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Abstract—We consider the two-user “Z” channel (ZC), where
there are two senders and two receivers. One of the senders trans-
mits information to its intended receiver (without interfering with
the unintended receiver), while the other sender transmits infor-
mation to both receivers. The complete characterization of the dis-
crete memoryless ZC remains unknown to date. For the Gaussian
ZC, the capacity has only been established for a crossover link gain
of 1. In this work, we study both the discrete memoryless ZC and
the Gaussian ZC. We first establish achievable rates for the general
discrete memoryless ZC. The coding strategy uses rate-splitting
and superposition coding at the sender with information for both
receivers. At the receivers, we use joint decoding. We then spe-
cialize the rates obtained to two different types of degraded dis-
crete memoryless ZCs and also derive respective outer bounds to
their capacity regions. We show that as long as a certain condition
is satisfied, the achievable rate region is the capacity region for one
type of degraded discrete memoryless ZC. The results are then ex-
tended to the two-user Gaussian ZC with different crossover link
gains. We determine an outer bound to the capacity region of the
Gaussian ZC with strong crossover link gain and establish the ca-
pacity region for moderately strong crossover link gain.

Index Terms—Gaussian “Z” channel (ZC), rate-splitting, simul-
taneous decoding, superposition coding, “Z” channel (ZC).

I. INTRODUCTION

I N the past, the study of multiuser information theory has
largely been motivated by wireline and cellular systems.

Multiuser channel configurations often revolved around the
multiple-access channel (cellular uplink), broadcast channel
(cellular downlink), and interference channel (IC) (wireline
systems). Researchers have also studied the two-way channel,
the relay channel, and various other multiuser channel configu-
rations (see [1, Ch. 14] and the references therein). With recent
advances in noncentralized networks such as sensor networks
and wireless ad hoc networks, there has been a growing interest
in the study of other multiuser channels. Recently, Vishwanath,
Jindal, and Goldsmith [2] introduced the “Z” channel (ZC)
shown in Fig. 1. The ZC consists of two senders and two
receivers. The transmission of sender can reach only re-
ceiver , while that of sender can reach both receivers.

The Z interference channel (ZIC) has the same topology as
the ZC shown in Fig. 1. In both the ZC and ZIC, there is no
cooperation between the two senders or between the two re-
ceivers. However, in the ZIC, sender has no information
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Fig. 1. The configuration of the ZC.

Fig. 2. A ZC: transmission of senderTX is unable to reach receiverRX due
to an obstacle.

Fig. 3. A ZC: transmission of senderTX is unable to reach receiverRX due
to distance.

to transmit to receiver , while the ZC allows transmission
of information from sender to receiver . Hence, the
ZC models a more general multiuser network compared to the
ZIC. The capacity region of the ZC includes the capacity re-
gion of the broadcast channel (sender is transmitting in-
formation to both receivers), the capacity region of the multiple
access channel (sender and are both transmitting in-
formation to receiver ), and the capacity region of the ZIC
(both senders are transmitting information to their own intended
receivers).

Such a multiuser configuration may correspond to a local sce-
nario (with two users and two receivers) in a large sensor or
wireless ad hoc network. As shown in Fig. 2, sender is un-
able to transmit to receiver due to an obstacle, while sender

is able to transmit to both receivers. Another possible sce-
nario is shown in Fig. 3, where sender is so far away from
receiver that its transmission is negligible.

In this paper, we also study the Gaussian ZC shown in Fig. 4.
We use the term weak crossover link gain to describe the sce-
nario and the term strong crossover link gain to de-
scribe the scenario . Furthermore, we use the terms mod-
erately strong crossover link gain and very strong crossover link
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Fig. 4. Standard form Gaussian ZC.

gain to differentiate between the two scenarios
and , respectively. Vishwanath, Jindal, and Gold-
smith [2] established an achievable rate region for the Gaussian
ZC with very strong crossover link gain. In [3], Liu and Ulukus
determined an inner bound and an outer bound to the capacity
region of the Gaussian ZC with weak crossover link gain. To
date, the capacity region of the Gaussian ZC is only known when
the crossover link gain is [3].

The outline of the paper is as follows.
• We first give a mathematical model for the discrete mem-

oryless ZC in Section II. We then describe three different
types of degraded ZCs. We also describe the Gaussian ZC
model.

• Next, we review past results on the ZC in Section III. We
describe a problem in one of the proofs in [2] for the ca-
pacity region of one type of degraded discrete memoryless
ZC.

• In Section IV, we establish an achievable rate region for the
general discrete memoryless ZC using rate-splitting and
joint decoding.

• In Section V, we specialize the result for the general setting
to one type of degraded discrete memoryless ZC. We also
determine an outer bound to the capacity region. The result
is extended directly to the two-user Gaussian ZC with weak
crossover link gain.

• In Section VI, we specialize the result for the general set-
ting to another type of degraded discrete memoryless ZC.
The result is extended directly to the Gaussian ZC with
strong crossover link gain. We also determine respective
outer bounds to their capacity regions. We establish the ca-
pacity region of the Gaussian ZC with moderately strong
crossover link gain. In the discrete case, we show that the
achievable rate region is the capacity region if a certain
condition is satisfied. Finally, we show that the achievable
rate region, determined in [2], for the Gaussian ZC with
very strong crossover link gain can be enlarged.

II. MATHEMATICAL PRELIMINARIES

A two-user discrete ZC consists of four finite sets , , ,
, and a conditional joint distribution , with

the conditional marginal distributions given by

(1)

(2)

The ZC is said to be memoryless if

Throughout the paper, we assume the ZC to be memoryless.
From (2), we see that

(3)

form a Markov chain. Since there is no cooperation between
the two receivers, the capacity region of the ZC depends on the
conditional joint distribution only through the
conditional marginal distributions. In addition, we note that
and are independent for all input distributions of the form

.

(4)

Similarly, and are independent for all input distribu-
tions of the form . In the ZC, sender pro-
duces an integer . Sender produces
an integer pair

denotes the message sender intends to transmit
to receiver , denotes the message sender
intends to transmit to receiver , and denotes the
message sender intends to transmit to receiver . A

code for a ZC with independent
messages consists of two encoders

and two decoders

The average probability of error is defined as the probability that
the decoded messages are not equal to the transmitted messages,
i.e.,

The distributions of , , and are assumed to be uni-
form. A rate triplet is said to be achievable for
the ZC if there exists a sequence of
codes with .



1350 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 4, APRIL 2007

Willems and Van Der Meulen proved that stochastic encoders
and decoders do not increase the capacity region of the discrete
memoryless multiple-access channel with cribbing encoders
[4]. The same argument can be extended to the ZC.

Proposition 1: Stochastic encoders and decoders do not in-
crease the capacity region of the ZC.

Proof: For stochastic encoders and decoders, we may as-
sume that the encoding and decoding functions are given by

(5)

(6)

(7)

(8)

where , , , and are random variables indepen-
dent of each other and all other random variables. Now, define

(9)

where ranges over and is ’s density function. If a
-code exists for stochastic encoders

and decoders, and achieves a probability of error , we then
have

(10)

It then readily follows that there must exist an such that

(11)
Hence, the capacity region of the ZC is unaffected if we assume
deterministic encoders and decoders.

A. Some Useful Properties of Markov Chains

We state some useful properties of Markov chains that we will
use throughout the paper (see [5, Sec. 1.1.5]).

• Decomposition: ;
• Weak Union: ;
• Contraction: and

.

B. Degraded ZC

We first define three types of physically degraded ZCs.
A ZC is said to be stochastically degraded if its conditional
marginal distributions are the same as that of a physically
degraded ZC. Since and

depend only on the conditional marginal
distributions and , the capacity region
of the stochastically degraded ZC is the same as that of the
corresponding physically degraded ZC. In the rest of the paper,
we assume that the ZCs are physically degraded.

Definition 1: We define a ZC to be a degraded ZC of type I if

(12)

form a Markov chain.

Remark 1: The conditional joint distribution
can be written as

(13)

For the degraded ZC of type I, the following inequality holds:

(14)

for all input distributions .

Example 1: Fig. 7 shows a degraded Gaussian ZC of type I.
One may easily verify that the two Markov chains given by (3)
and (12) are simultaneously satisfied.

Definition 2: We define a ZC to be a degraded ZC of type II
if

(15)

form a Markov chain.

Remark 2: For the degraded ZC of type II, the conditional
joint distribution can be written as

(16)

The following inequality holds:

(17)

for all input distributions .

Example 2: Fig. 9 shows a degraded Gaussian ZC of type II.
One may easily verify that the two Markov chains given by (3)
and (15) are simultaneously satisfied.

Definition 3: We define a ZC to be a degraded ZC of type III
if

(18)

form a Markov chain.

Remark 3: The degraded ZC of type III was first defined in
[2] and corresponds to the case where the output of receiver
( ) is a degraded version of the output of receiver ( ).
By applying the weak union property for Markov chains, we
see that the Markov chain holds for the
degraded ZC of type III. Hence, a degraded ZC of type III is
also a degraded ZC of type II. However, the converse may not
necessarily be true.

Example 3: We consider the degraded ZC of type III shown
in Fig. 5 where , ,

, and . We note that receiver
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Fig. 5. An example of a degraded ZC of type III.

Fig. 6. General Gaussian ZC.

is able to decode and without error. We also have
and

. One may easily verify that the two Markov
chains given by (3) and (18) are simultaneously satisfied.

C. Gaussian ZC

For a general Gaussian ZC, the inputs and outputs are related
by

(19)

(20)

as depicted in Fig. 6. The channel outputs and inputs are
real valued and have power constraints and

. and are zero-mean Gaussian random
variables with variance and , respectively. Similar to the
Gaussian IC, one can use a scaling transformation to convert
the Gaussian ZC into its standard form as shown in Fig. 4.
The inputs and outputs of the standard form Gaussian ZC are
related by

(21)

where

(22)

and the new power constraints and channel gain are

(23)

Fig. 7. Degraded Gaussian ZC of type I.

Fig. 8. Transformation of the Gaussian ZC (a � 1).

1) Equivalent Gaussian ZC With Weak Crossover Link Gain
( ): In [6], Costa showed that the class of Gaussian
ZIC with weak interference ( ) and the class of de-
graded Gaussian IC are equivalent, i.e., for every Gaussian ZIC
with weak interference, there is a degraded Gaussian IC with the
same capacity region. Using the same arguments as in [6], we
can deduce that the class of Gaussian ZC with weak crossover
link gain and the class of degraded Gaussian ZC of type I are
equivalent, i.e., for every Gaussian ZC with weak crossover
gain, there is a degraded Gaussian ZC of type I with the same ca-
pacity region. Hence, the capacity region of the channel shown
in Fig. 7 is equivalent to that of the model shown in Fig. 4 when

. An achievable rate region for the degraded dis-
crete memoryless ZC of type I can be readily extended to the
Gaussian ZC with weak crossover link gain. The assumption

ensures that the term is nonnegative.
2) Equivalent Gaussian ZC With Strong Crossover Link Gain

( ): Consider the two channels shown in Fig. 8. The
second channel is equivalent to the first since scaling the output
of a channel does not affect its capacity. The channel shown in
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Fig. 9. A degraded Gaussian ZC of type II.

Fig. 9 is equivalent to the channel shown in Fig. 8(b) since they
have identical conditional marginal distributions. In Fig. 9, the
outputs are related to the inputs by

(24)

where and . We will
make use of this equivalent channel to determine an outer bound
to the capacity region of the Gaussian ZC with strong crossover
link gain. Here, we have made the assumption that to
ensure that the term is nonnegative. Since the class of
Gaussian ZC with strong crossover link gain and the class of de-
graded Gaussian ZC of type II are equivalent, an achievable rate
region for the degraded discrete memoryless ZC of type II can
be readily extended to the Gaussian ZC with strong crossover
link gain.

D. Jointly Typical Sequences

We review some basic results for typical sequences. Let
denote a finite collection of discrete random

variables with some fixed joint distribution, ,
. Let denote an ordered

subset of these random variables and consider independent
copies of . Thus

Definition 4: The set of -typical
-sequences is defined by

For any , there exists an integer such that
satisfies the following.

1) , .

2) .

3)
4) Let and be two subsets of . If

, then

5) Let , , and be three subsets of .
If , and if

then

E. Notation

We denote a discrete random variable with capital letter
and its realization with lower case letter . A discrete random
variable takes values in a finite discrete set and we use

to denote the cardinality of . We denote vectors with su-
perscripts, e.g., denotes a random vector and denotes a
realization of the random vector. The th element of a random
vector is denoted by , while the th element of a vector

is denoted by . We also denote by the sequence
of random variables . denotes the
probability distribution function of on , while
denotes the probability distribution function of on . For
brevity, we may omit the subscript or when it is clear
from the context. We denote the entropy of a discrete random
variable by and the differential entropy of a contin-
uous random variable by .

III. REVIEW OF PAST RESULTS

In this section, we review some known results for the ZC.

A. Degraded ZC of Type I

In [3, Larger Achievable Region 2], Liu and Ulukus deter-
mined a lower bound to the capacity region of the Gaussian ZC
with weak crossover link gain. This corresponds to the degraded
ZC of Type I. Liu and Ulukus make use of rate splitting and suc-
cessive decoding technique similar to Carleial for the Gaussian
IC [7]. Let us denote the information sender intends to
transmit to receiver by and the information sender

intends to transmit to receiver by . has rate
. Sender splits in , where and

have rates and , respectively. represents the
information that only receiver can decode, while and

represent the information that both receivers can decode.
One strategy is to have receiver decode followed

by and finally . Receiver decodes followed
by and finally . Another strategy is to have receiver

decode followed by and finally , while
receiver decodes followed by and finally

. The Larger Achievable Region 2 determined by Liu
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and Ulukus is the union of the achievable rate regions of these
two strategies for the Gaussian ZC with weak crossover link
gain. When this strategy is applied to the degraded discrete
memoryless ZC of type I, an achievable rate region is given by
the set , which is the closure of the convex hull of all rate
triplets satisfying

(25)

(26)

(27)

where , , , and are subject to the constraints

(28)

(29)

(30)

for all input distributions . In [3],
Liu and Ulukus also determined an outer bound to the capacity
region of the Gaussian ZC with weak crossover link gain. By
making use of the entropy power inequality, Liu and Ulukus
obtained the following theorem.

Theorem 1: [Liu and Ulukus] For the Gaussian ZC with weak
crossover link gain ( ), the achievable rate triplets

have to satisfy

(31)

(32)

(33)

for some and where .
Proof: The proof can be found in [3, Theorem 2].

Remark 4: This outer bound includes the best outer bound
to the capacity region of the Gaussian ZIC under weak inter-
ference derived by Kramer [8, Theorem 2]. Kramer makes use
of a proposition of Sato for a degraded interference channel,
while Liu and Ulukus derived this using the entropy power in-
equality. To see the equivalence between the two, we can ig-
nore the constraint for since for an interference
channel. Hence, for the Gaussian ZIC under weak interference,
the achievable rate pair has to satisfy

(34)

(35)

for some . This is in fact the outer bound determined
by Kramer for the capacity region of the degraded Gaussian
IC, which is equivalent to that of the Gaussian ZIC under weak
interference.

B. Degraded ZC of Type III

It was stated in [2] that the capacity region of a degraded
discrete memoryless ZC of type III is the closure of the convex
hull of all triplets subject to

(36)

(37)

(38)

(39)

for some input distributions .

Remark 5: The rates given by (36)–(39) can readily be seen
to be achievable. Since the output of receiver ( ) is a de-
graded version of receiver ( ), we can use superposition
coding at sender , where the auxiliary random variable
represents the information to be transmitted from sender
to receiver . Unfortunately, this achievable rate may not be
the outer bound in general due to the following problem in the
converse.

In [2], the authors define
and state that form a Markov chain.
However, this is not necessarily the case as may contain
some information about that is not in . We first observe
that contains all the past outputs of receiver until time

. Moreover, the current output of receiver ( ) is de-
pendent on the current input of sender and sender
( ). Hence, the Markov chain should be given by

. Therefore, in the derivation of
the outer bound, the input distribution may not be
equal to as specified in [2].

IV. ACHIEVABLE RATE REGION FOR THE DISCRETE

MEMORYLESS ZC

Similar to Carleial’s treatment of the interference channel [7],
we make use of rate splitting and superposition coding. Trans-
mitter 2 splits into , where and
have rates and , respectively. Similarly, transmitter 2
splits into , where and have rates

and , respectively. Referring to Fig. 10, represents
the information that only receiver can decode, while
represents the information that only receiver can decode.

and represent the information that both receivers
can decode.

Carleial suggested the use of sequential decoding at the re-
ceivers for the interference channel. In [9], Han and Kobayashi
refined Carleial’s method by using a joint decoder superior to
sequential decoding for the interference channel. Rather than
using the convex-hull operation, they added a time-sharing
random variable . Following the ideas of Han and Kobayashi,
we use a joint decoder at the receivers and also include a
time-sharing random variable . We first describe the code-
book generation, encoding at the transmitters, and decoding at
the receivers before describing our main result in Theorem 2.

A. Random Codebook Construction

We first fix the following input probability distribution:

(40)

The auxiliary random variable (r.v.) carries the common in-
formation and , the auxiliary r.v. carries the infor-
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Fig. 10. Encoding and decoding for the ZC.

mation , while the auxiliary r.v. carries the information
. The codebook is constructed as follows.

1) Generate one -sequence , drawn
according to

2) Generate conditionally independent -sequences
, each drawn according to

Label them , .
3) Then, generate conditionally independent

-sequences , each drawn ac-
cording to

Label them , ,
.

4) For the codeword and each of the codewords
, generate conditionally inde-

pendent -sequences , each
drawn according to

Label them , .
5) For the codeword and each of the codewords

, generate conditionally inde-
pendent -sequences , each
drawn according to

Label them , .
6) Finally, for the codeword and each of the following

codewords , ,

and , generate an -sequence
, drawn according to

Label them

B. Encoding and Decoding

To send the index , sender sends the codeword
. To send the pair to receiver and

the pair to receiver , sender sends the
codeword . For decoding, receiver

determines the unique such that

(41)

For the other decoder, receiver determines the unique
such that

(42)

C. Main Result

We may then state the main result.

Theorem 2: An achievable rate region for sending informa-
tion over the discrete memoryless ZC is given by the set ,
which is the closure of all rate triplets satisfying

(43)

(44)

(45)

where , , , , and are subject to the following
constraints:

(46)

(47)

(48)



CHONG et al.: CAPACITY THEOREMS FOR THE “Z” CHANNEL 1355

(49)

(50)

(51)

(52)

for all input distributions of the form (40).
Proof: Refer to Appendix I.

It is easy to see that is convex. In addition, we note that
Theorem 2 is not limited to the ZC. It also applies to the gen-
eral two-sender two-receiver channel (without the constraint in
(3)) where one sender has information to transmit to both re-
ceivers, while the other sender has information to transmit to
only one receiver. Next, we show that includes the capacity
regions of the multiple-access channel and the degraded broad-
cast channel. It also includes the best known achievable rate re-
gion for the ZIC.

Remark 6: We obtain the multiple-access channel when
. By setting , ,

, and , we obtain the
capacity of the multiple-access channel, which is the closure of
the convex hull of all rate pairs satisfying

(53)

(54)

(55)

for some input distributions .

Remark 7: We obtain the broadcast channel if is inde-
pendent of the input . If is a degraded version of , we
obtain the degraded broadcast channel. By setting

, , , , and
, we obtain the capacity region of the degraded broad-

cast channel, which is the closure of the convex hull of all rate
pairs satisfying

(56)

(57)

for some input distributions .

Remark 8: We obtain the ZIC when . By setting
, , and , we obtain the

Han–Kobayashi rate region (the best rate region to date) for the
ZIC which is the closure of all rate pairs satisfying

(58)

(59)

where , , and are subject to the following constraints:

(60)

(61)

(62)

(63)

(64)

for some input probability distributions of the following form:
. By using

Fourier–Motzkin elimination, we can reduce this to a set of
bounds containing only and . (Refer to [10], [11].)

V. RATE REGIONS FOR THE DEGRADED DISCRETE

MEMORYLESS ZC OF TYPE I

As we have mentioned in Section II, the capacity region of a
Gaussian ZC with weak crossover link gain is equivalent to that
of a degraded Gaussian ZC of type I. We shall first determine
an achievable rate region for the degraded discrete memoryless
ZC of type I. We note that receiver is able to decode all
the information meant for receiver . Hence, we may set

. We are then able to establish the following lemma.

Lemma 1: An achievable rate region for sending infor-
mation over the degraded discrete memoryless ZC of type I

is given by the set ,
which is the closure of all rate triplets satisfying

(65)

(66)

(67)

where , , , and are subject to the following con-
straints:

(68)

(69)

(70)

(71)

for all input probability distributions of the following form:
. Further-

more, the region is unchanged if we impose the following
constraints on the cardinalities of the auxiliary sets:

and (72)

Proof: Set , , and in The-
orem 2. We note that for a degraded discrete memoryless ZC
of type I, for all input distributions

. This implies that

(73)

Hence, the following constraint:

(74)

is redundant for a degraded discrete memoryless ZC of type I.
The assertions about the cardinalities of and follow directly
from the application of Caratheodory’s theorem to the expres-
sions (68)–(71).

Remark 9: By observing that , we
readily see that the achievable rate region of Lemma 1 will al-
ways include the achievable rate region determined by Liu and
Ulukus, i.e., .
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A. Outer Bound to the Capacity Region of the Degraded
Discrete Memoryless ZC of Type I

The following is an outer bound to the capacity region of the
degraded discrete memoryless ZC of type I.

Theorem 3: The set of rate triplets satisfying

(75)

(76)

(77)

for some input probability distributions of the following form
constitutes

an outer bound to the capacity region of the degraded discrete
memoryless ZC of type I. Furthermore, the region is unchanged
if we impose the following constraints on the cardinalities of the
auxiliary sets:

and (78)

Proof: Refer to Appendix II.

B. Achievable Rate Region for the Gaussian ZC With Weak
Crossover Link Gain ( )

We have already established an achievable rate region for the
degraded discrete memoryless ZC of type I. Lemma 1 can then
be readily extended to a Gaussian ZC with weak crossover link
gain.

Corollary 1: For , an achievable rate region for
the Gaussian ZC is given by the set , which is the closure of
the convex hull of all rate triplets satisfying

(79)

(80)

(81)

where , , , and are subject to the constraints

(82)

(83)

(84)

(85)

for any .
Proof: The proof follows directly from Lemma 1 with

, where , , and are independent

Gaussian random variables, and .

VI. RATE REGIONS FOR THE DEGRADED DISCRETE

MEMORYLESS ZC OF TYPE II

As we have mentioned in Section II, the capacity region of
a Gaussian ZC with strong crossover link gain is equivalent to
that of a degraded Gaussian ZC of type II. Hence, we shall first

determine an achievable rate region for the degraded discrete
memoryless ZC of type II. In addition, the achievable rate region
in Lemma 2 is also applicable to the degraded discrete memo-
ryless ZC of type III.

Lemma 2: An achievable rate region for sending informa-
tion over the degraded discrete memoryless ZC of type II and
type III is given by the set

, which is the closure of all triplets satisfying

(86)

(87)

(88)

(89)

(90)

for all input probability distributions of the following form:
. Further-

more, the region is unchanged if we impose the following
constraints on the cardinalities of the auxiliary sets:

and (91)

Proof: Set , , ,
, , and in Theorem 2. Since

(92)

for a degraded discrete memoryless ZC of type II and type III,
the constraint

(93)

is redundant. The assertions about the cardinalities of and
follow directly from the application of Caratheodory’s theorem
to the expressions (86)–(90).

A. Outer Bound to the Capacity Region of the Degraded
Discrete Memoryless ZC of Type II and Type III

The following is an outer bound to the capacity region of the
degraded discrete memoryless ZC of type II and type III.

Theorem 4: The set of rate triplets satisfying

(94)

(95)

(96)

(97)

for some input probability distributions of the following form:
constitutes

an outer bound to the capacity region of the degraded discrete
memoryless ZC of type II and type III. Furthermore, the region
is unchanged if we impose the following constraints on the car-
dinalities of the auxiliary sets:

and (98)

Proof: Refer to Appendix III.
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We note that the outer bound of Theorem 4 has one less con-
straint than the achievable rate region of Lemma 2. A natural
question is under what conditions do the inner bound and outer
bound meet. This is given in the following theorem.

Theorem 5: The capacity region of the class of dis-
crete memoryless ZC of type II, with the condition that

for all input distributions of the form
, is the set , which is the

closure of the set of rate triplets satisfying (94)–(97) for
some input probability distributions of the following form:

. Further-
more, the region is unchanged if we impose the same constraints
on the cardinalities of the auxiliary sets as (98).

Proof: Let us first assume that a certain rate triplet
satisfies (94)–(97) for a fixed input distribution

(99)
Let the joint distribution of the set of random variables

be given by (99). Let the joint distribution of
the set of random variables , where , be
given by

(100)

Now, let the random variable range over {1, 2}, where
and . Fur-

thermore, we define , , , and
. Next, we need to set an appropriate value for

. If , set . Otherwise, we set as
follows:

(101)

We note that satisfies

(102)

We also note that satisfies

(103)

if for all input probability distribu-
tions . We see that the same rate triplet

satisfies

(104)

(105)

(106)

(107)

(108)

Hence, all rate triplets in the set are achievable.

The region is in fact also the capacity region of a certain
class of degraded discrete memoryless ZC of type I.

Theorem 6: is the capacity region of the class of degraded
discrete memoryless ZC of type I with being a deterministic
function of and , i.e., .

Proof: Since , we note that
form a Markov chain. In fact, this special class

of ZC is a degraded discrete memoryless ZC of both type I
and type II. It is easy to verify that for the degraded discrete
memoryless ZC of type I, for all input
distributions .

B. Achievable Rate Region for the Gaussian ZC With Strong
Crossover Link Gain ( )

So far, we have established an achievable rate region for the
degraded discrete memoryless ZC of type II and type III. Since
the capacity region of the Gaussian ZC with strong crossover
link gain corresponds to that of a degraded Gaussian ZC of type
II, we see that Lemma 2 is readily applicable with obvious mod-
ifications.

Corollary 2: For , an achievable rate region for the
Gaussian ZC is given by the set , which is the closure of the
convex hull of all rate triplets satisfying

(109)

(110)

(111)

(112)

(113)

for any .
Proof: The proof follows directly from Lemma 2 with

. We also assume that where , , and
are independent, zero-mean, Gaussian random variables

and where .

Remark 10: Corollary 2 was derived in [2] for the Gaussian
ZC with very strong crossover link gain. We note that the last
constraint (113) is redundant for the Gaussian ZC with very
strong crossover link gain.
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C. Outer Bound to the Capacity Region of the Gaussian ZC
With Strong Crossover Link Gain ( )

In the previous section, we derived an achievable rate region
for the Gaussian ZC with strong crossover link gain. Next, we
proceed to establish an outer bound to the capacity region of the
Gaussian ZC with strong crossover link gain. We make use of
the equivalent channel shown in Fig. 9 and Shannon’s entropy
power inequality to derive an outer bound.

Theorem 7: For a Gaussian ZC with power constraints
and , and , any achievable rate triplet
has to satisfy

(114)

(115)

(116)

(117)

for some .
Proof: Refer to Appendix IV.

D. Capacity of the Gaussian ZC With Moderately Strong
Crossover Link Gain ( )

We have derived an achievable rate region and an outer bound
for the Gaussian ZC when . In this subsection, we show
that the achievable rate region coincides with the outer bound
when the crossover link gain is moderately strong, i.e, when

.

Theorem 8: The capacity region of the Gaussian ZC with
moderately strong crossover link gain is given by the closure of
all rate triplets satisfying (114)–(117) for some

.
Proof: Let us first assume a particular rate triplet

satisfies (114)–(117) for . Next, let
us set as follows:

(118)

We note that since

Let us consider the last constraint given by (117). We obtain

(119)

We see that the same rate triplet also satisfies
(109)–(113) for .

(120)

(121)

(122)

(123)

(124)

Hence, any rate triplet in the outer bound is achievable.

E. Achievable Rates and Numerical Computation For
the Gaussian ZC With Very Strong Crossover Link Gain
( )

In [2], Vishwanath, Jindal, and Goldsmith determined an
achievable rate region for very strong crossover link gain using
superposition coding at sender and successive decoding at
receiver . In fact, the achievable rate region of Vishwanath,
Jindal, and Goldsmith corresponds to that of Corollary 2 with
very strong crossover link gain. However, their technique
does not apply to the case of moderately strong crossover link
gain. This is because their successive decoding method would
require receiver to be able to decode all the information
intended for receiver . This is possible only with very
strong crossover link gain.

We have already determined the capacity of the Gaussian ZC
with moderately strong crossover link gain. A very natural ques-
tion that comes to mind is whether Corollary 2 also gives us the
capacity region of the Gaussian ZC with very strong crossover
link gain. Our experience with the Gaussian ZIC under very
strong interference may influence one to think that Corollary 2
would also give us the capacity region of the Gaussian ZC with
very strong crossover link gain. However, in this subsection, we
show that this is not the case in general. In fact, this is suggested
by the time-sharing random variable in the converse proof in
[2]. We can enlarge the achievable rate region of Corollary 2
for the Gaussian ZC with very strong crossover link gain by al-
lowing . We could theoretically compute an achievable
rate region for larger values of but for computational rea-
sons, we restrict our attention to .

Corollary 3: For , an achievable rate region for
the Gaussian ZC is given by the set , which is the closure of
the convex hull of all triplets satisfying

(125)

(126)

(127)
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Fig. 11. Numerical computations (P = 5, P = 5, a = 9, R = 0:3=0:7).

(128)

(129)

for any , , , , .
Proof: The result follows directly from Lemma 2 with

. We assume that where , ,
and are independent. During a fraction of the time, the
symbols of , , and are Gaussian distributed with
zero mean, and variances , , and , respectively

(130)

and during the remaining fraction of the time

(131)

which ensures that the power constraints are satisfied.

Remark 11: Fig. 11 shows numerical computations of the
achievable rates for the Gaussian ZC with , ,

( ). Instead of plotting rate triplets ,

we fix and plot the rate pair . From
Fig. 11, we see that when is fixed, Corollary 2 gives rate
pairs that correspond to a Gaussian multiple-access
channel. However, we see that when we increase from to

, Corollary 3 gives an achievable rate region that is even larger
than that of Corollary 2 for the Gaussian ZC with very strong
crossover link gain. Moreover, we note that for the parameters
chosen, setting suffices to achieve the capacity for
most rate triplets. In general, Corollary 2 is not the capacity
region of the Gaussian ZC with very strong crossover link gain.

Remark 12: However, Corollary 2 gives us the capacity re-
gion of the Gaussian ZIC under strong interference. We can ig-
nore the constraint for since for an interference
channel. By setting , we obtain the capacity region of the
Gaussian ZIC [9] under strong interference.

VII. CONCLUDING REMARKS

In this paper, we derive an achievable rate region for the gen-
eral discrete memoryless ZC. We make use of rate-splitting and
superposition coding at sender and joint decoding at re-
ceiver . We specialize this general result to obtain achiev-
able rate regions for degraded discrete memoryless ZCs of type
I, type II, and type III. We also obtain outer bounds to the ca-
pacity regions of these three types of degraded discrete memory-
less ZCs. We show that as long as a certain condition is satisfied,
the achievable rate region is the capacity region of the degraded
discrete memoryless ZC of type II. The results for the degraded
discrete memoryless ZCs of type I and II are then extended to the
Gaussian ZC with different crossover link gains. We determine
an outer bound to the capacity region of the Gaussian ZC with
strong crossover link gain. For moderately strong crossover link
gain, we show that the inner and outer bounds for the capacity
region meet.
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APPENDIX I
PROOF OF THEOREM 2

By the symmetry of the random code generation, the condi-
tional probability of error does not depend on which indices are
sent. Therefore, we may assume that the message

is sent. Let denote the conditional probability of the event
that is sent. For receiver , we define the
following events:

(132)

Then we can bound the probability of error as follows:

(133)

For , we have

(134)

For , we have

(135)

For , we have

(136)

For , we have

(137)

For , we have

(138)

For , we have

(139)
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For , we have

(140)

We may then bound the probability of error at receiver as
follows:

(141)

For receiver , we define the following events:

(142)

Then we can bound the probability of error as follows:

(143)

For , we have

(144)

For , we have

(145)

For , we have

(146)

(147)

We may then bound the probability of error at receiver as
follows:

(148)

Since is arbitrary, the conditions of Theorem 2 ensure that
each of the terms in (141) and (148) tends to as .

APPENDIX II
PROOF OF THEOREM 3

By Fano’s inequality, we have

(149)

(150)

(151)

where as . We first bound as
follows:
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(152)

where we define the random variable for
all , follows from the fact that since and are in-
dependent, so are and , and follows from the
fact that form a
Markov chain. This is due to the memoryless property of the
channel and the fact that for any , depends only on
and (refer to (13)). Finally, follows from the fact that

form a Markov
chain. We can prove this using the functional dependence graph
technique introduced in [12]. Alternatively, we first note the fol-
lowing Markov chain

(153)

which follows from the fact that depends only on and
. Using the weak union property, we obtain the following

Markov chain:

(154)

Next, we note that and are independent. Hence,
is independent of . Coupled with the contraction

property [5], we obtain the following Markov chain:

(155)

Finally, using the weak union property and the decomposition
property [5], we obtain as
desired. Next, we bound as follows:

(156)

where follows immediately from the Markov chain given
by . We first note the fol-
lowing Markov chain:

(157)

Using the weak union property, we obtain

(158)

Using the fact that and are independent, and ap-
plying the contraction property, we obtain

(159)

Applying the decomposition property, we obtain the desired
Markov chain . Finally,
we bound as follows:

(160)

By the Markovity of and the
independence of and , we observe that

By introducing a time-sharing random variable similar to the
proof for the converse of the capacity region of the multiple-ac-
cess channel [1, p. 402], we obtain Theorem 3. The assertions
about the cardinalities of and follow directly from the appli-
cation of Caratheodory’s theorem to the expressions (75)–(77).
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APPENDIX III
PROOF OF THEOREM 4

By Fano’s inequality, we again have

(161)

(162)

(163)

where as . We first bound as
follows:

(164)

where we define the random variable for
all , follows from the fact that since , , and are
independent, so are , , and , and follows
from the fact that
form a Markov chain. This follows from the discrete memory-
less property of the channel and the fact that for any , de-
pends only on and (refer to (16)). Next, we bound
as follows:

(165)

Next, we bound as follows:

(166)

For the degraded discrete memoryless ZC of type II, we have

(167)

from the data processing inequality and the fact that
form a Markov chain. The above

inequality similarly holds for the discrete memoryless ZC of
type III. To bound , we have

(168)

By the Markovity of and the
independence of and , we observe again that

Finally, we obtain Theorem 4, by introducing a time-sharing
random variable . The assertions about the cardinalities of
and follow directly from the application of Caratheodory’s
theorem to the expressions (94)–(97).
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APPENDIX IV
PROOF OF THEOREM 7

We determine an outer bound to the capacity region of the
equivalent Gaussian ZC with strong crossover link gain as
shown in Fig. 9. By Fano’s inequality, we have

(169)

(170)

(171)

where as . We first bound the term
. From the following

Markov chain:

(172)

we have by the data processing inequality and Fano’s inequality

(173)

Next, we bound the following term . Consider
the following inequalities:

(174)

Thus, there exists a , such that

(175)

We next obtain a lower bound for by
making use of the entropy power inequality

(176)

We can now bound as follows:

(177)

We bound as follows:

(178)

We then bound as follows:

(179)

Finally, we bound the term as follows:

(180)
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