrete.

I.2. Bayes rule

The Bayes rule is easier in many ways, as long as the prior probabilities π0 and π1 = 1− π0 are given for
the two hypotheses. Here we seek to minimize the average error under the zero-one loss:

Rπ(θ̌) = π0P0[θ̌ = 1] + π1P1[θ̌ = 0], (I.6)
which is a weighted average of the false-alarm probability and the miss probability. It has the operational
meaning of the average error probability, since it is the probability of making any of the two types of errors.
The Bayes rule given by Eq. (H.21) can be framed as a likelihood-ratio test with the threshold

T =
π0
π1
. (I.7)

This fixed threshold is much more convenient to use in practice than the Neyman-Pearson rule according to
Eq. (I.5), which may be quite hard to solve because P0[Λ ≥ T ] as a function of T is often difficult to compute
and then we need to invert it to obtain the desired T .
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The resulting Bayes error has the nice formula [57, 58]

RBayes(π) =
1

2
−K(π0P0, π1P1), (I.8)

where

K(π0P0, π1P1) ≡ sup
A∈E

|π0P0(A)− π1P1(A)| =
1

2

ˆ
|π0f0(x)− π1f1(x)|dσ(x) (I.9)

is called the Kolmogorov distance between two measures. K quantifies the distinguishability between the two
hypotheses, so that the higher the K, the lower the error RBayes.

Side note. The minimax rule seems far less commonly used in binary hypothesis testing; the Neyman-Pearson
rule is standard if one doesn’t like Bayes.

For further details about binary hypothesis testing, see, for example, Refs. [55, 56].

I.3. Chernoff upper bounds

The Neyman-Pearson error RNP given by Eq. (I.2) and the Bayes error RBayes given by Eq. (I.8) are useful
figures about an experiment, but they are often very difficult to compute analytically or even numerically.
Statisticians often resort to bounds on the errors and asymptotics to get a rough idea about them.

Assume the likelihood-ratio test with a deterministic threshold 0 < T <∞. Let

t ≡ lnT ∈ R, (I.10)

which is the threshold if the likelihood-ratio test is in terms of the log likelihood ratio ln Λ. Chebyshev’s
inequality (sometimes called Markov’s inequality https://en.wikipedia.org/wiki/Markov%27s_inequ
ality) yields

P0[Λ ≥ T ] ≤ T−s E0 (Λ
s) = exp [−st+ µ(s)] ∀s ≥ 0, (I.11)

P1[Λ < T ] ≤ T 1−s E1

(
Λs−1

)
= exp [(1− s)t+ µ(s)] ∀s ≤ 1, (I.12)

where we call

µ(s) ≡ lnE0 (Λ
s) = lnE1

(
Λs−1

)
= ln

ˆ
f1(x)

sf0(x)
1−sdσ(x) (I.13)

the Chebyshev exponent. µ(s) is often much easier to compute analytically than the errors.
To obtain the tightest upper bounds, we set

st0 ≡ arg max
s≥0

[st− µ(s)] (I.14)

for the first bound in Eq. (I.11) and

st1 ≡ arg max
s≤1

[−(1− s)t− µ(s)] (I.15)

for the second bound in Eq. (I.12). Notice that the local extrema of both problems occur at µ̇(s) = t.
Furthermore, notice the following properties of the Chebyshev exponent µ(s) when P0 ̸= P1 [59]:

(1) µ(s) is strictly convex for s ∈ R, i.e., µ̈(s) > 0. This is because ln is strictly increasing and

∂2

∂s2
E0(Λ

s) = E0

[
(lnΛ)2es ln Λ

]
> 0 (I.16)

as long as P0 ̸= P1, such that E0(Λ
s) is strictly convex. It follows that µ̇(s) is strictly increasing, and

we can define

ν(t) ≡ max
s∈R

[st− µ(s)] = stt− µ(st), where st satisfies µ̇(st) = t (I.17)

as the Legendre transform of µ(s) (https://en.wikipedia.org/wiki/Legendre_transform
ation). By the basic property of the Legendre transform, ν(t) is also strictly convex for all t ∈ R
(ν̈(t) > 0) and ν̇(t) is strictly increasing.

https://en.wikipedia.org/wiki/Markov%27s_inequality
https://en.wikipedia.org/wiki/Markov%27s_inequality
https://en.wikipedia.org/wiki/Legendre_transformation
https://en.wikipedia.org/wiki/Legendre_transformation
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(2) Define

D(P0∥P1) ≡
ˆ [

ln
dP0

dP1
(x)

]
dP0(x) (I.18)

as the relative entropy, also called the Kullback-Leibler (KL) divergence. Then

µ̇(0) = E0(lnΛ) = −D(P0∥P1), µ̇(1) = E1(lnΛ) = D(P1∥P0), (I.19)

which are the expected values of the log likelihood ratio under the two hypotheses. SinceD = 0 if and
only if the two measures are equal and D > 0 otherwise, µ̇(0) < 0 and µ̇(1) > 0 as long as P0 ̸= P1.

(3) With the strict convexity of µ(s), µ̇(s) must be strictly increasing, meaning that

µ̇(s) < µ̇(0) for s < 0, µ̇(s) > µ̇(1) for s > 1. (I.20)

All these facts imply that, as long as P0 ̸= P1 and the threshold t = lnT is in the interval

−D(P0∥P1) = µ̇(0) = E0(lnΛ) < t < E1(lnΛ) = µ̇(1) = D(P1∥P0), (I.21)

there is one and only one solution to µ̇(s) = t for s ∈ R and the solution must occur inside the interval
0 < s < 1. It follows that st0 and st1 given by Eqs. (I.14) and (I.15) coincide in the interval (0, 1) and we can
write

P0[Λ ≥ T ] = P0[ln Λ ≥ t] ≤ exp [−ν(t)], (I.22)

P1[Λ < T ] = P1[ln Λ < t] ≤ exp [−ν(t) + t], (I.23)

ν(t) = stt− µ(st), where st satisfies µ̇(st) = t, 0 < st < 1. (I.24)

The first inequality is an upper bound on the right tail area of the probability density of the log likelihood ratio
λ ≡ ln Λ for λ ∈ [t,∞), t > E0(lnΛ), and θ = 0, while the second inequality is an upper bound on the left
tail area of the probability density for λ ∈ (−∞, t), t < E1(lnΛ), and θ = 1, as depicted in Fig. I.1. If the
threshold t is outside the interval (E0(lnΛ),E1(lnΛ)) bounded by the means, one of the tail areas would be
quite large, prompting a redesign of t or the experiment.

Figure I.1. fθ(λ) is the probability density of the log-likelihood ratio λ ≡ ln Λ given the
hypothesis θ = 0 (top) or θ = 1 (bottom); its mean is E0(λ) = −D(P0∥P1) given θ = 0 (top)
or E1(λ) = D(P1∥P0) given θ = 1 (bottom). P0[λ ≥ t] and P1[λ < t], the tail areas given
a threshold t, are the error probabilities. If t < E0(λ), the false-alarm probability P0[λ ≥ t]
would be very high; likewise for the miss probability P1[λ < t] if t > E1(λ), so it is reasonable
to assume that the threshold t stays in the interval E0(λ) < t < E1(λ).
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Within the interval s ∈ [0, 1], we can say more about the Chebyshev exponent µ(s) and its Legendre
transform ν(t):

s = 0 : µ(0) = 0, t = µ̇(0) = E0 (lnΛ) = −D(P0∥P1) ≡ t0, (I.25)
ν(t0) = 0, ν(t0)− t0 = D(P0∥P1), (I.26)

s = 1 : µ(1) = 0, t = µ̇(1) = E1 (lnΛ) = D(P1∥P0) ≡ t1, (I.27)
ν(t1) = D(P1∥P0), ν(t1)− t1 = 0. (I.28)

0 < s < 1 : µ(s) < 0, (Jensen’s E0(Λ
s) ≤ [E0(Λ)]

s = 1, etc.) (I.29)
t0 < t < t1 : 0 < ν(t) < D(P1∥P0), (ν(t0) = 0, ν̇(t0) = 0, ν̈(t) > 0) (I.30)

D(P0∥P1) > ν(t)− t > 0. (exchange P0 and P1) (I.31)

Fig. I.2 summarizes these findings.

Figure I.2. Top: Chebyshev exponent µ(s) versus s for s ∈ [0, 1]. C is the Chernoff distance.
The Legendre transform converts µ(s) to ν(t) via stt − µ(st) at µ̇(st) = t. Bottom left:
Alternative picture of Legendre transform [60]. The curve is t = µ̇(s) (vertical axis) versus
s (horizontal axis). The same curve gives s = ν̇(t) (horizontal axis) versus t (vertical axis).
µ(s) is the signed area of the red region up to s. ν(t) is the absolute area enclosed by the blue
boundary (blue lines and the curve). ν(t)−t is the absolute area enclosed by the green boundary
(green lines and the curve). C is the absolute area of the red region up to t = µ̇(s) = 0. Bottom
right: plot of ν(t) and ν(t)− t (horizontal axis) versus t (vertical axis).

For the Bayes rule with T = π1/π0 = 1 and t = lnT = 0, in particular, Eq. (I.21) is satisfied and we obtain

RBayes(1/2, 1/2) ≤
1

2
exp (−C), (I.32)

where

C ≡ ν(0) = max
0<s<1

[−µ(s)] (I.33)

is called the Chernoff distance, which is another metric of distinguishability between two measures.
Eqs. (I.22), (I.23), and (I.32) are known as Chernoff bounds [55]. They serve as performance guarantees

that the errors cannot exceed certain levels.
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I.4. Large deviations

The Chernoff bounds are also tight in an asymptotic sense. Consider n i.i.d. (independent and identically
distributed) observations (x1, . . . , xn) ∈ Ωn following the product measure (see Sec. C.3)

P
(n)
θ = P⊗n

θ . (I.34)

Then the likelihood ratio becomes

Λ(n)(x1, . . . , xn) ≡
dP

(n)
1

dP
(n)
0

(x1, . . . , xn) = Λ(x1) . . .Λ(xn), (I.35)

where each Λ(xj) is the likelihood ratio for one observation xj . Assume the likelihood-ratio test

θ̌(x) =

{
0, Λ(n) < T (n),

1, Λ(n) ≥ T (n),
(I.36)

and define

t ≡ lim
n→∞

1

n
lnT (n) (I.37)

as the growth rate of the threshold T (n), assumed to be finite. Then

T (n) = exp[nt+ o(n)], (I.38)

where o(n) denotes terms asymptotically smaller than n, i.e.,

lim
n→∞

o(n)

n
= 0. (I.39)

For example, the Bayes rule has the fixed threshold T (n) = π0/π1, so t = 0. The test inequalities can then be
rewritten as

1

n
ln Λ(n) =

1

n

n∑
j=1

ln Λ(xj) ≷ t+
o(n)

n
, (I.40)

where the left-hand side is the sample mean of the log-likelihood ratio ln Λ. Now assume

t > E0(lnΛ) = −D(P0∥P1), (I.41)

which is the same as the first inequality in Eq. (I.21). Then Cramér’s theorem (https://en.wikipedia
.org/wiki/Cram%C3%A9r%27s_theorem_(large_deviations)) gives the asymptotic decay rate of the
false-alarm probability:

− lim
n→∞

1

n
lnP

(n)
0

[
1

n
ln Λ(n) ≥ t

]
= max

s∈R
[st− µ(s)], (I.42)

where the o(n)/n term can be thrown away in the limit and µ(s) is the Chebyshev exponent for one observation.
A similar argument, assuming

t < E1(lnΛ) = D(P1∥P0), (I.43)

which is the second inequality in Eq. (I.21), gives the asymptotic decay rate of the miss probability:

− lim
n→∞

1

n
lnP

(n)
1

[
1

n
ln Λ(n) < t

]
= max

s∈R
[−(1− s)t− µ(s)]. (I.44)

By the earlier arguments about the Legendre transform, as long as P0 ̸= P1, we can write

− lim
n→∞

1

n
lnP

(n)
0

[
1

n
ln Λ(n) ≥ t

]
= ν(t), (I.45)

− lim
n→∞

1

n
lnP

(n)
1

[
1

n
ln Λ(n) < t

]
= ν(t)− t, (I.46)

which are the same as the Chernoff bound exponents in Eqs. (I.22) and (I.23) for one observation.

https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_theorem_(large_deviations)
https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_theorem_(large_deviations)
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If t = 0, the two decay rates coincide with the Chernoff distance C given by Eqs. (I.13) and (I.33). In
particular,

− lim
n→∞

1

n
lnR

(n)
Bayes(π) = C, (I.47)

where R(n)
Bayes(π) is the Bayes error in terms of {P (n)

0 , P
(n)
1 }. It makes sense that the two decay rates should

match under the Bayes rule, as increasing one would decrease the other, the asymptotic decay rate of the average
error is the higher of the two, and the rule that minimizes the average error would make the two rates match.

I.5. Stein’s lemma

Consider the Neyman-Pearson rule with n i.i.d. observations. Assume that a deterministic threshold T (n)

satisfies the rule, so that

P
(n)
0

[
Λ(n) ≥ T (n)

]
= α. (I.48)

Notice that this false-alarm probability stays constant and its decay rate is zero. Then Eq. (I.45) suggests that
the threshold growth rate t satisfies ν(t) = 0. It follows from Eqs. (I.26) and (I.46) that the asymptotic decay
rate of the miss probability should be ν(t)− t = D(P0∥P1), whereD is the relative entropy for one observation
given by Eq. (I.18). A more rigorous proof of this argument can be done to give

− lim
n→∞

1

n
lnR

(n)
NP (α) = D(P0∥P1), (I.49)

where R(n)
NP denotes the Neyman-Pearson error given by Eq. (I.2) in terms of {P (n)

0 , P
(n)
1 }. Equivalently, we

can write

R
(n)
NP (α) = exp [−nD(P0∥P1) + o(n)]. (I.50)

This result is called Stein’s lemma.
Note that there is no limit on the absolute size of exp[o(n)], only that its exponent must vary sublinearly

with n. Thus, Stein’s lemma—and statements about asymptotic decay rates in general—are not at all precise
about the absolute error for any finite n. Note also that D(P0∥P1) does not depend on the tolerance level α;
only the o(n) term depends on α.

I.6. Bayes error bounds

The Chernoff bounds are upper error bounds, and often we would like lower error bounds as well, which
serve as fundamental limits to how low the errors can go. Here are some handy inequalities for the Bayes error
[57, 58]:

π0π1e
−2B ≤ 1

2

(
1−

√
1− 4π0π1e−2B

)
≤ RBayes(π) ≤

√
π0π1e

−B, (I.51)

where

B ≡ −µ(1/2) = − ln

ˆ √
f0(x)f1(x)dσ(x) (I.52)

is called the Bhattacharyya distance. Defining two more distances related to the relative entropies as

Dmin ≡ min {D(P0∥P1), D(P1∥P0)}, D̃ ≡
[

1

D(P0∥P1)
+

1

D(P1∥P0)

]−1

, (I.53)

which obey
1

2
Dmin ≤ D̃ ≤ Dmin,

(
1

1/x+ 1/x
≤ 1

1/x+ 1/y
≤ 1

1/x
for y ≥ x > 0

)
(I.54)

we obtain the following handy inequalities concerning Dmin, D̃, the Bhattacharyya distance B, the Chernoff
distance C given by Eq. (I.33):

B ≤ C ≤ 2B ≤ Dmin, C ≤ D̃. (I.55)
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The first inequality B ≤ C comes from the defintions of B and C, the second C ≤ 2B comes from combining
Eqs. (I.47) and (I.51) for n i.i.d. observations, the third 2B ≤ Dmin comes from the theory of Rényi divergences
[61], and the fourth C ≤ D̃ can be proved using the Legendre-transform theory in Sec. I.3 and is tighter than
the bound C ≤ Dmin [62].

Interesting observations:

(1) Eq. (I.55) means thatB andC are within a factor of 2 of each other, as we can also writeC/2 ≤ B ≤ C,
while the relative entropies are somewhat higher. B is hence a decent substitute of C if the latter is
too difficult to compute.

(2) C ≤ Dmin can also be observed from Fig. I.2 and proved using the Legendre-transform theory there. It
makes sense that C, the Bayes error decay rate, should be lower than D(P0∥P1), the Neyman-Pearson
error decay rate, since the Bayes rule minimizes the average error, requiring both decay rates to be
low, while the Neyman-Pearson rule permits the false-alarm decay rate to stay constant, allowing the
miss probability to decay faster.

WithC being symmetric under the exchange of P0 and P1, C ≤ D(P1∥P0) follows from the same
argument.

(3) The tighter bound C ≤ D̃ can be proved as follows. Since ν̈(t) ≥ 0, ν̇(ta) ≤ ν̇(tb) for ta ≤ tb. By
the mean value theorem, there exist a ta ∈ [t0, 0] and a tb ∈ [0, t1] such that

ν̇(ta) =
ν(0)− ν(t0)

−t0
≤ ν(t1)− ν(0)

t1
= ν̇(tb),

C

D(P0∥P1)
≤ D(P1∥P0)− C

D(P1∥P0)
, (I.56)

which results in C ≤ D̃.

Remark I.1. Mathematicians have a stricter definition of distances and metrics (https://en.wikipedia
.org/wiki/Metric_space). A Riemannian metric is another type of metric specific to differential geometry
(https://en.wikipedia.org/wiki/Riemannian_manifold). We use the terms distance and metric
loosely in this book and they may not satisfy the strict definitions.

Side note. There are a whole zoo of distances for probability measures; we’ve discussed only a few that have
important operational meanings. More notable examples:

(1) The Hellinger distance (https://en.wikipedia.org/wiki/Hellinger_distance) is related
to the Bhattacharyya distance by

H ≡
√
1− e−B. (I.57)

The former is more common in statistics, while the latter is more common in engineering. They are,
of course, equivalent concepts.

(2) The Rényi divergences are defined as [61]

Ds(P0∥P1) ≡ −µ(1− s)

1− s
, s ∈ (0, 1) ∪ (1,∞). (I.58)

For s = 0, 1, or ∞, Ds is defined by taking the limit s→ 0, 1, or ∞. Then

B =
1

2
D1/2(P0∥P1), D(P0∥P1) = D1(P0∥P1). (I.59)

2B ≤ D comes from the fact that, given a pair of probability measures, Ds is an increasing function
of s (Ds ≤ Ds′ for s < s′).

I.7. Properties of statistical distances

By virtue of the error bounds, statistical distances such as B,C,D are appealing alternatives to the exact
errors, as the former are often easier to compute by hand or numerically. Their evaluation can be eased further
by various special cases and more bounds.

https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Riemannian_manifold
https://en.wikipedia.org/wiki/Hellinger_distance
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I.7.1. n independent observations. Let (x1, . . . , xn) ∈ Ω1 × · · · × Ωn be independent observations
following the product measure

P
(n)
θ = Pθ,1 ⊗ · · · ⊗ Pθ,n, (I.60)

where each Pθ,j is a probability measure on (Ωj , Ej) and the individual measures {Pθ,j : j = 1, . . . ,m}
need not be the same. Let µj(s), Bj , Cj , D(P0,j∥P1,j) be the Chebyshev exponent, Bhattacharyya distance,
Chernoff distance, and relative entropy with respect to {P0,j , P1,j}, respectively, and µ(n)(s), B(n), C(n), and
D(P

(n)
0 ∥P (n)

1 ) be those with respect to {P (n)
0 , P

(n)
1 }. Then

µ(n)(s) =
n∑

j=1

µj(s), B(n) =
n∑

j=1

Bj , (I.61)

C(n) = max
0≤s≤1

[
−µ(n)(s)

]
≤

n∑
j=1

Cj , D(P
(n)
0 ∥P (n)

1 ) =
n∑

j=1

D(P0,j∥P1,j). (I.62)

I.7.2. n i.i.d. observations. If the individual measures are identical with Pθ,j = Pθ, such that the obser-
vations are i.i.d. with µj(s) = µ(s), Bj = B, and Cj = C, then

µ(n)(s) = nµ(s), B(n) = nB, C(n) = nC, D(P
(n)
0 ∥P (n)

1 ) = nD(P0∥P1). (I.63)

I.7.3. Gaussian. Let the observation be the vectoral normal random variable X ∼ N (mθ,Σθ), wnere mθ

is an n× 1 column vector and Σθ is an n× n covariance matrix. Then [57, 59]

µ(s) = −1

2

{
s(1− s)(m1 −m0)

⊤[sΣ0 + (1− s)Σ1]
−1(m1 −m0) + ln

det[sΣ0 + (1− s)Σ1]

det
(
Σs
0Σ

1−s
1

) }
,

(I.64)

B =
1

2

[
1

4
(m1 −m0)

⊤
(
Σ0 +Σ1

2

)−1

(m1 −m0) + ln
det[(Σ0 +Σ1)/2]

det
√
Σ0Σ1

]
, (I.65)

D(P0∥P1) =
1

2

[
(m1 −m0)

⊤Σ−1
1 (m1 −m0) + tr(Σ1Σ

−1
0 )− ln det

(
Σ1Σ

−1
0

)
− n

]
. (I.66)

A simpler expression for C is unknown in the general case. Special cases:
(1) Σ0 = Σ1 = Σ:

µ(s) = −1

2
s(1− s)(m1 −m0)

⊤Σ−1(m1 −m0), (I.67)

B = C =
1

8
(m1 −m0)

⊤Σ−1(m1 −m0), (I.68)

D(P0∥P1) = D(P1∥P0) =
1

2
(m1 −m0)

⊤Σ−1(m1 −m0). (I.69)

C can be solved in this simple case and coincides with B.
(2) If m0 = m1, the first part in each expression is zero, and B, C, and D can be regarded as distances

between two covariance matrices Σ0 and Σ1.
(3) Suppose that Σ0 and Σ1 commute andm0 = m1. The two matrices commute if and only if there exists

a θ-independent unitary matrix U such that Σθ = UDθU
†, where Dθ,jk = λθ(j)δjk is the diagonal

matrix of eigenvalues of Σθ. Then

µ(s) = −1

2

∑
j

ln
sλ0(j) + (1− s)λ1(j)

λ0(j)sλ1(j)1−s
, (I.70)

B =
1

2

∑
j

ln
[λ0(j) + λ1(j)]/2√

λ0(j)λ1(j)
, (I.71)

D(P0∥P1) =
1

2

∑
j

[
λ1(j)

λ0(j)
− ln

λ1(j)

λ0(j)
− 1

]
. (I.72)
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These expressions are especially useful if X is a stationary random process, in which case λθ(j) is
proportional to the power spectral density; see Sec. C.8.

I.7.4. Poisson. Let the observation be the vectoral Poisson random variable N = (N1, . . . , NJ) ∼
Poisson(mθ) with Eθ(Nj) = mθ(j). Then [63]

µ(s) =
∑
j

[
−sm1(j)− (1− s)m0(j) +m1(j)

sm0(j)
1−s
]
, (I.73)

B =
∑
j

[
m0(j) +m1(j)

2
−
√
m1(j)m0(j)

]
, (I.74)

D(P0∥P1) =
∑
j

[
m1(j)−m0(j) +m0(j) ln

m0(j)

m1(j)

]
. (I.75)

I.7.5. Joint convexity. Suppose that the probability density of a random variable Y is

fY |θ(y) =

ˆ
fY |X,θ(y|x)fX|θ(x)dσ(x), (I.76)

where fX|θ(x) is the probability density of a hidden variable X and fY |X,θ(y|x) is the probability density of Y
conditioned onX = x. We callX the input, Y the output, and the map from fX|θ to fY |θ via fY |X,θ a channel.

While all the densities may depend on the hypothesis θ in general, we assume in this subsection that the
input density fX|0 = fX|1 = fX does not. Then the Rényi divergences for a given s ≤ 1 satisfy joint convexity,
meaning that µ(s) for s ≥ 0 satisfies joint concavity µY (s) ≥ E[µY |X(s)], while B, C, and D satisfy joint
convexity [46]:

BY ≤ E
(
BY |X

)
, CY ≤ E

(
CY |X

)
, D(PY |0∥PY |1) ≤ E

[
D(PY |X,0∥PY |X,1)

]
, (I.77)

where the subscript Y denotes a quantity in terms of the output fY |θ, the subscript Y |X denotes a quantity in
terms of the channel fY |X,θ, and

E[g(X)] =

ˆ
g(x)fX(x)dσ(x) (I.78)

is the expectation with respect to the input fX . Joint convexity means that, if one has access to a hidden random
variable X of an experiment, then the distinguishability on average is higher than that without access to X .

I.7.6. Data-processing inequality. Now assume a channel given by Eq. (I.76) that does not depend on θ,
i.e., fY |X,0 = fY |X,1 = fY |X . Then the Rényi divergences satisfy the data-processing inequality, implying that
our distances also satisfy the inequalities:

BY ≤ BX , CY ≤ CX , D(PY |0∥PY |1) ≤ D(PX|0∥PX|1). (I.79)

where the subscript X denotes a quantity in terms of the input fX|θ. The inequality is so called because a
channel can model any processing of the input X to produce an output Y . The inequality implies that no
postprocessing can increase the distinguishability of two probability measures (as long as the processing has no
access to the hypothesis). Another name for a data-processing inequality is monotonicity.

The channel can also model the evolution of an open system in time, where PX|θ models the initial system
state and PY |θ models the final state. The data-processing inequality can then be regarded as a generalization
of the second law of thermodynamics.

I.7.7. Strong concavity. Define the Bhattacharyya coefficient as

B̃ ≡ exp(−B) =

ˆ √
f0(x)f1(x)dσ(x). (I.80)

Then, given Eq. (I.76), where all the densities may depend on θ, B̃ satisfies the strong concavity [47]

B̃Y ≥
ˆ
B̃Y |x

√
fX|0(x)fX|1(x)dσ(x), (I.81)
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where B̃Y |x is the Bhattacharyya coefficient in terms of the channel fY |X,θ with X = x. In terms of the
Bhattacharyya distances,

BY ≤ − ln

ˆ
e−BY |x

√
fX|0(x)fX|1(x)dσ(x). (I.82)

We get back the joint convexity of B if fX|0 = fX|1 becauseˆ
e−BY |xfX(x)dσ(x) = E(e−BY |X ) ≥ exp

[
−E(BY |X)

]
, (Jensen) (I.83)

BY ≤ − lnE(e−BY |X ) ≤ E
(
BY |X

)
, (I.84)

and we get back the data-processing inequality if fY |X,0 = fY |X,1 so that BY |X = 0.



APPENDIX J

Parameter Estimation*

J.1. Key parameter

Often a model involves a huge number of unknowns but a practitioner is interested only in certain succinct
properties of it. For example,

(1) For a vectoral parameter θ = (θ1, . . . , θp) ∈ Θ ⊆ Rp, one may be interested in only θ1 and not the
rest (θ2, . . . , θp), which are called nuisance parameters.

(2) For a waveform θ(t) in some function space, one may be interested in only the energy
´∞
−∞ |θ(t)|2dt

or the mean arrival time
´∞
−∞ t|θ(t)|2dt.

(3) Suppose that we know nothing about the statistical model except the sample/event spaces (Ω, E).
Then Pθ = θ ∈ Θ, where Θ is the set of all probability measures. This model is called nonparametric
(not the best name as there is still a parameter, namely, the probability measure itself). Given n i.i.d.
observations, one may be interested in a population parameter

β(P ) =

ˆ
b(x)dP (x). (J.1)

Mathematically, we model a large number of unknowns by a high-dimensional parameter spaceΘ. The statistical
model remains {Pθ : θ ∈ Θ}, while we define the parameter of interest by a function β : Θ → Φ. We call
β(θ) ∈ Φ the key parameter, also called the parameter of interest, and Φ the key parameter space. The decision
rule, more often called the estimator in parameter estimation, is now taken as β̌ : Ω× Ω′ → Φ, and we should
redefine the loss function l(β, β̌) in terms of the true β(θ) and the estimate β̌(x, y). For example, if the key
parameter is a real number, we can define the square loss as

l(β, β̌) =
(
β − β̌

)2
. (J.2)

It can be proved using the Rao-Blackwell theorem that, for a large class of loss functions including the square
loss, ancillas do not help [64], so we assume deterministic estimators β̌(x) hereafter. The errors are now defined
as

R(θ, β̌) ≡
ˆ
l(β(θ), β̌(x))dPθ(x), Rπ(β̌) ≡

ˆ
R(θ, β̌)dπ(θ), (J.3)

RBayes ≡ min
β̌
Rπ(β̌), Rminimax ≡ min

β̌
max

θ
R(θ, β̌), (J.4)

and we can rewrite Eq. (H.26) as

Rminimax = max
θ∈Θ

R(θ, β̌minimax) ≥ Rπ(β̌minimax) ≥ min
β̌
Rπ(β̌) = RBayes(π). (J.5)

We get back the simpler-looking formalism in Chap. H if we set β(θ) = θ. Conversely, we can also obtain the
key-parameter formalism here as a special case of the one in Chap. H if we define a larger parameter space as
the graph of β

{(θ, ϕ) ∈ Θ× Φ : ϕ = β(θ)} (J.6)

and require the loss function to depend only on the ϕ component of the augmented parameter (θ, ϕ).
A practical reason for introducing the key-parameter concept is that an accurate estimation of a high-

dimensional θ is often impossible or infeasible, while the estimation of a low-dimensional β(θ) may be more
straightforward. For example, for the population parameter given by Eq. (J.1), a common estimator is the sample

204
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mean

β̌(x1, . . . , xn) =
1

n

n∑
j=1

b(xj), (J.7)

and there is no need to estimate the underlying measure P .

J.2. Bayes estimator

The Bayesian theory is the cleanest so we start with it. For simplicity, assume that β is a real number
(Φ ⊆ R); generalizations for a vectoral β are straightforward but too tedious to write out. The error for the
square loss is called the mean square error (MSE), defined as

R(θ, β̌) =

ˆ [
β̌(x)− β(θ)

]2
dPθ(x) = Eθ

{[
β̌ − β(θ)

]2}
, (J.8)

while we call

Rπ(β̌) =

ˆ
R(θ, β̌)dπ(θ) = E

[(
β̌ − β

)2] (J.9)

the average MSE, which is obtained after taking the expectation E with respect to both the observation x and
the parameter θ. The scalar β, the square loss, and the MSE’s are assumed hereafter in this chapter.

The Bayes estimator here is also called the minimum-MSE (MMSE) estimator, and it is given by the
conditional expectation

β̌Bayes(x) =

ˆ
β(θ)dQx(θ), (J.10)

where Qx is the posterior measure described in Sec. H.7. The resulting Bayes error has the interesting formula
RBayes(π) ≡ min

β̌
Rπ(β̌) = Rπ(β̌Bayes) = V(β)− V(β̌Bayes) = E

(
β2
)
− E

(
β̌2Bayes

)
, (J.11)

E
(
β2
)
=

ˆ
β(θ)2dπ(θ), E

(
β̌2Bayes

)
=

ˆ
β̌Bayes(x)

2dPθ(x)dπ(θ), (J.12)

E(β) =
ˆ
β(θ)dπ(θ) = E(β̌Bayes) =

ˆ
β̌Bayes(x)dPθ(x)dπ(θ), (J.13)

whereV denotes the variance with respect to dPθ(x)dπ(θ) and Eq. (J.13) follows from the law of total expectation
(see Appendix C).

Side note. Eq. (J.11) looks like a Pythagorean theorem, and indeed the average MSE and the conditional
expectation that minimizes it have a geometric interpretation [65].

Eq. (J.11) in itself is not very useful, but we can at least read from it a trivial upper bound
RBayes ≤ V(β) (J.14)

given by the prior variance V(β). The right-hand side is equal to the average errorRπ(β̌) if we set the estimator
β̌(x) to be the prior expected value E(β), ignoring any observation x. An experiment is informative only when
the average error is much lower than than the prior variance, so we need alternative ways to evaluate RBayes.

J.3. Linear Gaussian model

A rare case where β̌Bayes(x) and the Bayes MSE RBayes can be evaluated exactly is when the observation
and the prior follow the linear Gaussian model and the key parameter is a linear function of θ ∈ Θ = Rp:

x ∼ N (Aθ,Σ) under Pθ, θ ∼ N (θ̄,Π) under π, β(θ) = b⊤θ, (J.15)

where A is an m× p matrix, Σ is the m×m observation covariance matrix, θ̄ is the prior mean (p× 1 column
vector), Π is the prior covariance matrix, and b is a p × 1 column vector, all assumed to be independent of θ
(we’ve abused notation by using x and θ to denote the random variables as well). Then the posterior measure
Qx is also Gaussian:

θ ∼ N (θ̌Bayes(x),Υ) under Qx, θ̌Bayes(x) = Υ
(
A⊤Σ−1x+Π−1θ̄

)
, Υ ≡

(
A⊤Σ−1A+Π−1

)−1
. (J.16)
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The posterior mean θ̌Bayes is a weighted average of the observation x and the prior θ̄, while the inverse posterior
covariance Υ−1 is a weighted sum of the inverse observation covariance Σ−1 and the inverse prior covariance
Π−1. For the estimation of β = b⊤θ, we obtain

β̌Bayes(x) = b⊤θ̌Bayes(x), (J.17)

RBayes = b⊤Υb. (J.18)

The famous Wiener and Kalman filters assume this linear Gaussian model. The Kalman filter and its
extensions have found many successful applications in diverse areas of science and engineering, most notably
in navigation (https://en.wikipedia.org/wiki/Kalman_filter).

J.4. Bayes error bounds

J.4.1. Gill-Levit bounds. RBayes is difficult to compute in most cases, and we often have to resort to error
bounds. There are a whole zoo of lower error bounds in the literature [66]; here we mention just one family of
bounds called the Gill-Levit bounds [67], also called Bayesian Cramér-Rao bounds or Van Trees inequalities,
which include many useful bounds as special cases.

Side note. Beware that the Gill-Levit bounds may grossly underestimate RBayes for certain problems. See, for
example, Ref. [66] for alternative bounds that may work better.

Let ϱ(θ) be the probability density of the prior π (with respect to the Lebesgue measure). Assume that ϱ is
strictly positive, i.e., ϱ(θ) > 0 for all θ ∈ Θ. Let

∇ ≡
(

∂
∂θ1

. . . ∂
∂θp

)⊤
(J.19)

be the gradient with respect to θ. Assume also that each observation density fθ(x) is strictly positive for all
x ∈ Ω. Then the Gill-Levit bounds on the average MSE for a scalar β : Θ → R are given by

Rπ(β̌) ≥ G(v) ≡ [E(v · ∇β)]2

E
[
v⊤Fv + (divϱ v)

2
] , (J.20)

E(. . . ) =
ˆ
(. . . )dπ(θ) =

ˆ
(. . . )ϱ(θ)dpθ, (J.21)

v(θ) · ∇β(θ) =
∑
j

vj(θ)
∂β(θ)

∂θj
, (J.22)

v(θ)⊤F (θ)v(θ) =
∑
j,k

vj(θ)Fjk(θ)vk(θ), (J.23)

Fjk(θ) ≡ Eθ

[(
∂

∂θj
ln fθ

)(
∂

∂θk
ln fθ

)]
=

ˆ [
∂

∂θj
ln fθ(x)

][
∂

∂θk
ln fθ(x)

]
fθ(x)dσ(x), (J.24)

divϱ v(θ) ≡
1

ϱ(θ)
∇ · [ϱ(θ)v(θ)] = 1

ϱ(θ)

∑
j

∂

∂θj
[ϱ(θ)vj(θ)]. (J.25)

The proof is in Sec. J.8 and the quantities are defined as follows:
(1) v : Θ → Rp is any vector field on the parameter space Θ that satisfies

ϱ(θ)v(θ) = 0 ∀θ ∈ boundary(Θ). (J.26)
(2) F given by Eq. (J.24) is called the Fisher information matrix. It is the only term in the bound that

depends on the observation densities {fθ(x)}. Another handy formula is

Fjk(θ) = Eθ

(
− ∂2

∂θj∂θk
ln fθ

)
=

ˆ [
− ∂2

∂θj∂θk
ln fθ(x)

]
fθ(x)dσ(x). (J.27)

The Fisher information is a fundamental metric of the statistical model; more on that later.
(3) divϱ v depends on the vector field v(θ) and the prior density ϱ(θ) only.

Note that

https://en.wikipedia.org/wiki/Kalman_filter
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(1) The bound G(v) does not depend on the estimator and applies also to the Bayes error RBayes =

Rπ(β̌Bayes).
(2) By virtue of Eq. (J.5),G(v) for any prior π also serves as a lower bound on the minimax errorRminimax

as well as the worst-case error maxθ R(θ, β̌) for any estimator.
(3) By choosing the vector field v, we can obtain various bounds useful for different purposes.
(4) Given a v, cv for any nonzero constant c gives the same bound.

Side note. It is possible to reframe G(v) in the language of differential geometry and treat ϱ(θ), v(θ), F (θ),
and ∇ as geometric concepts on a manifold Θ [68, 69].

J.4.2. Optimal Gill-Levit bound. An optimal choice of v to give the highest Gill-Levit bound maxv G(v)
can be obtained by solving the linear partial differential equation [69]

Tv(θ) ≡ F (θ)v(θ)−∇[divϱ v(θ)] = ∇β(θ), (J.28)

where T is a linear operator, assuming that a solution exists (∇β is in the range of T ). Any solution gives the
same bound, and writing it as v = T−1∇β, the optimal bound is

max
v
G(v) = E

[
(∇β)⊤

(
T−1∇β

)]
, (J.29)

as proved in Sec. J.8.

J.4.3. Schützenberger-Van Trees bound. Let v be the constant vector field

v = [E(F +H)]−1 E(∇β), Hjk(θ) ≡ − ∂2

∂θj∂θk
ln ϱ(θ). (J.30)

Then the bound becomes

G(v) = E(∇β)⊤[E(F +H)]−1 E(∇β). (J.31)

This bound was first discovered by Schützenberger in 1957 [70] and then independently by Van Trees [55, 66].
The H(θ) matrix depends on the prior density ϱ(θ) only and quantifies the prior information, similar to the
Fisher information matrix F (θ).

The bound coincides with the optimal Gill-Levit bound if∇β(θ) andF (θ) are constant and ϱ(θ) is Gaussian,
such thatH = Π−1 is the inverse of the prior covariance matrix and the v given by Eq. (J.30) satisfies Eq. (J.28).

For the linear Gaussian model in Sec. J.3, the Schützenberger-Van Trees bound coincides with the Bayes
error given by Eq. (J.18), since

E(∇β) = ∇β = b, E(F ) = F = A⊤Σ−1A, E(H) = H = Π−1, E(F +H) = F +H = Υ−1. (J.32)

Of course, we don’t need any error bound for the linear Gaussian model since we know the error exactly. What
this example offers is an intuition: the bound should be pretty good if the model is close to linear Gaussian.

J.4.4. Borovkov-Sakhanenko bound. For n i.i.d. observations, the total Fisher information

F (n)(θ) = nF (θ) (J.33)

is n times F (θ) of one observation, and we pick

v(θ) = F (θ)−1∇β(θ), (J.34)

so that

v(θ) · ∇β(θ) = v(θ)⊤F (θ)v(θ) = [∇β(θ)]⊤F (θ)−1∇β(θ) ≡ C(θ). (J.35)

divϱ v does not depend on n and does not need to be written out explicitly here. The resulting bound G(n)(v)
is called the Borovkov-Sakhanenko bound [71], given by

G(n)(v) =
[E(C)]2

nE(C) + E[(divϱ v)2]
≥ 1

n
E(C)− 1

n2
E[(divϱ v)2] (1/(1 + u) ≥ 1− u) (J.36)

=
E(C)
n

+ o

(
1

n

)
. (J.37)
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This bound is important because C(θ)/n turns out to coincide with the Cramér-Rao bound (CRB) and also the
asymptotic error of the maximum-likelihood (ML) estimator, both historically important concepts to be tackled
in Secs. J.5 and J.6.

J.4.5. Upper bounds. Curiously, upper error bounds for parameter estimation are not as well studied,
although I can present one family here. Let Ω ⊆ Rn and assume that the estimator

β̌D(x) =

D∑
d=0

∑
j1,...,jl

c
(d)
j1,...,jl

xj1 . . . xjd (J.38)

= c(0) +
∑
j1

c
(1)
j1
xj1 +

∑
j1,j2

c
(2)
j1j2

xj1xj2 + · · ·+
∑

j1,...,jD

c
(D)
j1,...,jD

xj1 . . . xjD (J.39)

is a degree-D polynomial of the observation x called the Volterra filter or the polynomial filter [72]. If we define

y =
(
1, x1, . . . xn, . . . xj1 . . . xjd , . . .

)⊤ (J.40)
as a column vector of all the monomials of x up to degree D, then the estimator can be expressed as

β̌D = c⊤y, (J.41)
where c is a column vector. The average error becomes

Rπ(β̌D) = E
[(
c⊤y − β

)2]
= c⊤ E

(
yy⊤

)
c− 2c⊤ E(yβ) + E(β2). (J.42)

The optimal c is then

c =
[
E
(
yy⊤

)]−1
E(yβ), Rπ(β̌D) = E(β2)− E(yβ)⊤

[
E
(
yy⊤

)]−1
E(yβ) ≥ RBayes. (J.43)

The simplest example is when D = 0, β̌0 = E(β), and we obtain the trivial Rπ = V(β). It is equal to RBayes
when the observation is independent of the parameter and the optimal estimator is simply the prior expectation.
The next simplest example is whenD = 1 and the estimator is linear. For the linear Gaussian model in Sec. J.3,
we know that a linear estimator is optimal among all estimators, so Rπ(β̌1) = RBayes, and the upper bound is
tight. For other models, Rπ(β̌1) may be the easiest nontrivial upper bound.

In general, Rπ(β̌D) decreases with D (Rπ(β̌D) ≥ Rπ(β̌D′) for D < D′), so one may try to improve the
upper bound by increasing D. One may also put different functions of x in y other than monomials.

J.5. Maximum-likelihood (ML) estimator

We now switch gears to the frequentist approach, ignoring any prior. We could go the minimax route, but it
is too difficult a subject to be addressed in this book; see Refs. [53, 73] for example. Instead, here we will focus
on the most popular estimator in frequentist statistics called the maximum-likelihood (ML) estimator.

To define the estimator, let us plug the observation x into the observation probability densities fθ(x).
fθ(x) as a function of the parameter θ is called the likelihood function. (We’ve encountered this function
earlier in Chap. I in the context of the likelihood ratio f1(x)/f0(x).) In terms of the likelihood function, the
maximum-likelihood (ML) estimator is defined as

β̌ML(x) ≡ β(θ̌ML(x)), θ̌ML(x) ≡ arg max
ϕ

fϕ(x), (J.44)

where we’ve used a different variable ϕ for the argument of the likelihoood function, reserving θ for the true
parameter.

Elementary properties of the maximization:
(1)

arg max
ϕ

fϕ(x) = arg max
ϕ

ln fϕ(x) (J.45)

in terms of the log-likelihood ln fϕ(x); the latter is often easier to solve.
(2) We are free to add any ϕ-independent term g(x) to the function fϕ(x) or ln fϕ(x) to be maximized; it

doesn’t change the maximum point arg max.
(3) We can also multiply the function fϕ(x) or ln fϕ(x) by any positive ϕ-independent term.
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(4) If we multiply fϕ(x) or ln fϕ(x) by −1, we can use arg minϕ instead of arg maxϕ.
The ML estimator is hard to study in general but its asymptotic properties are easier to derive; we present a

quick and dirty derivation in the following.

J.5.1. Consistency. For n i.i.d. observations (x1, . . . , xn), write

θ̌
(n)
ML(x1, . . . , xn) = arg max

ϕ
L
(n)
ϕ (x1, . . . , xn), (J.46)

where

L
(n)
ϕ (x1, . . . , xn) ≡

1

n

n∑
j=1

ln fϕ(xj) (J.47)

is the sample mean of the log-likelihood random variable

Lϕ(x) ≡ L
(1)
ϕ (x) = ln fϕ(x). (J.48)

Let θ be the true parameter. For n→ ∞, the law of large numbers gives

L
(n)
ϕ → Eθ (Lϕ) = Eθ (Lθ)−D(Pθ∥Pϕ), D(Pθ∥Pϕ) =

ˆ
ln
fθ(x)

fϕ(x)
fθ(x)dσ(x). (J.49)

Since the relative entropy obeys D ≥ 0 and gives D = 0 if and only if Pθ = Pϕ,

arg max
ϕ

Eθ (Lϕ) = θ (J.50)

as long as θ ̸= ϕ implies Pθ ̸= Pϕ (in which case we say θ is identifiable). Hence, we expect the estimator to
converge to the true parameter:

θ̌
(n)
ML ≡ arg max

ϕ
L
(n)
ϕ → arg max

ϕ
Eθ (Lϕ) = θ, (J.51)

β̌
(n)
ML ≡ β

(
θ̌
(n)
ML

)
→ β(θ). (J.52)

An estimator is said to be consistent if β̌(n) → β, so the ML estimator is consistent.

J.5.2. Asymptotic bias. Consistency implies that the peak location θ̌(n)ML ≡ arg maxϕ L
(n)
ϕ of L(n)

ϕ will be
pretty close to the true θ for a large enough n. To study the behavior of θ̌(n)ML in that case, we approximate L(n)

ϕ

for a ϕ close to θ by the Taylor series

L
(n)
ϕ ≈ L

(n)
θ + (ϕ− θ)⊤∇L(n)

θ +
1

2
(ϕ− θ)⊤

(
∇∇⊤L

(n)
θ

)
(ϕ− θ) (J.53)

≈ L
(n)
θ + (ϕ− θ)⊤∇L(n)

θ − 1

2
(ϕ− θ)⊤F (θ)(ϕ− θ), (J.54)

where we have made the approximation

∇∇⊤L
(n)
θ =

1

n

n∑
j=1

∇∇⊤ ln fθ(xj) ≈ Eθ

(
∇∇⊤ ln fθ

)
(law of large numbers) (J.55)

= −F (θ) (J.56)

and F is the Fisher information in Eq. (J.27) for one observation. The Taylor series means that L(n)
ϕ is

approximately quadratic with respect to ϕ. Maximizing the quadratic function gives

θ̌
(n)
ML ≡ arg max

ϕ
L
(n)
ϕ ≈ θ + F (θ)−1∇L(n)

θ , (J.57)

β̌
(n)
ML ≈ β(θ) + [∇β(θ)]⊤

(
θ̌
(n)
ML − θ

)
≈ β(θ) + [∇β(θ)]⊤F (θ)−1∇L(n)

θ . (J.58)

Define the bias of an estimator as

δ(θ) ≡ Eθ

(
β̌
)
− β(θ). (J.59)
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Then the bias of the ML estimator is

δ
(n)
ML(θ) ≡ Eθ

(
β̌
(n)
ML

)
− β ≈ [∇β(θ)]⊤F (θ)−1 Eθ

(
∇L(n)

θ

)
= 0, (J.60)

since

Eθ

(
∇L(n)

θ

)
= Eθ (∇Lθ) =

ˆ
[∇ ln fθ(x)]fθ(x)dσ(x) =

ˆ
[∇fθ(x)]dσ(x) (J.61)

= ∇
ˆ
fθ(x)dσ(x) = ∇(1) = 0, (J.62)

where we have pulled the gradient ∇ with respect to θ out of the integral with respect to x. It can in fact be
proved more rigorously that the ML estimator is asymptotically unbiased [74], viz.,

δ
(n)
ML(θ) → 0. (J.63)

J.5.3. Asymptotic error. Eq. (J.58) also gives

R
(
θ, β̌

(n)
ML

)
≡ Eθ

{[
β̌
(n)
ML − β(θ)

]2}
(J.64)

≈ [∇β(θ)]⊤F (θ)−1 Eθ

[(
∇L(n)

θ

)(
∇L(n)

θ

)⊤]
F (θ)−1∇β(θ) (J.65)

=
1

n
[∇β(θ)]⊤F (θ)−1∇β(θ) ≡ C(θ)

n
. (J.66)

All the rough arguments thus far can be proved a lot more rigorously under a subject called local asymptotic
normality [74], which states that the random variable

√
n(θ̌

(n)
ML − θ) converges to a normal random variable

N (0, F (θ)−1). A more precise statement of Eq. (J.66) becomes

r(θ, β̌ML) ≡ lim
n→∞

nR
(
θ, β̌

(n)
ML

)
= C(θ), (J.67)

or, equivalently,

R
(
θ, β̌

(n)
ML

)
=

C(θ)

n
+ o

(
1

n

)
. (J.68)

The resulting average error

Rπ

(
β̌
(n)
ML

)
=

E (C)

n
+ o

(
1

n

)
(J.69)

approaches the Borovkov-Sakhanenko bound given by Eq. (J.37) if we ignore all the o(1/n) terms. Hence,
under the conditions for the bound and the error (such as the strict positivity of the densities ϱ and fθ, the
existence of F−1, and the identifiability of θ), the ML estimator is asymptotically optimal in the sense of

lim
n→∞

nRπ

(
β̌
(n)
ML

)
= lim

n→∞
nG(n)(v). (J.70)

Note that there is no limit on the absolute size of the o(1/n) term in Eq. (J.68), only that it decays faster
than 1/n, i.e., no(1/n) → 0. For any finite n, Eq. (J.68) is not at all precise about the absolute error of the ML
estimator. Moreover, the o(1/n) term may depend on θ, and the convergence no(1/n) → 0 is pointwise, not
uniform, meaning that the o(1/n) term for a given finite nmay be negligible for some θ but not for others. Note
also that o(1/n) may be positive or negative. Just like Stein’s lemma in Sec. I.5, asymptotic statements should
be treated with caution.

It is also possible that C(θ) = ∞, in which case the asymptotic theory here breaks down. It means that
nR→ ∞, and R is decaying more slowly than the 1/n trend.
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J.6. Cramér-Rao bound (CRB)

The Cramér-Rao bound (CRB) is one of the earliest error bounds in statistics and still remains very popular
today. However, it makes questionable assumptions about the estimator bias and is not as conclusive as the
Bayesian error bounds, so we present it last.

Let us focus on the error at the true θ and decompose the MSE as

R(θ, β̌) = Vθ(β̌) + δ(θ)2, Vθ(β̌) ≡ Eθ

{[
β̌ − β̄(θ)

]2}
, δ(θ) ≡ β̄(θ)− β(θ), (J.71)

where we have defined
β̄(θ) ≡ Eθ(β̌) (J.72)

as the mean of the estimator. Then Sec. J.8 proves that

R(θ, β̌) ≥ Vθ(β̌) ≥
[
∇β̄(θ)

]⊤
F (θ)−1∇β̄(θ). (J.73)

This bound in itself is rather useless, since β̄(θ) depends on the estimator β̌ and there is no lower limit on
the magnitude of ∇β̄; we might as well compute the error R(θ, β̌) directly if we have to specify an estimator.
However, if we assume that the estimator is unbiased around the true θ, i.e.,

β̄(θ) = β(θ), ∇β̄(θ) = ∇β(θ), (J.74)
then we obtain the CRB

R(θ, β̌) = Vθ(β̌) ≥ [∇β(θ)]⊤F (θ)−1∇β(θ) ≡ C(θ). (J.75)

C already appeared in two places earlier: the Borovkov-Sakhanenko bound in Eq. (J.37) and the asymptotic
error of the ML estimator in Eq. (J.68). We find here a third significance for C(θ): it is also a lower error bound
for any unbiased estimator. An unbiased estimator is called efficient if its error achieves the CRB.
Exercise J.1. Derive the bounds in this section of wikipedia: https://en.wikipedia.org/wiki/Cram%C
3%A9r%E2%80%93Rao_bound#Bound_on_the_variance_of_biased_estimators.
Remark J.1. Eqs. (J.74) at one point θ are called the local unbiased condition, which is sufficient to yield the
CRB at that point. Technically speaking, the condition allows the estimator to be biased at other points of
the parameter space. But of course θ is unknown in practice; allowing an estimator to be biased outside an
unknown point is not much of a generalization.

Despite the name “bias” suggesting that it is a bad thing we should minimize, if we think about it, there is
no good reason why we should care about the estimator mean β̄ and why the bias should be zero so that the
estimator mean β̄ is equal to the true parameter β. All one should care about is how close the estimator β̌ is
to β, as quantified by the error R(θ, β̌). It makes no difference in practice whether the error is dominated by
the variance Vθ(β̌) or the squared bias δ(θ)2, and a biased estimator may have a lower error afterall. Moreover,
exactly unbiased estimators may not even exist for a problem and many standard estimators may be biased; even
the ML estimator may be biased. For a finite n, it is entirely possible for a biased estimator, such as the ML
estimator, to have an errorR(θ, β̌) that violates the CRB C(θ) by any amount in certain regions of the parameter
space; see Ref. [75] for an example.

To relax the unbiased assumption slightly, consider n i.i.d. observations and allow an estimator β̌(n) to be
only asymptotically unbiased:

δ(n)(θ) ≡ Eθ(β̌
(n))− β(θ) → 0, β̄(n)(θ) ≡ Eθ(β̌

(n)) → β(θ). (J.76)
The ML estimator now satisfies this relaxed condition. Eq. (J.73) then gives an asymptotic version of the CRB:

r(θ, β̌) ≡ lim
n→∞

nR(θ, β̌(n)) ≥ C(θ). (J.77)

An estimator β̌ with an asymptotic scaled error r(θ, β̌) that achieves the CRB C(θ) for all θ is called asymptot-
ically efficient. The ML estimator is asymptotically efficient by virtue of Eq. (J.67).

The CRB given by Eq. (J.77) is, again, an asymptotic statement that should be treated with caution. The
definition of r means that

R(θ, β̌(n)) =
r(θ, β̌)

n
+ o

(
1

n

)
. (J.78)

https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93Rao_bound#Bound_on_the_variance_of_biased_estimators
https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93Rao_bound#Bound_on_the_variance_of_biased_estimators
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For any finite n, there is no limit on the absolute size of the o(1/n) term, and an asymptotically unbiased
estimator may still be biased so that it may violate the CRB C(θ)/n by any amount. Moreover, the asymptotic
unbiased condition is difficult to check, and one may be better off with the Bayesian bounds in Sec. J.4, which
do not assume anything about the estimator.

Despite all the caveats, the CRB remains the most popular error bound in statistics and widely accepted as
a performance metric of experiments in optics, especially in fluorescence microscopy. For a lot of problems,
the CRB often remains tractable while other error bounds are much harder to compute. As long as one is aware
of its precise significance and shortcomings, the CRB serves as a decent first option.

J.7. Properties of Fisher information

In view of the fundamental role of the Fisher information in the error bounds and the asymptotics of the
ML estimator, it is often used as a performance metric of experiments for parameter estimation. We list some
of its properties in the following that can help us compute or bound it.

J.7.1. Relations with Bhattacharyya distance B and relative entropy D. Let θ, ϕ ∈ Θ ⊆ Rp and the
Bhattacharyya distance between two measures Pθ and Pϕ be B(Pθ∥Pϕ), as introduced in Sec. I.6. If the two
parameters θ, ϕ are neighbors, it turns out that B can be approximated as

B(Pθ∥Pθ+ϵv) =
1

8
ϵ2v⊤F (θ)v + o(ϵ2), Fjk(θ) = 4

∂2

∂ϕj∂ϕk
B(Pθ∥Pϕ)

∣∣∣∣
ϕ=θ

. (J.79)

Similarly, the relative entropy introduced in Chap. I can be approximated as

D(Pθ∥Pθ+ϵv) =
1

2
ϵ2v⊤F (θ)v + o(ϵ2), Fjk(θ) =

∂2

∂ϕj∂ϕk
D(Pθ∥Pϕ)

∣∣∣∣
ϕ=θ

. (J.80)

Hence, we can think ofF as a metric that determines the distance between two neighboring probability measures.

Side note. The Fisher information matrix can in fact be regarded as a Riemannian metric for a manifold of
probability distributions, as first proposed by Rao [76]. The treatment of statistical distance measures in the
language of differential geometry is known as information geometry [77].

J.7.2. n independent observations. Let (x1, . . . , xn) ∈ Ωn be n independent observations following the
product probability measure given by Eq. (I.60) and Fj(θ) be the Fisher information in the jth observation with
respect to {Pθ,j : θ ∈ Θ}. Then the total Fisher information is simply the sum

F (n)(θ) =
∑
j

Fj(θ). (J.81)

If the individual measures are identical with Pθ,j = Pθ and Fj(θ) = F (θ), then we get back Eq. (J.33).

J.7.3. Gaussian. Let the observation be the vectoral normal X ∼ N (mθ,Σθ). Then [78]

Fjk(θ) =

(
∂mθ

∂θj

)⊤
Σ−1
θ

∂mθ

∂θk
+

1

2
tr

(
Σ−1
θ

∂Σθ

∂θj
Σ−1
θ

∂Σθ

∂θk

)
. (J.82)

J.7.4. Poisson. Let the observation be the Poisson N ≡ (N1, . . . , NJ) ∼ Poisson(mθ). Then

Fjk(θ) =
∑
l

mθ(l)

[
∂

∂θj
lnmθ(l)

][
∂

∂θk
lnmθ(l)

]
. (J.83)

J.7.5. Extended convexity for a channel. Assume a channel given by Eq. (I.76), where all the densities
may depend on the parameter θ. Then the strong concavity of the Bhattacharyya coefficient described in
Sec. I.7.7 implies the upper bound [79, 80]

FY (θ) ≤ Eθ

[
FY |X(θ)

]
+ FX(θ), (J.84)

where FY (θ) is the Fisher information matrix in terms of the output fY |θ, FX(θ) is the Fisher information in
terms of the input fX|θ,

Eθ

[
FY |X(θ)

]
=

ˆ
FY |x(θ)fX|θ(x)dσ(x), (J.85)
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FY |x(θ) is the Fisher information in terms of the channel fY |X,θ givenX = x, and the matrix inequalityA ≤ B
means that B −A is positive-semidefinite (see Sec. B.13).

J.7.6. Convexity. Following Sec. J.7.5, if the input fX|θ does not depend on θ, then FX = 0 and we obtain
the convexity property:

FY (θ) ≤ Eθ

[
FY |X(θ)

]
. (J.86)

J.7.7. Data-processing inequality. Following Sec. J.7.5, if the channel fY |X,θ does not depend on θ, then
FY |X = 0 and we obtain the data-processing inequality

FY (θ) ≤ FX(θ). (J.87)

J.8. Proofs

We will make extensive use of the Cauchy-Schwarz inequality (CSI)

|⟨A,B⟩|2 ≤ ⟨A,A⟩ ⟨B,B⟩ (J.88)

for an inner product. If A or B is zero, then equality holds obviously. Otherwise equality is achieved if and
only if A = cB for a scalar c.

Proof of the Gill-Levit bound (J.20). Start with the divergence theorem, assuming ϱ(θ)v(θ) = 0 on the
boundary of Θ: ˆ

∇ · [δ(θ)ϱ(θ)v(θ)]dpθ = 0, (J.89)

where δ(θ) is the bias defined by Eq. (J.59). Write

∇ · [δ(θ)ϱ(θ)v(θ)] =
ˆ

∇ ·
{[
β̌(x)− β(θ)

]
fθ(x)ϱ(θ)v(θ)

}
dσ(x) (J.90)

=

ˆ (
β̌ − β

)
∇ · (fϱv)dσ(x)−

ˆ
(fϱv · ∇β)dσ(x) (J.91)

=

ˆ (
β̌ − β

)∇ · (fϱv)
f

fdσ(x)− ϱv · ∇β (J.92)

= Eθ

[(
β̌ − β

)∇ · (fϱv)
f

]
− ϱv · ∇β, (J.93)

so that Eq. (J.89) becomes

E (v · ∇β) = E
[(
β̌ − β

)∇ · (fϱv)
fϱ

]
. (J.94)

The CSI for the inner product ⟨A,B⟩ = E(AB) yields

[E (v · ∇β)]2 ≤ E
[(
β̌ − β

)2]E{[∇ · (fϱv)
fϱ

]2}
. (J.95)

This is the Gill-Levit bound given by Eq. (J.20); our last task is to simplify the last term:
∇ · (fϱv)

fϱ
= v · ∇ ln f +

1

ϱ
∇ · (ϱv) = v · ∇ ln f + divϱ v, (J.96)

E

{[
∇ · (fϱv)

fϱ

]2}
= E

{
(v · ∇ ln f)2 + (divϱ v)

2 + 2(divϱ v)v · ∇ ln f
}

(J.97)

= E

v⊤ Eθ

[
(∇ ln f)

(
∇⊤ ln f

)]
︸ ︷︷ ︸

≡F by Eq. (J.24)

v + (divϱ v)
2 + 2(divϱ v)v · Eθ (∇ ln f)︸ ︷︷ ︸

=0 by Eq. (J.62)

 (J.98)

= E
[
v⊤Fv + (divϱ v)

2
]
. (J.99)

□
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Proof of the optimal Gill-Levit bound (J.28) and (J.29). The product rule for the divergence gives
∇ · [(divϱ v)ϱv] = ϱv · ∇(divϱ v) + (divϱ v)∇ · (ϱv). (J.100)

Since ϱv = 0 on the boundary of Θ,
´
(. . . )dpθ of the first term vanishes, and we can write

E
[
(divϱ v)

2
]
=

ˆ
(divϱ v)∇ · (ϱv)dpθ = −

ˆ
ϱv · ∇(divϱ v)d

pθ = ⟨v,Dv⟩ , (J.101)

Dv ≡ −∇(divϱ v), ⟨v, u⟩ ≡
ˆ

[v(θ) · u(θ)]ϱ(θ)dpθ. (J.102)

Now the Gill-Levit bound (J.20) can be expressed as

G(v) =
⟨v,∇β⟩2

⟨v, Tv⟩
, (J.103)

whereT ≡ F+D is an operator. Notice thatT is self-adjoint and positive-semidefinite, since ⟨Tv, u⟩ = ⟨v, Tu⟩
for any u, v and the denominator of the Gill-Levit bound is nonnegative for any v. Assume, furthermore, that
∇β is in the range of T . Then T−s∇β is defined for s > 0, ∇β = T sT−s∇β, and we can write

⟨v,∇β⟩ =
〈
T 1/2v, T−1/2∇β

〉
. (J.104)

Now use the CSI to obtain

⟨v,∇β⟩2 ≤
〈
T 1/2v, T 1/2v

〉〈
T−1/2∇β, T−1/2∇β

〉
= ⟨v, Tv⟩

〈
∇β, T−1∇β

〉
. (J.105)

Equality is achieved if and only if

T 1/2v = cT−1/2∇β, Tv = c∇β (J.106)
for a nonzero constant c. There is no loss of generality if we set c = 1, and Eq. (J.28) results. Plugging the
right-hand side of Eq. (J.105) into the numerator of Eq. (J.103) yields Eq. (J.29). □

Proof of Eq. (J.73). Since β̄(θ) ≡ Eθ(β̌) = Eθ[Eθ(β̌)] = Eθ[β̄(θ)], Eθ[β̌ − β̄(θ)] = 0, and we can write

v(θ) · ∇Eθ

[
β̌ − β̄(θ)

]
= v(θ) · ∇

ˆ [
β̌(x)− β̄(θ)

]
fθ(x)dσ(x) = 0, (J.107)

ˆ [
v(θ) · ∇β̄(θ)

]
fθ(x)dσ(x) =

ˆ [
β̌(x)− β̄(θ)

]
[v(θ) · ∇fθ(x)]dσ(x), (J.108)

v · ∇β̄ = Eθ

[(
β̌ − β̄

)
(v · ∇ ln f)

]
. (J.109)

The CSI in terms of ⟨A,B⟩ = Eθ(AB) yields(
v · ∇β̄

)2 ≤ Eθ

[(
β̌ − β̄

)2]Eθ

[
(v · ∇ ln f)2

]
= Vθ(β̌)

(
v⊤Fv

)
, (J.110)

Vθ(β̌) ≥
(
v · ∇β̄

)2
v⊤Fv

. (J.111)

Now rewrite the dot product as an inner product and assume that ∇β is in the range of F so that F−s∇β is
defined for s > 0 and ∇β = F sF−s∇β. We obtain

v · ∇β̄ =
〈
v,∇β̄

〉
=
〈
F 1/2v, F−1/2∇β̄

〉
. (J.112)

Use the CSI again:(
v · ∇β̄

)2 ≤ 〈F 1/2v, F 1/2v
〉〈

F−1/2∇β, F−1/2∇β
〉
=
(
v⊤Fv

)[
(∇β)⊤F−1∇β

]
. (J.113)

Equality is achieved if and only if

F 1/2v = cF−1/2∇β̄, Fv = c∇β̄ (J.114)
for a nonzero constant c. Plugging the right-hand side of Eq. (J.113) into the numerator of Eq. (J.111) gives
Eq. (J.73). □



APPENDIX K

Solutions to Selected Problems

Exercise 3.17.

(1) [
b̂l, b̂

†
m

]
=
∑
s

∑
s′

˚ ˚
W ∗

l (k, s)Wm(k′, s′)
[
â(k, s), â†(k′, s′)

]
d3kd3k′ (K.1)

=
∑
s

∑
s′

˚ ˚
W ∗

l (k, s)Wm(k′, s′)δ3(k − k′)δss′d3kd3k′ (K.2)

=
∑
s

˚
W ∗

l (k, s)Wm(k, s)d3k. (K.3)

(2) For l = m, ∑
s

˚
|Wl(k, s)|2d3k = 1. (K.4)

Now∑
s

˚
|Wl(k, s)|2d3k =

∑
s

δs1

ˆ ∞

−∞
|X(kx)|2dkx

ˆ ∞

−∞
|Y (ky)|2dky

ˆ ∞

−∞
C2 rect

(
kx − k0
κ

)
dkz (K.5)

=

ˆ k0+κ/2

k0−κ/2
C2dkz = C2κ = 1. (K.6)

Hence

C =
1√
κ
. (K.7)

(3)

∑
s

˚
W ∗

l (k, s)Wm(k, s)d3k =
1

κ

ˆ k0+κ/2

k0−κ/2
exp[−ikz(zl − zm)]dkz (K.8)

= eik0(zl−zm) exp[−iκ(zl − zm)/2]− exp[iκ(zl − zm)/2]

−iκ(zl − zm)
(K.9)

= eik0(zl−zm) sin[κ(zl − zm)/2]

κ(zl − zm)/2
= eik0(zl−zm) sinc

[ κ
2π

(zl − zm)
]

(K.10)

= eik0(zl−zm) sinc(l −m) = δlm. (K.11)

(4) Eq. (3.121) is an inverse Fourier transform. The forward Fourier transform is then

â(k, s) =
1

(2π)3/2

˚
exp(−ik · r)Â(r, s)d3r. (K.12)

215
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(5)[
Â(r, s), Â†(r′, s′)

]
=

1

(2π)3

˚ ˚
exp
(
ik · r − ik′ · r′

)
[â(k, s), â†(k′, s′)]d3kd3k′ (K.13)

=
1

(2π)3

˚ ˚
exp
(
ik · r − ik′ · r′

)
δ3(k − k′)δss′d3kd3k′ (K.14)

= δss′
1

(2π)3

˚
exp
[
ik · (r − r′)

]
d3k (K.15)

= δss′δ
3(r − r′). (K.16)

(6)

b̂l =
∑
s

˚
W̃ ∗

l (r, s)Â(r, s)d
3r =

∑
s

˚
W̃ ∗

l (r, s)

[
1

(2π)3/2

˚
exp(ik · r)â(k, s)d3k

]
d3r (K.17)

=
∑
s

˚ [
1

(2π)3/2

˚
W̃ ∗

l (r, s) exp(ik · r)d3r
]
â(k, s)d3k. (K.18)

Comparing with Eq. (3.115), we should have

W ∗
l (k, s) =

1

(2π)3/2

˚
W̃ ∗

l (r, s) exp(ik · r)d3r (K.19)

Wl(k, s) =
1

(2π)3/2

˚
W̃l(r, s) exp(−ik · r)d3r, (K.20)

W̃l(r, s) =
1

(2π)3/2

˚
Wl(k, s) exp(ik · r)d3k. (K.21)

Wl and W̃l are Fourier-transform pairs.
(7) Because W̃l is the Fourier transform of Wl, we obtain

W̃l(r, s) = X̃(x)X̃(y)Z̃(z), (K.22)

X̃(x) ≡ 1√
2π

ˆ ∞

−∞
exp(ikxx)X(kx)dkx, (K.23)

Ỹ (y) ≡ 1√
2π

ˆ ∞

−∞
exp(ikyy)Y (ky)dky, (K.24)

Z̃l(z) ≡
1√
2π

ˆ ∞

−∞
exp(ikzz)Zl(kz)dkz (K.25)

=
1√
2πκ

ˆ k0+κ/2

k0−κ/2
exp[ikz(z − zl)]dkz (K.26)

=
1√
2πκ

eik0(z−zl) sinc
[ κ
2π

(z − zl)
]
. (K.27)

Exercise 3.18.
(1) It’s too tedious to put hats on operators here, so I omit them.

⟨b : m1, . . . ,mJ |b : n1, . . . , nJ⟩

=
1√

m1! . . .mJ !n1! . . . nJ !
⟨vac| bm1

1 . . . bmJ
J b†n1

1 . . . b†nJ
J |vac⟩ (K.28)

=
1√

m1! . . .mJ !n1! . . . nJ !
⟨vac| (bm1

1 b†n1
1 ) . . . (bmJ

J b†nJ
J ) |vac⟩ . ([bj , b

†
l ] = 0 if j ̸= l) (K.29)

We would like to simplify bmj

j b
†nj

j . Let’s omit the subscripts for now, and look at bmb†n. Actually
let’s look at bb†n first. Using the commutation relation [b, b†] = 1, we can write

bb†n = bb†b†n−1 = (b†b+ 1)b†n−1 = b†bb†n−1 + b†n−1. (K.30)
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This is actually a recursive relation:

bb†n = b† bb†n−1︸ ︷︷ ︸
apply Eq. (K.30)

+b†n−1 = b†
(
b†bb†n−2 + b†n−2

)
+ b†n−1 (K.31)

= b†2 bb†n−2︸ ︷︷ ︸
apply Eq. (K.30)

+2b†n−1 = . . . (K.32)

Eventually we obtain

bb†n = b†nb+ nb†n−1. (K.33)

Now we consider

bnb†n = bn−1 bb†n︸︷︷︸
apply Eq. (K.33)

= bn−1
(
b†nb+ nb†n−1

)
= bn−1b†nb+ nbn−1b†n−1. (K.34)

This is also a recursive relation.

bnb†n = bn−1b†nb+ n bn−1b†n−1︸ ︷︷ ︸
apply Eq. (K.34)

= bn−1b†nb+ n

bn−2b†n−1b+ (n− 1) bn−2b†n−2︸ ︷︷ ︸
apply Eq. (K.34)

 = . . . (K.35)

Everytime we apply Eq. (K.34), we create a new term (. . . )b with the annihilation operator b at the
end, plus a term ∝ bn−mb†n−m. Eventually we obtain

bnb†n = (. . . )b+ n!bb† = (. . . )b+ n!(b†b+ 1) = (. . . )b+ n!, (K.36)

where (. . . ) is a long list of terms in front of the annihilation operator b.
Remember that each bj is a linear combination of annihilation operators {aj}, such that

bj |vac⟩ =
∑
l

Ujlal |vac⟩ = 0. (K.37)

It follows that

bnj b
†n
j |vac⟩ = [(. . . )bj + n!] |vac⟩ = n! |vac⟩ . (K.38)

We are lucky that bj |vac⟩ = 0 so we don’t have to write out the terms (. . . ) in front of bj .
If m > n, we can use similar algebra to show that

m > n : bmb†n = (. . . )b+ n!bm−n, bmj b
†n
j |vac⟩ = 0. (K.39)

(This makes sense, since b†nj creates n photons in the state and bmj annihilatesm > n photons, but still
we needed to prove this by algebra.) If m < n, we write

m < n : bmb†n = (bnb†m)†, ⟨vac| bmj b
†n
j = (bnj b

†m
j |vac⟩)† = 0, (K.40)

where the last step uses the result in Eq. (K.39). Applying these results to Eq. (K.29) gives us

⟨b : m1, . . . ,mJ |b : n1, . . . , nJ⟩ = δm1n1 . . . δmJnJ , (K.41)

which implies that the set {|b : n1, . . . , nJ⟩ : each nj = 0, 1, 2, . . . } are orthonormal.
(2) We still have to show that the set is a basis, i.e., any |ψ⟩ ∈ H can be expressed as a linear combination

of the set. We already know that {|a : n1, . . . , nJ⟩} in terms of the original modes is an orthonormal
basis, so if we can prove that every normal-mode number state

|a : n1, . . . , nJ⟩ =
â†n1
1√
n1!

. . .
â†nJ
J√
nJ !

|vac⟩ (K.42)

can be expressed as a linear combination of the new number states {|b : n1, . . . , nJ⟩}, then we are
done. Recall

âj =
∑
l

Wjlb̂l, (K.43)
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which means

â†j =
∑
l

W ∗
jlb̂

†
l . (K.44)

We now prove that Eq. (K.42) is a linear combination of the new number states by induction. First
note that |vac⟩ = |b : 0, . . . , 0⟩ is a new number state. If we apply one â†j with any j to any linear
combination of the new number states {|b : n1, . . . , nJ⟩}, we obtain

â†j
∑

n1...nJ

Cn1...nJ |b : n1, . . . , nJ⟩ =
∑
l

∑
n1...nJ

Cn1...nJW
∗
jlb̂

†
l |b : n1, . . . , nJ⟩ . (K.45)

b̂†l |b : n1, . . . , nJ⟩ ∝ |b : n1, . . . , nl + 1, . . . , nJ⟩ is proportional to a new number state, so the right-
hand side of Eq. (K.45) is another linear combination of the new number states {|b : n1, . . . , nJ⟩}.
Hence, by induction, with the application of multiple â†j’s to |vac⟩ in Eq. (K.42), the end result
|a : n1, . . . , nJ⟩ must still be a linear combination of the new number states {|b : n1, . . . , nJ⟩}.

Exercise 4.17.

(1)

D̂(α) = exp
(
αâ† − α∗â

)
= exp

[
α(q̂ − ip̂)/

√
2− α∗(q̂ + ip̂)/

√
2
]

(K.46)

= exp
{
i[(α− α∗)/(

√
2i)]q̂ − i[(α+ α∗)/

√
2]p̂
}
. (K.47)

Hence

ξ =
1√
2i
(α− α∗) =

√
2 Imα, η =

1√
2
(α+ α∗) =

√
2Reα. (K.48)

(2) BCH formula:

(exp Â)(exp B̂) = exp

(
Â+ B̂ + [Â, B̂] +

1

12
[Â, [Â, B̂]]− 1

12
[B̂, [Â, B̂]] + . . .

)
. (K.49)

Let

Â = iξq̂, B̂ = −iηp̂, (K.50)

[Â, B̂] = ξη[q̂, p̂] = iξη, (K.51)
exp(iξq̂) exp(−iηp̂) = exp(iξq̂ − iηp̂+ iξη). (K.52)

Similarly,

Â = −iηp̂, B̂ = iξq̂, (K.53)

[Â, B̂] = ξη[p̂, q̂] = −iξη, (K.54)
exp(−iηp̂) exp(iξq̂) = exp(iξq̂ − iηp̂− iξη). (K.55)

Hence

exp(iξq̂ − iηp̂) = exp(−iξη) exp(iξq̂) exp(−iηp̂) = exp(iξη) exp(−iηp̂) exp(iξq̂). (K.56)
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(3)

D̂(α) |q = x⟩ = eiξq̂−iηp̂ |q = x⟩ (K.57)

= eiξηe−iηp̂eiξq̂ |q = x⟩ (using previous results) (K.58)

= eiξηe−iηp̂eiξx |q = x⟩ (|q = x⟩ is eigenstate of eiξq̂) (K.59)

= eiξηe−iηp̂eiξx
1√
2π

ˆ ∞

−∞
e−iyx |p = y⟩ dy (write |q = x⟩ in terms of {|p = y⟩}) (K.60)

= eiξ(x+η) 1√
2π

ˆ ∞

−∞
e−iηye−iyx |p = y⟩ dy (|p = y⟩ is eigenstate of e−iηp̂) (K.61)

= eiξ(x+η) 1√
2π

ˆ ∞

−∞
e−iy(x+η) |p = y⟩ dy (K.62)

= eiξ(x+η) |q = x+ η⟩ , (K.63)

where ξ and η are given by Eqs. (K.48). The phase factor eiξ(x+η) is not very important. The important
point is that D̂(α) shifts the |q = x⟩ state to the |q = x+ η⟩ state with a new eigenvalue x+ η, where
η =

√
2Reα is the displacement. Similarly,

D̂(α) |p = y⟩ = e−iξηeiξq̂e−iηp̂ |p = y⟩ = e−iξηeiξq̂e−iηy |p = y⟩ (K.64)

= e−iξηeiξq̂e−iηy 1√
2π

ˆ ∞

−∞
eiyx |q = x⟩ dx (K.65)

= e−iξηe−iηy 1√
2π

ˆ ∞

−∞
ei(y+ξ)x |q = x⟩ dx (K.66)

= e−iη(y+ξ) |p = y + ξ⟩ . (K.67)

(4) To verify Eq. (4.6), write

⟨n|α⟩ = ⟨n| e−|α|2/2
∞∑

m=0

αm

√
m!

|m⟩ (definition of |α⟩) (K.68)

= e−|α|2/2 α
n

√
n!
. (⟨n|m⟩ = δnm) (K.69)

Then

|⟨n|α⟩|2 = e−|α|2 |α|2n

n!
. (K.70)

To verify Eq. (4.7), consider

⟨q = x|α⟩ = ⟨q = x| D̂(α) |0⟩ = (D̂†(α) |q = x⟩)† |0⟩ = (D̂(−α) |q = x⟩)† |0⟩ . (K.71)

Now use the previous result to obtain

D̂(−α) |q = x⟩ = eiθ
∣∣∣q = x−

√
2Reα

〉
, (K.72)

where θ is an unimportant phase. Hence

⟨q = x|α⟩ = e−iθ
〈
q = x−

√
2Reα

∣∣∣0〉 (K.73)

= e−iθ 1

π1/4
exp

[
−1

2

(
x−

√
2Reα

)2]
, (using Eq. (4.1)) (K.74)

|⟨q = x|α⟩|2 = 1√
π
exp

[
−
(
x−

√
2Reα

)2]
. (K.75)

The derivation of Eq. (4.8) is similar.
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Exercise 4.26.
(1) This is very similar to the Heisenberg picture of â. The trick is to do a ∂/∂θ :

∂â(θ)

∂θ
= in̂R̂†(θ)âR̂(θ)− iR̂†(θ)âR̂(θ)n̂ = −iR̂†(θ)[â, n̂]R̂(θ) = −iâ(θ). (K.76)

This differential equation has the solution

â(θ) = â exp(−iθ). (K.77)

It follows that

â†(θ) = R̂†(θ)â†R̂(θ) =
[
R̂†(θ)âR̂(θ)

]†
= â† exp(iθ), (K.78)

q̂(θ) =
1√
2
R̂†(θ)(â+ â†)R̂(θ) =

1√
2

[
â exp(−iθ) + â† exp(iθ)

]
, (K.79)

p̂(θ) =
1√
2i

[
â exp(−iθ)− â† exp(iθ)

]
. (K.80)

(2)

q̂(θ)R̂†(θ) |q = x⟩ = R̂†(θ)q̂R̂(θ)R̂†(θ) |q = x⟩ (K.81)

= R̂†(θ)q̂ |q = x⟩ (R̂ is unitary) (K.82)

= R̂†(θ)x |q = x⟩ = xR̂†(θ) |q = x⟩ . (K.83)

Similarly,

p̂(θ)R̂†(θ) |p = y⟩ = R̂†(θ)p̂R̂(θ)R̂†(θ) |p = y⟩ (K.84)

= R̂†(θ)p̂ |p = y⟩ = R̂†(θ)y |p = y⟩ = yR̂†(θ) |p = y⟩ . (K.85)

(3)〈
q(θ) = x

∣∣q(θ) = x′
〉
= ⟨q = x| R̂(θ)R̂†(θ)

∣∣q = x′
〉

(by definition of |q(θ) = x⟩) (K.86)

=
〈
q = x

∣∣q = x′
〉

(R̂ is unitary) (K.87)
= δ(x− x′). (Eq. (3.22)) (K.88)

ˆ ∞

−∞
|q(θ) = x⟩ ⟨q(θ) = x| dx

=

ˆ ∞

−∞
R̂†(θ) |q = x⟩ ⟨q = x| R̂(θ)dx (by definition of |q(θ) = x⟩) (K.89)

= R̂†(θ)

[ˆ ∞

−∞
|q = x⟩ ⟨q = x| dx

]
R̂(θ) (operators are linear) (K.90)

= R̂†(θ)ÎR̂(θ) (Eq. (3.24)) (K.91)

= R̂†(θ)R̂(θ) = Î . (R̂ is unitary) (K.92)

The derivation for the p̂(θ) eigenstates is similar.
(4) From previous results, we can write

q̂(θ)Î = q̂

ˆ ∞

−∞
|q(θ) = x⟩ ⟨q(θ) = x| dx =

ˆ ∞

−∞
q̂ |q(θ) = x⟩ ⟨q(θ) = x| dx (K.93)

=

ˆ ∞

−∞
x |q(θ) = x⟩ ⟨q(θ) = x| dx. (K.94)

The diagonal form of p̂(θ) can be derived similarly.
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(5)

R̂(θ) |α⟩ =
∞∑
n=0

αn

√
n!
e−in̂θ |n⟩ (K.95)

=
∞∑
n=0

αn

√
n!
e−inθ |n⟩ =

∞∑
n=0

(αe−iθ)n√
n!

|n⟩ =
∣∣∣αe−iθ

〉
. (K.96)

(6)

|⟨q(θ) = x|α⟩|2 =
∣∣∣⟨q = x| R̂(θ) |α⟩

∣∣∣2 = ∣∣∣〈q = x
∣∣∣αe−iθ

〉∣∣∣2 (K.97)

=
1√
π
exp

{
−
[
x−

√
2Re(αe−iθ)

]2}
. (K.98)

Similarly,

|⟨p(θ) = y|α⟩|2 =
∣∣∣⟨p = y| R̂(θ) |α⟩

∣∣∣2 = ∣∣∣〈p = y
∣∣∣αe−iθ

〉∣∣∣2 (K.99)

=
1√
π
exp

{
−
[
y −

√
2 Im(αe−iθ)

]2}
. (K.100)

(7) Use Glauber’s formula:

⟨q(θ) = x| ρ̂ |q(θ) = x⟩ =
¨

Φ(α)|⟨q(θ) = x|α⟩|2d2α. (K.101)

Let

u ≡
√
2Re(αe−iθ), v ≡

√
2 Im(αe−iθ). (K.102)

Convince yourself that

dudv = 2(dReα)(d Imα), d2α ≡ (dReα)(d Imα) =
1

2
dudv. (K.103)

In terms of the new variables,

Φ(α) =
1

πn̄
exp

(
−|α|2

n̄

)
=

1

πn̄
exp

(
−u

2 + v2

2n̄

)
, (K.104)

|⟨q(θ) = x|α⟩|2 = 1√
π
exp

{
−
[
x−

√
2Re(αe−iθ)

]2}
=

1√
π
exp
[
−(x− u)2

]
. (K.105)

Hence

⟨q(θ) = x| ρ̂ |q(θ) = x⟩ =
ˆ ∞

−∞

ˆ ∞

−∞

1

2πn̄
exp

(
−u

2 + v2

2n̄

)
1√
π
exp
[
−(x− u)2

]
dudv (K.106)

=

[ˆ ∞

−∞

1√
2πn̄

exp

(
− v2

2n̄

)
dv

]ˆ ∞

−∞

1√
2πn̄

exp

(
−u

2

2n̄

)
1√
π
exp
[
−(x− u)2

]
du

(K.107)

=
1√

2π(n̄+ 1/2)
exp

[
− x2

2(n̄+ 1/2)

]
. (K.108)

This is a Gaussian distribution with zero mean and variance equal to n̄+ 1/2. Similarly,

⟨p(θ) = y| ρ̂ |p(θ) = y⟩ = 1√
2π(n̄+ 1/2)

exp

[
− y2

2(n̄+ 1/2)

]
. (K.109)
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Exercise 4.28. Let the photon-number random variable be n. Let α be another random variable with
probability density Φ(α). The probability mass function of n is

P (n) =

¨
Φ(α)| ⟨n|α⟩ |2d2α. (K.110)

This formula is consistent with probability theory if we regard

P (n|α) = | ⟨n|α⟩ |2 (K.111)

as the probability mass function of n conditioned on a value of α. By the law of total variance, the variance of
n is given by

V(n) = E[V(n|α)] + V[E(n|α)]. (K.112)

P (n|α) is Poisson, so we know that

E(n|α) = |α|2, V(n|α) = |α|2. (K.113)

It follows that

V(n) = E
(
|α|2

)
+ V

(
|α|2

)
, (K.114)

where E(|α|2) and V(|α|2) can be computed using Φ as the probability density. Now notice that the mean
photon number is given by

n̄ =
∑
n

nP (n) =

¨
Φ(α)

∑
n

n| ⟨n|α⟩ |2d2α =

¨
Φ(α)|α|2d2α = E

(
|α|2

)
. (K.115)

Hence

V(n) = n̄+ V
(
|α|2

)
. (K.116)

The variance of a random variable is always nonnegative, so V(|α|2) ≥ 0 , and we must have V(n) ≥ n̄.

Exercise 6.5. We know that, for normal modes,

âj(t) = âj exp(−iωjt), (K.117)

so the V (t) matrix is simply the diagonal matrix:

Vjl(t) = δjl exp(−iωjt). (K.118)

Exercise 6.8. Given Eqs. (6.65) and (K.118), the amplitude of the coherent state |V (t)α⟩ at time t is simply

αj(t) = αj exp(−iωjt) ∝ δs1δkx0δky0g(kz) exp(−ikzz1) exp(−iωjt). (K.119)

Remember that ωj = c|k|. αj(t) is nonzero only when kx = 0, ky = 0, and kz ≥ 0. We can then assume

ωj = c|k| = c|kz| = ckz. (K.120)

Hence

αj(t) ∝ δs1δkx0δky0g(kz) exp(−ikzz0) exp(−ickzt) (K.121)
= δs1δkx0δky0g(kz) exp[−ikz(z1 + ct)]. (K.122)

This (k, s)-space amplitude corresponds to a pulse with center at z1 + ct.
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Exercise 6.10.
(1) A unitary V satisfies V V † = I . In the index notation,∑

j

VljV
∗
mj = δlm, (K.123)

which implies ∑
j

V3jV
∗
3j =

∑
j

|V3j |2 = |V31|2 + |V32|2 + · · · = 1, (K.124)

∑
j

V4jV
∗
4j =

∑
j

|V4j |2 = |V41|2 + |V42|2 + · · · = 1, (K.125)

∑
j

V3jV
∗
4j = V31V

∗
41 + V32V

∗
42 + · · · = 0. (K.126)

If we assume Eq. (6.85), then

|V31|2 + |V32|2 = 1, |V41|2 + |V42|2 = 1, V31V
∗
41 + V32V

∗
42 = 0. (K.127)

These equations imply that

SS† =

(
V31 V32
V41 V42

)(
V ∗
31 V ∗

41

V ∗
32 V ∗

42

)
=

(
1 0
0 1

)
= I, (K.128)

so S† = S−1, meaning that S is unitary.
Conversely, if S is unitary, SS† = I , and we have

|V31|2 + |V32|2 = 1, |V41|2 + |V42|2 = 1, V31V
∗
41 + V32V

∗
42 = 0. (K.129)

Plug these into Eqs. (K.124) and (K.125) to obtain∑
j

|V3j |2 = |V31|2 + |V32|2 +
J∑

j=3

|V3j |2 = 1 +
J∑

j=3

|V3j |2 = 1,
J∑

j=3

|V3j |2 = 0, (K.130)

∑
j

|V4j |2 = |V41|2 + |V42|2 +
J∑

j=3

|V4j |2 = 1 +

J∑
j=3

|V4j |2 = 1,

J∑
j=3

|V4j |2 = 0. (K.131)

A sum of nonnegative numbers is equal to 0 if and only if all the numbers are zero. Hence

|V3j |2 = 0 and |V4j |2 = 0, j = 3, 4, . . . , (K.132)

which implies Eq. (6.85).
(2) A unitary V also satisfies V †V = I . Then∑

j

V ∗
jlVjm = δlm, (K.133)

∑
j

|Vj1|2 = |V31|2 + |V41|2 +
∑

j ̸=3 and j ̸=4

|Vj1|2 = 1, (K.134)

∑
j

|Vj2|2 = |V32|2 + |V42|2 +
∑

j ̸=3 and j ̸=4

|Vj2|2 = 1, (K.135)

∑
j

V ∗
j1Vj2 = V ∗

31V32 + V ∗
41V42 +

∑
j ̸=3 and j ̸=4

V ∗
j1Vj2 = 0. (K.136)

Eq. (6.88) implies that all the
∑

j ̸=3 and j ̸=4(. . . ) terms above are zero, leading to

|V31|2 + |V41|2 = 1, |V32|2 + |V42|2 = 1, V ∗
31V32 + V ∗

41V42 = 0. (K.137)

These equations imply that S†S = I , which implies S† = S−1, meaning that S is unitary. The
converse is very similar to the converse proof in part (1).
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Exercise 6.11. One trick is to write

â†3(T )â3(T ) + â†4(T )â4(T ) =
(
â†3(T ) â†4(T )

)(
â3(T )
â4(T )

)
, (K.138)(

â3(T )
â4(T )

)
= S

(
â1(0)
â2(0)

)
, (K.139)(

â†3(T ) â†4(T )
)
=
(
â†1(0) â†2(0)

)
S†, (K.140)

so that

â†3(T )â3(T ) + â†4(T )â4(T ) =
(
â†1(0) â†2(0)

)
S†S

(
â1(0)
â2(0)

)
=
(
â†1(0) â†2(0)

)(
â1(0)
â2(0)

)
(K.141)

= â†1(0)â1(0) + â†2(0)â2(0). (K.142)

Exercise 6.13. Consider the J-input-J-output relation

αj(T ) =
∑
l

Vjlαl(0). (K.143)

Since V is unitary, we have this energy conservation:∑
j

|αj(T )|2 =
∑
j,l,m

V ∗
jlVjmα

∗
l (0)αm(0) =

∑
l,m

δlmα
∗
l (0)αm(0) (K.144)

=
∑
l

|αl(0)|2. (K.145)

Now let’s set all the input amplitudes αl(0) to be zero for all l except mode 1 and 2. Then energy conservation
implies ∑

j

|αj(T )|2 = |α1(0)|2 + |α2(0)|2. (K.146)

We also know that the output energy in mode 3 and 4 must be smaller than the total output:

|α3(T )|2 + |α4(T )|2 ≤
∑
j

|αj(T )|2. (K.147)

Hence
|α3(T )|2 + |α4(T )|2 ≤ |α1(0)|2 + |α2(0)|2. (K.148)

Exercise 8.2.
(1) Because the state |ψ⟩ ⊗ |α2⟩ for the two input modes is a tensor product, the average of a product of

any two operators Â1 and Â2, where Â1 is an operator for the first mode and Â2 is an operator for the
second mode, can be factorized as〈

Â1Â2

〉
=
〈
Â1 ⊗ Â2

〉
= ⟨ψ| ⊗ ⟨α2| Â1 ⊗ Â2 |ψ⟩ ⊗ |α2⟩ = ⟨ψ| ⊗ ⟨α2|

(
Â1 |ψ⟩ ⊗ Â2 |α2⟩

)
(K.149)

= ⟨ψ| Â1 |ψ⟩ ⟨α2| Â2 |α2⟩ =
〈
Â1

〉〈
Â2

〉
. (K.150)

Then

⟨O⟩ = eiθ
〈
â†1â2

〉
+ e−iθ

〈
â1â

†
2

〉
= eiθ

〈
â†1

〉
⟨â2⟩+ e−iθ ⟨a1⟩

〈
â†2

〉
= eiθα2 ⟨â1⟩∗ + c.c., (K.151)〈

O′〉 = eiθ
〈
α2â

†
1

〉
+ e−iθ ⟨â1α∗

2⟩ = eiθα2

〈
â†1

〉
+ c.c. = ⟨O⟩ . (K.152)

(2) Let’s compute
〈
O2
〉

and
〈
O′2〉 first.〈

O2
〉
= eiθ

〈
â†21

〉 〈
â22
〉
+ c.c. +

〈
â†1â1

〉〈
â2â

†
2

〉
+
〈
â1â

†
1

〉〈
â†2â2

〉
(K.153)

= eiθα2
2

〈
â†21

〉
+ c.c. +

(
|α2|2 + 1

) 〈
â†1â1

〉
+ |α2|2

〈
â1â

†
1

〉
, (K.154)〈

O′2〉 = eiθα2
2

〈
â†21

〉
+ c.c. + |α2|2

〈
â†1â1

〉
+ |α2|2

〈
â1â

†
1

〉
. (K.155)
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So 〈
O2
〉
=
〈
O′2〉+ 〈â†1â1〉 . (K.156)

Now the variances are given by〈
∆O2

〉
=
〈
O2
〉
− ⟨O⟩2 =

〈
O′2〉+ 〈â†1â1〉−

〈
O′〉2 = 〈∆O′2〉+ 〈â†1â1〉 . (K.157)

(3) Let a normalized quadrature operator be

q̂ ≡ 1√
2

(
eiθ+∠α2 â†1 + H.c.

)
, Ô′ =

√
2|α2|q̂. (K.158)

If the first input is a coherent state |α⟩,

⟨â†1â1⟩ = |α|2, (K.159)〈
∆O′2〉 = 2|α2|2

〈
∆q2

〉
= |α2|2. (K.160)

It follows that the difference between
〈
∆O2

〉
and

〈
∆O′2〉 is negligible when

⟨â†1â1⟩ = |α|2 ≪
〈
∆O′2〉 = |α2|2. (K.161)

Exercise 8.7.

(1)

X̄m =

√
2

M
Re ((Reα+ i Imα)(cosϕm − i sinϕm)) (K.162)

=

√
2

M
Re ((Reα) cosϕm + (Imα) sinϕm + i(. . . )) =

√
2

M
(Reα) cosϕm + (Imα) sinϕm.

(K.163)

(2)

M−1∑
m=0

cos2 ϕm =

M−1∑
m=0

1 + cos(2ϕm)

2
=
M

2
+

1

4

(
M−1∑
m=0

ei2ϕm + c.c.

)
. (K.164)

Now we evaluate the sum of complex exponentials:

M−1∑
m=0

ei2ϕm =
M−1∑
m=0

ei2(ϕ0−Ωtm) = ei2ϕ0

M−1∑
m=0

e−i2πLm/M = ei2ϕ0
1− e−i2πL

1− e−i2πL/M
, (K.165)

where the last step comes from the geometric series (https://en.wikipedia.org/wiki/Geomet
ric_series). Since L is an integer, e−i2πL = 1, the numerator is zero. With |L| < M , e−i2πL/M

is not equal to 1, so the denominator is not zero. Eq. (K.165) is then zero, c.c. in Eq. (K.164) is also
zero, and we arrive at M/2 for Eq. (K.164).

The other identities are similar:

M−1∑
m=0

sin2 ϕm =
M−1∑
m=0

(
1− cos2 ϕm

)
=M −

M−1∑
m=0

cos2 ϕm =M − M

2
=
M

2
. (K.166)

M−1∑
m=0

sinϕm cosϕm =
1

2

M−1∑
m=0

sin(2ϕm) =
1

2

M−1∑
m=0

sin(2ϕm) =
1

4i

M−1∑
m=0

(ei2ϕm − c.c.) = 0. (K.167)

https://en.wikipedia.org/wiki/Geometric_series
https://en.wikipedia.org/wiki/Geometric_series
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(3) Y1 and Y2 are linear combinations of Gaussian random variables, so they are also Gaussian random
variables. Now we can use the previous results to compute their expected values:

E(Y1) =
√

2

M

∑
m

E(Xm) cosϕm =
2

M

∑
m

(Reα cosϕm + Imα sinϕm) cosϕm (K.168)

=
2

M

∑
m

(
Reα cos2 ϕm + Imα sinϕm cosϕm

)
(K.169)

=
2

M

(
Reα

∑
m

cos2 ϕm + Imα
∑
m

sinϕm cosϕm

)
= Reα. (K.170)

E(Y2) is similar. To compute the variance of Y1, we can subtract its mean first:

Y1 − E(Y1) =
√

2

M

∑
m

Zm cosϕm, (K.171)

V(Y1) = E
{
[Y1 − E(Y1)]2

}
= E


[√

2

M

∑
m

Zm cosϕm

]2 (K.172)

=
2

M
E

∑
m,l

ZmZl cosϕm cosϕl

 =
2

M

∑
m,l

E(ZmZl) cosϕm cosϕl (K.173)

=
2

M

∑
m,l

1

2
δml cosϕm cosϕl =

1

M

∑
m

cos2 ϕm =
1

2
. (K.174)

V(Y2) is similar. For the covariance,

COV(Y1, Y2) = E {[Y1 − E(Y1)][Y2 − E(Y2)]} =
2

M
E

(∑
m

Zm cosϕm
∑
l

Zl sinϕl

)
(K.175)

=
2

M

∑
m,l

E(ZmZl) cosϕm sinϕl =
2

M

∑
m,l

1

2
δml cosϕm sinϕl (K.176)

=
2

M

1

2

∑
m

cosϕm sinϕm = 0. (K.177)

Two Gaussian random variables have zero covariance if and only if they are independent. Hence, we
can write their probability density as a product of Gaussian probability densities:

f(y1, y2) =
1√
π
exp

[
−(y1 − Reα)2

] 1√
π
exp
[
−(y2 − Imα)2

]
. (K.178)

(4) We can use the factorization theorem (https://en.wikipedia.org/wiki/Sufficient_stati
stic). Write the probability density of the M outcomes as

f ∝ exp

−
∑
m

[
xm −

√
2

M
Re(αe−iϕm)

]2 (K.179)

= exp

{
−
∑
m

[
x2m − 2xm

√
2

M
Re(αe−iϕm) +

2

M
[Re(αe−iϕm)]2

]}
(K.180)

= exp

(
−
∑
m

x2m

)
exp

{∑
m

[
2xm

√
2

M
Re(αe−iϕm)− 2

M
[Re(αe−iϕm)]2

]}
. (K.181)

https://en.wikipedia.org/wiki/Sufficient_statistic
https://en.wikipedia.org/wiki/Sufficient_statistic
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Notice that we can write√
2

M

∑
m

xmRe(αe−iϕm) =

√
2

M

∑
m

xm(Reα cosϕm + Imα sinϕm) (K.182)

= y1Reα+ y2 Imα, (K.183)

so f can be expressed as

f ∝ exp

(
−
∑
m

x2m

)
exp

{
2(y1Reα+ y2 Imα)− 2

M
[Re(αe−iϕm)]2

}
. (K.184)

When the probability density is in this form, the factorization theorem says that y1 and y2 are sufficient
statistics.

Exercise 9.6.
(1) Define a c-number

C ≡ |α|√
2
(ϕ1 − ϕ2) (K.185)

so that we can write

Ô = C + Ô2. (K.186)

Ô2 is a quadrature operator for the dark-port input. By Exercise D.6, their orthonormal eigenstates are
related by

|O = λ⟩ = |O2 = λ− C⟩ . (K.187)

The probability density of Ô is then

fO(λ) = ⟨O = λ| ρ̂ |O = λ⟩ = ⟨O2 = λ− C| ρ̂ |O2 = λ− C⟩ . (K.188)

The dark-port input is the vacuum state. We know that the probability density for any quadrature
(Exercise 4.26) is

⟨O2 = x| ρ̂ |O2 = x⟩ = 1√
π
exp

(
−x2

)
, (K.189)

i.e., it is a Gaussian probability density with zero mean and variance equal to 1/2. fO(λ) is hence

fO(λ) = ⟨O2 = λ− C| ρ̂ |O2 = λ− C⟩ = 1√
π
exp

[
−(λ− C)2

]
. (K.190)

This is a Gaussian probability density with mean equal to C ≡ |α|√
2
(ϕ1 − ϕ2) and variance equal to

1/2.
(2)

E(O) = C ≡ |α|√
2
(ϕ1 − ϕ2),

√
2

|α|
E(O) = ϕ1 − ϕ2, (K.191)

so

Y =

√
2

|α|
O (K.192)

is unbiased estimator of ϕ1 − ϕ2.
(3)

E(Y ) = ϕ1 − ϕ2, V(Y ) =
2

|α|2
V(O) =

2

|α|2
1

2
=

1

|α|2
. (K.193)

Hence

SNR =
[E(Y )]2

V(Y )
= |α|2(ϕ1 − ϕ2)

2. (K.194)



K. SOLUTIONS TO SELECTED PROBLEMS 228

(4) With a coherent-state input, the mean of Ô2 becomes

⟨O2⟩ =
1√
2

(
e−iθ+iϕ̄β + c.c.

)
, (K.195)

and the variance is still 1/2. The probability density is still Gaussian:

⟨O2 = λ| ρ̂ |O2 = λ⟩ = 1√
π
exp

[
−(λ− ⟨O2⟩)2

]
. (K.196)

The probability density of O becomes

fO(λ
′) =

1√
π
exp

[
−(λ′ − C − ⟨O2⟩)2

]
, (K.197)

so O is still a Gaussian random variable, the variance is still 1/2, but the mean is now C + ⟨O2⟩.

E(O) =
|α|√
2
(ϕ1 − ϕ2) + ⟨O2⟩ ,

√
2

|α|
[E(O)− ⟨O2⟩] = ϕ1 − ϕ2. (K.198)

So

Y =

√
2

|α|
(O − ⟨O2⟩) (K.199)

is an unbiased estimator.

E(Y ) = ϕ1 − ϕ2, V(Y ) =
2

|α|2
V(O) =

1

|α|2
, SNR = |α|2(ϕ1 − ϕ2)

2. (K.200)

The SNR is exactly the same.

Exercise 9.8. The probability density of a quadrature is

⟨O = λ| ρ̂ |O = λ⟩ =
ˆ

Φ(α)|⟨O = λ|α⟩|2d2α. (K.201)

We know |⟨O = λ|α⟩|2 is a Gaussian distribution with some mean and variance equal to 1/2. Since Φ(α) is a
probability density, we can think of α as a random variable and use the law of total variance (see Eq. (C.48)):

V(O) = E [V(O|α)] + V [E(O|α)]. (K.202)

V(O|α) is the variance of O given α, which can be computed from |⟨O = λ|α⟩|2. The result is

V(O|α) = 1

2
. (K.203)

We also know that the variance V [E(O|α)] must always be nonnegative, as long as Φ is a probability density
so that α is a classical random variable. Hence

V(O) = E
(
1

2

)
+ V [E(O|α)] = 1

2
+ V [E(O|α)] ≥ 1

2
. (K.204)

Exercise 11.1. Note that the main-text definition is equivalent to

W (x, y) ≡ tr
[
ρ̂Ŵ (x, y)

]
, Ŵ (x, y) =

1

(2π)2

¨
eiξ(q̂−x)+iη(p̂−y)dξdη. (K.205)

The alternative definition is

W (x, y) = tr
[
ρ̂Ŵ ′(x, y)

]
, Ŵ ′(x, y) ≡ 1

2π

ˆ ∞

−∞
eiλy

∣∣∣∣q = x+
λ

2

〉〈
q = x− λ

2

∣∣∣∣ dλ. (K.206)
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We need to show that Ŵ (x, y) = Ŵ ′(x, y). Use BCH formula to write

eiξ(q̂−x)+iη(p̂−y)

= eiη(p̂−y)/2eiξ(q̂−x)eiη(p̂−y)/2 (BCH)
(K.207)

=

ˆ ∞

−∞
eiη(p̂−y)/2eiξ(λ−x) |q = λ⟩ ⟨q = λ| eiη(p̂−y)/2dλ (diagonal form of q̂)

(K.208)

=

ˆ ∞

−∞
eiη(−y)/2eiξ(λ−x)

∣∣∣q = λ− η

2

〉〈
q = λ+

η

2

∣∣∣ eiη(−y)/2dλ
(
eiηp̂/2 |q = λ⟩ =

∣∣∣q = λ− η

2

〉)
(K.209)

=

ˆ ∞

−∞
e−iηyeiξ(λ−x)

∣∣∣q = λ− η

2

〉〈
q = λ+

η

2

∣∣∣ dλ. (K.210)

Now Ŵ (x, y) is equal to

Ŵ (x, y) =
1

(2π)2

¨
eiξ(q̂−x)+iη(p̂−y)dξdη (K.211)

=
1

2π

¨
e−iηyδ(λ− x)

∣∣∣q = λ− η

2

〉〈
q = λ+

η

2

∣∣∣ dλdη (ˆ ∞

−∞
eiξ(λ−x)dξ = 2πδ(λ− x)

)
(K.212)

=
1

2π

ˆ ∞

−∞
e−iηy

∣∣∣q = x− η

2

〉〈
q = x+

η

2

∣∣∣ dη (K.213)

=
1

2π

ˆ ∞

−∞
eiλy

∣∣∣∣q = x+
λ

2

〉〈
q = x− λ

2

∣∣∣∣ dλ = Ŵ ′(x, y). (substitute λ = −η)

(K.214)

Exercise 11.4. Rewrite χ(ξ, η) as

χ(ξ, η) = tr {ρ̂ exp{iξ[q̂(θ) cos θ − p̂(θ) sin θ] + iη[q̂(θ) sin θ + p̂(θ) cos θ]}} (K.215)
= tr

{
ρ̂ exp

[
iξ′q̂(θ) + iη′p̂(θ)

]}
≡ χ′(ξ′, η′), (K.216)

where

ξ′ = ξ cos θ + η sin θ, η′ = −ξ sin θ + η cos θ. (K.217)

Now do a change of variables in the following integral:

W (x, y) ≡ 1

(2π)2

¨
χ(ξ, η) exp(−iξx− iηy)dξdη (K.218)

=
1

(2π)2

¨
χ′(ξ′, η′) exp

[
−i(ξ′ cos θ − η′ sin θ)x− i(ξ′ sin θ + η′ cos θ)y

]
dξ′dη′ (K.219)

=
1

(2π)2

¨
χ′(ξ′, η′) exp

(
−iξ′u− iη′v

)
dξ′dη′, (K.220)

where

u = x cos θ + y sin θ, v = −x sin θ + y cos θ. (K.221)

It follows that

W (x, y) =W ′(u, v) =
1

(2π)2

¨
χ′(ξ′, η′) exp

(
−iξ′u− iη′v

)
dξ′dη′. (K.222)
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Now considerˆ ∞

−∞
W ′(u, v)dv

=
1

(2π)2

¨
χ′(ξ′, η′) exp

(
−iξ′u

)
2πδ(η′)dξ′dη′

(ˆ ∞

−∞
e−iη′vdv = 2πδ(η′)

)
(K.223)

=
1

2π

ˆ ∞

−∞
χ′(ξ′, 0) exp

(
−iξ′u

)
dξ′ (K.224)

=
1

2π

ˆ ∞

−∞
tr
{
ρ̂ exp

[
iξ′q̂(θ)

]}
exp
(
−iξ′u

)
dξ′ (from Eq. (K.216))

(K.225)

=
1

2π

ˆ ∞

−∞

ˆ ∞

−∞
⟨q(θ) = λ| ρ̂ |q(θ) = λ⟩ exp

(
iξ′λ

)
dλ exp

(
−iξ′u

)
dξ′ (used diagonal form of q̂(θ))

(K.226)

=
1

2π

ˆ ∞

−∞
⟨q(θ) = λ| ρ̂ |q(θ) = λ⟩ 2πδ(λ− u)dλ

(ˆ ∞

−∞
eiξ

′(λ−u)dξ′ = 2πδ(λ− u)

)
(K.227)

= ⟨q(θ) = u| ρ̂ |q(θ) = u⟩ . (K.228)

The derivation of
´∞
−∞W ′(u, v)du = ⟨p(θ) = v| ρ̂ |p(θ) = v⟩ is similar.

Exercise B.39. For any Â on HA,

tr
{
Â trB

[(
Î ⊗ B̂

)
Ô
]}

= tr
[(
Â⊗ Î

)(
Î ⊗ B̂

)
Ô
]

(definition of partial trace) (K.229)

= tr
[(
Î ⊗ B̂

)(
Â⊗ Î

)
Ô
]

([Â⊗ Î , Î ⊗ B̂] = 0) (K.230)

= tr
[(
Â⊗ Î

)
Ô
(
Î ⊗ B̂

)]
(cyclic property of trace) (K.231)

= tr
{
Â trB

[
Ô
(
Î ⊗ B̂

)]}
. (definition of partial trace) (K.232)

It can be proved that tr
(
ÂB̂
)
= tr

(
ÂĈ
)

for all Â if and only if B̂ = Ĉ. The desired result follows.

Exercise B.40. For any Â on HA,

tr
[
ÂÂ1

(
trB Ô

)
Â2

]
= tr

[
Â2ÂÂ1

(
trB Ô

)]
(cyclic property) (K.233)

= tr
{[

(Â2ÂÂ1)⊗ Î
]
Ô
}

(definition of partial trace) (K.234)

= tr
[(
Â⊗ Î

)(
Â1 ⊗ Î

)
Ô
(
Â2 ⊗ Î

)]
(cyclic property) (K.235)

= tr
{
Â trB

[(
Â1 ⊗ Î

)
Ô
(
Â2 ⊗ Î

)]}
. (definition of partial trace) (K.236)

Exercise D.6.

(1) Apply B̂ to |A = λ⟩:

B̂ |A = λ⟩ = (aÂ+ b) |A = λ⟩ = (aλ+ b) |A = λ⟩ . (K.237)

It follows that |A = λ⟩ is an eigenstate of B̂ with eigenvalue u = (aλ+ b). Then we know that
|B = u⟩ ∝ |A = (u− b)/a⟩ . (K.238)

Let |B = u⟩ = z |A = (u− b)/a⟩, where z is a complex c-number. The orthonormality requires〈
B = u

∣∣B = u′
〉
= |z|2

〈
A = (u− b)/a

∣∣A = (u′ − b)/a
〉

(K.239)

= |z|2δ(u/a− u′/a) = |z|2|a|δ(u− u′) = δ(u− u′). (K.240)
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It follows that we must have |z| = 1/
√

|a|, and

|B = u⟩ = ei∠z√
|a|

|A = (u− b)/a⟩ , (K.241)

where ∠z can be set as any real number. Now derive the completeness condition:ˆ ∞

−∞
|B = u⟩ ⟨B = u| du

= |z|2
ˆ ∞

−∞
|A = (u− b)/a⟩ ⟨A = (u− b)/a| du (K.242)

=
1

|a|

{´∞
−∞ |A = λ⟩ ⟨A = λ| adλ, a > 0´ −∞
∞ |A = λ⟩ ⟨A = λ| adλ, a < 0

(λ = (u− b)/a) (K.243)

=

ˆ ∞

−∞
|A = λ⟩ ⟨A = λ| dλ = Î . ({|A = λ⟩} is complete) (K.244)

(2)

fB(u) = |⟨B = u|ψ⟩|2 = |z ⟨A = (u− b)/a|ψ⟩|2 = 1

|a|
fA((u− b)/a). (K.245)

This is the same as the probability density after a change of the random variable fromA toB = aA+b.



APPENDIX L

List of Common Symbols and Notations

(1) We assume SI units, unless otherwise stated.
(2) We use Greek letters a lot; see https://en.wikipedia.org/wiki/Greek_alphabet.
(3) Symbols will be recycled a lot. For example,

(a) the symbol A may denote the vector potential, a matrix, or an operator.
(b) β may refer to the inverse temperature or a complex amplitude.
(c) T may refer to the temperature or a time.
(d) P may be a probability distribution, a polarization field P (r, t) in classical EM, or a quadrature

operator P̂ .

Symbol/Notation Explanation Examples
= is equal to
≡ is defined as Û(t) ≡ exp

(
− i

ℏĤt
)

≤ less than or equal to 0 ≤ 0, 0 ≤ 1
≥ greater than or equal to 0 ≥ 0, 1 ≥ 0
< strictly less than
> strictly greater than

Table 1. Basics.

Symbol/Notation Explanation Examples
R All real numbers 0, 1, −1, e, π
C All complex numbers i ≡

√
−1

N0 All natural numbers including 0 0, 1, 2, . . .
Z All integers · · · − 2,−1, 0, 1, 2, . . .

{· · · : . . . } Unordered set {
∑N

n=1 ψn |en⟩ : each ψn ∈ C}
(. . . ) ordered set or row vector (k, s)
{. . . } × {. . . } Cartesian product of sets R× R ≡ {(x, y) : x ∈ R and y ∈

R}
setn Cartesian power R3 ≡ R× R× R
∈ belongs to a set |ψ⟩ ∈ H
∀ “for all” or “for any” ⟨ψ|ϕ⟩ = (⟨ϕ|ψ⟩)∗ ∀ |ψ⟩ , |ϕ⟩ ∈ H

Table 2. Sets.
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Symbol/Notation Explanation

δnm ≡

{
1, n = m

0, n ̸= m
Kronecker delta

δn(u) n-dimensional Dirac delta
|z| magnitude of a complex number
∠z phase of a complex number, z = |z| exp(i∠z)
Re z ≡ (z + z∗)/2 real part
Im z ≡ (z − z∗)/(2i) imaginary part
c.c. complex conjugate

rectX ≡

{
1, |X| ≤ 1/2

0, |X| > 1/2
rectangle

sincX ≡

{
sin(πX)

πX , X ̸= 0,

1, X = 0
sinc

coshX ≡ 1
2

(
eX + e−X

)
hyperbolic cosine

sinhX ≡ 1
2

(
eX − e−X

)
hyperbolic sine

Table 3. Common functions.

Symbol/Notation Explanation Examples
bold symbol vector in real 3D space k, r
tilde ∼ unit vector x̃, ỹ, z̃
u · v dot product k · r
u× v cross product E ×B
∇· divergence ∇ ·E
∇× curl ∇×E
d3r 3D volume element d3r = dxdydz, d3k =

dkxdkydkz
Table 4. Vector calculus.

Symbol/Notation Explanation Examples

bold symbol column vector or row vector α =

(
α1

α2

)
, n =

(
n1
n2

)
⊤ transpose

(
a b

)⊤
=

(
a
b

)
dagger † conjugate transpose α† =

(
α∗
1 α∗

2

)
star ∗ entry-wise complex conjugate α∗ =

(
α∗
1

α∗
2

)
inverse A−1 matrix inverse Γ−1

absolute sign | . . . | vector norm |α|2 =
∑

j |αj |2
Table 5. Matrix algebra
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Symbol/Notation Explanation
r = xx̃+ yỹ + zz̃ 3D position vector
k = kxx̃+ kyỹ + kzz̃ wavevector
ẽk,s polarization vector
E(r, t) electric field
B(r, t) magnetic field
A(r, t) vector potential
ρ(r, t) charge density
J(r, t) current density
P (r, t) polarization field
D(r, t) displacement field
ϵ0 free-space permittivity
µ0 free-space permeability
c ≡ 1/

√
ϵ0µ0 speed of light

j = (k, s) label of a normal mode for free EM fields
Table 6. Electromagnetism.

Symbol/Notation Explanation Examples
ket |. . .⟩ Vector in Hilbert space |ψ⟩
bra ⟨. . .| Adjoint of ket ⟨ψ|
bra-ket ⟨. . .|. . .⟩ Inner product ⟨ψ|ϕ⟩
(. . . , . . . ) or ⟨. . . , . . . ⟩ Inner product (mathematicians’

notation)
(ψ, ϕ), ⟨ψ, ϕ⟩

ket-bra |. . .⟩ ⟨. . .| Operator in ket-bra form Â =
∑

n,mAnm |en⟩ ⟨em|
hat ˆ Operator Â, â
dagger † adjoint Â†, ⟨ψ| = |ψ⟩†

[Â, B̂] ≡ ÂB̂ − B̂Â Commutator [â, â†] = 1
c-number classical numbers that commute

with everything
c, ϵ0, ℏ, ωj , k, Anm

H Hilbert space {
∑N

n=1 ψn |en⟩ : each ψn ∈ C}
⊗ Tensor product |ψ⟩ ⊗ |ϕ⟩, HA ⊗HB , Â⊗ B̂

⊕ Direct sum a⊕b ≡
(
a
b

)
,A⊕B ≡

(
A

B

)
H.c. Hermitian conjugate αâ† − H.c. = αâ† − α∗â

Î identity operator on H
Îx identity operator on Hx ÎB on HB

∼ Isomorphic relation H1 ⊗H2 ∼ H2 ⊗H1

Â ≥ 0 Â is positive-semidefinite ρ̂, Î
Â ≥ B̂ Â− B̂ is positive-semidefinite

Table 7. Hilbert space and the bra-ket notation.
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Symbol/Notation Explanation
ℏ ≡ h/(2π) Planck constant divided by 2π

Ĥ Hamiltonian operator
Û(t) ≡ exp

(
− i

ℏĤt
)

unitary operator
ρ̂ density operator
⟨A⟩ ≡ tr(Âρ̂) expected value〈
∆A2

〉
≡ tr(Â2ρ̂)− [tr(Âρ̂)]2 variance

Z partition function
β ≡ 1/kBT inverse temperature

Table 8. Quantum.

Symbol/Notation Explanation
â annihilation operator
n̂ ≡ â†â number operator
q̂ ≡ (â+ â†)/

√
2 q-quadrature operator

p̂ ≡ (â− â†)/(
√
2i) p-quadrature operator

|n⟩ eigenstate of n̂ with eigenvalue n
|q = x⟩ eigenstate of q̂ with eigenvalue x
|p = y⟩ eigenstate of p̂ with eigenvalue y
|α⟩ (with greek letter α, β, . . . as argument) coherent state, α ∈ C
D̂(α) displacement operator
d2α (dReα)(d Imα)
Φ(α) Sudarshan representation, also called P function

Table 9. Single-mode algebra.

Symbol/Notation Explanation
|α⟩ multimode coherent state, α ∈ CJ

D̂(α) multimode displacement operator
d2Jα

∏J
j=1(dReαj)(d Imαj)

Φ(α) Sudarshan representation, also called P function
âj , n̂j , q̂j , p̂j Operators for mode j
|q = x⟩ eigenstate of {q̂j}, q̂j |q = x⟩ = xj |q = x⟩
|p = y⟩ eigenstate of {p̂j}, p̂j |p = y⟩ = yj |p = y⟩
|n⟩ ≡ |n1, . . . , nJ⟩ multimode number state

Table 10. Multimode algebra.



L. LIST OF COMMON SYMBOLS AND NOTATIONS 236

Symbol/Notation Explanation
Ω sample space
F or E event space
(Ω, F, P ) probability space
PX ⊗ PY product measure
i.i.d. independent and identically distributed
P⊗n tensor product of n identical meaures P for i.i.d. vari-

ables
PX1,...,Xn(x1, . . . , xn) joint probability distribution
fX1,...,Xn(x1, . . . , xn) joint probability density
P [A|B] conditional probability
E(X) expected value of a random variable X
V(X) ≡ E

{
[X − E(X)]2

}
= E(X2)− [E(X)]2 variance

COV(X,Y ) ≡ E {[X − E(X)][Y − E(Y )]} =
E(XY )− [E(X)][E(Y )]

covariance

C(τ) covariance function
S(ω) power spectral density
dP
dQ(x) Radon-Nikodym derivative

Table 11. Probability.

Symbol/Notation Explanation
ρ̂ density operator
Π̂ projection-valued measure (PVM)
M̂ positive operator-valued measure (POVM)
F completely positive (CP) map
F(S)ρ̂ hybrid state
ρ̂S ≡ F(S)ρ̂/ tr(numerator) posterior state

Table 12. Open quantum systems.

Symbol/Notation Explanation

S ≡
(
τ r
r′ τ ′

)
scattering matrix

χ(1) linear optical susceptibility
χ(2) second-order optical susceptibility

Table 13. Optics.
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Symbol Concept Other names
θ ∈ Θ parameter hypothesis
Θ parameter space
{Pθ : θ ∈ Θ} statistical model
fθ(x) ≡ dPθ

dσ (x) probability density Radon-Nikodym derivative
Eθ Expectation with respect to Pθ

θ̌ decision rule estimator
l(θ, θ̌) loss function error function, cost function
R(θ, θ̌) ≡ Eθ

[
l(θ, θ̌)

]
error expected loss, risk function

π prior probability measure
Rπ(θ̌) ≡

´
R(θ, θ̌)dπ(θ) average error average risk

θ̌Bayes ≡ arg minθ̌ Rπ(θ̌) Bayes rule Bayes estimator
RBayes(π) ≡ minθ̌ Rπ(θ̌) =

Rπ(θ̌Bayes)

Bayes error Bayes risk

maxθ∈ΘR(θ, θ̌) worst-case error worst-case risk
θ̌minimax ≡
arg minθ̌ maxθ∈ΘR(θ, θ̌)

minimax rule minimax estimator

minθ̌ maxθ∈ΘR(θ, θ̌) =

maxθ∈ΘR(θ, θ̌minimax)

minimax error minimax risk

Table 14. Statistics.

Symbol Concept Other names
RNP(α) Neyman-Pearson error given toler-

ance level α
Λ(x) ≡ dP1

dP0
(x) likelihood ratio Radon-Nikodym derivative

λ(x) ≡ ln Λ(x) log-likelihood ratio
Λ ≷ T , λ ≷ t likelihood-ratio test with threshold

T or t
K Kolmogorov distance
µ(s) ≡ lnE0(Λ

s) Chebyshev exponent
C ≡ max0<s<1[−µ(s)] Chernoff distance Chernoff exponent
D(P1∥P0) relative entropy Kullback-Leibler divergence
B ≡ −µ(1/2) Bhattacharyya distance (closely related to Hellinger dis-

tance)
Table 15. Binary hypothesis testing.

Symbol Concept Other names
β(θ) key parameter parameter of interest
G(v) Gill-Levit bound Bayesian Cramér-Rao bounds, Van

Trees inequalities

∇ ≡
(

∂
∂θ1

. . . ∂
∂θp

)⊤
gradient with respect to θ

F (θ) Fisher information information
C(θ) Cramér-Rao bound (CRB) information inequality
θ̌ML(x), β̌ML(x) maximum-likelihood (ML) esti-

mator
δ(θ) ≡ Eθ(β̌)− β(θ) bias
fϕ(x) given x likelihood function
Lϕ(x) ≡ ln fϕ(x) log-likelihood function

Table 16. Parameter estimation.
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