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Over the past decade, sensors, displays and smart devices have 
been developed that can be seamlessly integrated onto the 
human body1–8. Connecting these devices into a functional 

and practical network is, however, challenging9,10. For example, 
direct wiring between sensor nodes is widely used in clinical and 
research settings, but such an approach is not well suited to contin-
uous use because it disrupts physical activity. Furthermore, recent 
advances in wearable electronics have shown that sensors and con-
ductive wires can be integrated into clothing11,12 or onto skin13, but 
interconnecting them with other electronic devices for power sup-
ply and data collection remains difficult.

To create an unconstrained network of discrete devices, wireless 
interconnection approaches are required. However, wireless tech-
nologies and protocols for body networks14,15 rely on the transmis-
sion of radio-waves into the surrounding space, and are therefore 
energy-consuming and vulnerable to interception by others. These 
limitations impose hardware and software requirements that limit 
the size, lifetime and function of body-based sensors. For example, 
low-power circuits and energy storage may be needed to address the 
power consumption issues, while security protocols and cryptogra-
phy may be required to ensure privacy16.

In contrast to radio-waves, electromagnetic waves at optical fre-
quencies can be confined on metallic surfaces in localized excita-
tions called surface plasmons17. Because these modes can propagate 
conformably along the surface, and interact strongly with nearby 
objects through an evanescent field, they are widely used as inter-
connection elements in integrated photonic devices18. Although 
surface plasmons do not exist in natural materials at radio-frequen-
cies, metamaterial approaches have shown that these electromag-
netic modes can be engineered by designing structured conductive 
surfaces such as textured metal sheets19, wire arrays20 and flexible 
printed circuit boards21.

In this Article, we show that clothing structured with con-
ductive textiles—termed metamaterial textiles—can support  

surface-plasmon-like modes at communication frequencies and 
thus provide a platform for the propagation of radio-waves around 
the body (Fig. 1a). With this approach, we develop energy-efficient 
and secure wireless body sensor networks interconnected by radio 
surface plasmons propagating on metamaterial textiles. Unlike con-
ventional electronic textiles, our metamaterial textiles (Fig. 1b) can 
achieve interconnection of devices by contactless proximity to the 
body without requiring them to be ‘plugged in’. In particular, when 
standard wireless devices are placed near metamaterial textiles, 
their interconnection can be achieved through the propagation of 
wireless signals as surface waves instead of wireless signals radiating 
into the surrounding space (Fig. 1c). The physical localization of 
wireless signals onto the body (Fig. 1d) can enable personal sen-
sor networks that are highly efficient, immune to interference, and 
inherently secure.

Our metamaterial textiles can support the propagation of wire-
less signals around the body and are also robust to daily wear, hav-
ing no active electronic components. We show that the transmission 
efficiency of wireless networks interconnected through such meta-
material textiles can be enhanced by over three orders of magnitude 
(>30 dB) compared to conventional radiative networks without 
the metamaterial textile, and that wireless communication can be 
localized within 10 cm of the body. We also demonstrate that our 
metamaterial textiles can be used to power sensors wirelessly and 
for touch sensing via wireless signals.

Metamaterial textile design
We first examine the conditions required for a metamaterial to sup-
port radio-frequency waves while bound to the surface of the body. 
We consider a model of the interface between air and the body con-
sisting of a half-space that is free-space in the upper region (z > 0) 
and filled with biological material with a relative dielectric permit-
tivity εbody in the lower region (z < 0). Taking x to be the direction 
of propagation, a thin planar metamaterial placed on the interface 
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z = 0 supports a mode whose electric field in the upper (E1) and 
lower (E2) region is given by
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where E0 is the field amplitude, ω the frequency, β the wavenumber 
and αn the decay parameter in each region. The form of equation (1) 
is dictated by symmetry considerations, while the design of the meta-
material determines the relationships between the parameters β, ω 
and αn. For a plasmonic metamaterial, β and ω are related by a surface 
plasmon dispersion relation, whose curve lies to the right of the light 
line β = ω/c, where c is the speed of light, and approaches an asymptotic 
limit termed the surface plasma frequency (see Methods). The decay 
parameter for the free-space region is given by α β ω= − ∕c( )1

2 2 , 
which, together with the dispersion relation, implies that the mode is 
bound to the upper surface because α1 is purely real. The lower region, 

however, supports additional bulk radiative modes within the region 
β ω< ɛ ∕cbody  due to the presence of biological tissue. Remarkably, 
these modes encompass nearly all frequencies below the surface 
plasma frequency because of the very high dielectric permittivity of 
biological tissue at radiofrequencies. To allow bound surface modes to 
exist on the body, the metamaterial should therefore support a single-
sided mode α2 → ∞ to prevent coupling to these bulk radiative modes 
and leakage into the lower region.

In addition to supporting surface modes, the metamaterial 
must also be able to interact with nearby sensors and devices with-
out physical contact. The interaction of the surface waves with a 
wireless device can be described by expanding the electric field 
into forward (+) and backward (−) propagating surface modes E
(r,t) = (a+e+(r) + a−e−(r))e−iωt, where a± are the mode amplitudes 
and α β= ∕ β α

±
± − ∣ ∣p y i ee r( ) ( )( , 0, 1)n

i x zn  are the mode field patterns 
with a normalized profile function ∫ ∣ ∣ = α α
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. When 

a radiofrequency source with current density j(r) is placed above the 
body, the modes are excited with amplitude22
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Fig. 1 | Wireless body sensor networks with metamaterial textiles. a, Illustration of a sensor network interconnected by radio surface plasmons on 
clothing. b–d, Comparison with conductive and radiative interconnections. Conductive interconnects (b) require devices to be physically connected 
(grey line), while radiative interconnection (c) is wireless but transmits inefficiently and insecurely into the surrounding space (blue lines). In contrast, 
interconnection with surface waves (d) is contactless but requires proximity to the body (red lines). e, Structure of the metamaterial textile. f, Electric field 
distribution |Ez| emitted by a dipole above a metamaterial textile (top), unpatterned conductive textile (centre) and non-conductive textile (bottom). The 
textile is placed on an air–body half-space with εbody = 40. g, Top, normalized field distribution on the y–z plane; bottom, field profile along the dashed line in 
the field distribution. h, Dispersion curve of the metamaterial structure. The dark shaded area shows the radiation cone in air, the light shaded area shows 
the radiation cone in the body, and the shaded purple area shows the 2.4–2.5 GHz ISM band. i, Comparison of the normalized power flow (peak value of 
the Poynting vector) with distance from the transmitter near the textile (confined, surface) and in free-space (radiative).

NATure eLeCTroNiCS | www.nature.com/natureelectronics

http://www.nature.com/natureelectronics


ArticlesNature electroNics

∫β
ωε

= − ⋅± ∓a rj r e r
2

( ) ( )d (2)
0

3

Since e±(r) extends evanescently in the z direction, contactless 
excitation is efficient within a distance comparable to the decay 
length α −

1
1 above the surface. In contrast, conventional waveguides, 

such as coaxial cables and microstrip lines, lack such an evanescent 
field and typically cannot be efficiently excited by nearby sources 
without specialized connectors. The metamaterial can interact with 
a standard wireless device through the current density j(r) gener-
ated by its built-in antenna without any modification, although it 
should be noted that the excitation does not depend on conventional 
performance metrics such as directivity and gain. The orientation 
dependence of the interaction can be evaluated by approximat-
ing j(r) by its electric dipole moment p centred at r0. Equation (2)  
then reduces to = ⋅β

± ɛ ∓a p e r[ ( )]i
2 0

0
, which shows that the dipole 

excites surface waves as long as it has a non-zero longitudinal (x) 
or vertical (z) component, because surface plasmon-like modes are 
transverse-magnetic.

Based on these physical considerations, the metamaterial must 
satisfy the following strict requirements to interconnect wireless 
networks with surface plasmon-like modes: (1) it must support a 
surface plasmon dispersion relation with cutoff frequency above the 
2.4–2.5 GHz industrial, scientific and medical (ISM) band, (2) the 
field in the lower region must be screened such that α2 → ∞ to mini-
mize coupling with the body and (3) the wavenumber β of the surface 
modes must correspond to a decay length α −

1
1 on the order of a few 

centimetres. These conditions are not met with existing metamate-
rials based on metal sheets or printed circuit boards. To develop a 
textile platform that meets these requirements, we designed a meta-
material using a numerical optimization procedure for the planar 
structure in Fig. 1e (see Methods and Supplementary Fig. 1). This 
metamaterial structure consists of a planar comb-shaped pattern on 
the top layer (previously used as a plasmonic metamaterial21,23), an 
intermediate fabric layer and a bottom layer comprising an unpat-
terned metallic conductor. The design procedure yields geometri-
cal parameters such that the combined structure supports a surface 
plasmon dispersion that satisfies the requirements for wireless 
networking and has overall dimensions (2.5 cm width, 8 mm unit  
cell length) compatible with easy integration with most types of 
clothing by direct attachment of commercially available, low-cost 
conductive textiles.

Figure 1f shows wireless excitation of the surface modes on meta-
material textiles by a horizontal dipole transmitter placed 5 mm 
above the structure. The transmission efficiency to the receiver is 
more than three orders of magnitude higher than radiative transmis-
sion performed without the metamaterial textile. The unpatterned 
conductive textiles, in contrast, do not support surface modes and 
result in efficiencies comparable to radiative transmission. The frac-
tion of energy transmitted into surface modes versus radiative modes 
is controlled by the distance of the dipole from the metamaterial 
textile, with preferential coupling to surface modes within 15 mm of 
the surface (Supplementary Fig. 2). Their propagation is also highly 
robust to folding and bending, and incurs minimal radiative losses 
and reflection with curvature (<5% for a U-turn with 1.25 mm 
radius-of-curvature; Supplementary Fig. 3). The surface plasmon-
like nature of the modes is confirmed by the exponential field decay 
(Fig. 1g) and asymptotic dispersion curve (Fig. 1h), which fit the sur-
face plasmon dispersion model (see Methods). Propagation losses are 
dictated by the textile conductivity and are estimated to be less than 
0.2 dB cm−1 for moderate conductivities (σ > 2 × 105 S m−1) (Fig. 1i and 
Supplementary Fig. 4).

Metamaterial textiles provide a versatile platform for manipu-
lating wave propagation around the body. Their geometrical 
parameters (Fig. 2a) can be tuned to achieve surface modes with 

wavenumbers β ranging from 0.35π to 0.65π rad cm−1 (Fig. 2b) and 
corresponding decay lengths α −

1
1 ranging from 5 to 10 mm (Fig. 2c) 

at 2.4 GHz. Using a design with β = 0.5π cm−1, we demonstrate three 
basic building blocks for more complex wave circuits—a power 
divider, antenna and ring resonator—integrated into a network 
on a cotton–polyester shirt (Fig. 2d). The devices are fabricated 
by laser-cutting conductive textile (Cu/Ni polyester) and attaching 
the patterns with fabric adhesive. The power splitter evenly divides 
an input signal between the two output ports, enabling the distri-
bution and combination of signals from multiple devices. Device 
functionality is validated by the close agreement between numerical 
simulations and near-field measurements (Fig. 2e) as well as port 
measurements on the body (Fig. 2h). The antenna launches an input 
signal confined on the textile surface as radiation into the surround-
ing space for short-range transmission, such as from the shoulder to 
an ear-worn device. Simulations and field mapping show excitation 
of a resonant antenna mode (Fig. 2f), and measurements from a 
receiver placed 10 cm above the antenna indicate radiation within 
the 2.4–2.5 GHz band (Fig. 2i). Finally, the ring resonator exhibits a 
series of resonances that can be used to filter signals, sense mechani-
cal strain and enhance interactions with nearby objects. Simulations 
and field mapping reveal a whispering gallery mode of order m = 7 at 
2.5 GHz (Fig. 2g), which corresponds to a sharp resonant dip in the 
transmission spectrum between probes placed at two diametrically 
opposite points (Fig. 2j). The resonant frequency measurably shifts 
as the textile is stretched (Supplementary Fig. 5), providing a poten-
tial mechanism for wirelessly sensing textile strain. Close agreement 
between measurements on and off the body demonstrate robustness 
to environmental effects (Supplementary Fig. 6). Circuits built from 
these basic devices may potentially perform sophisticated functions 
for applications in energy transfer, sensing and signal processing on 
a wearable platform24,25.

Unlike conventional conductive textiles, signal propagation on 
metamaterial textiles is robust to discontinuities in the underly-
ing conductive structure. Simulations show that the transmission 
efficiency across a 1 cm gap in the direction of propagation (x) is 
greater than −7 dB; the structures can also be discontinuous in 
the transverse (y) or vertical (z) directions with transmission effi-
ciencies greater than −3 dB and −10 dB, respectively, for a 1 cm 
gap (Supplementary Fig. 7). Experimental measurements of wire-
less Bluetooth transmission along the metamaterial textile show 
a comparable transmission efficiency for a vertical gap as well as 
no detectable decrease in signal strength when the textile is cut at 
multiple locations (Supplementary Fig. 8). Such contactless trans-
mission along the metamaterial textiles allows signals to efficiently 
couple between nearby structures and propagate from one article of 
clothing to another.

energy-efficient communication
We next investigated the ability of the metamaterial textile to 
enhance the transmission of wireless signals between devices 
worn on the body. Figure 3a shows a network of two sensor nodes, 
consisting of commercial Bluetooth modules attached to the left 
shoulder and lower back, and a central hub (smartphone) worn 
on the abdomen. Full-wave simulations of the sensors transmit-
ting in a computational body model show confinement of energy 
onto the textile surface and propagation around the curvature 
of the body (Fig. 3b). In contrast, radiative communication per-
formed in the absence of the metamaterial textile results in about 
three orders of magnitude lower efficiency due to radiative losses 
and obstruction by the body. To evaluate the robustness of the 
enhancement, real-time monitoring of the signal strength was 
performed with healthy volunteers wearing two sensors and a 
smartphone during physiological activity (see Methods). Controls 
with the conventional radiative network were conducted by 
repeating the activity protocol without the metamaterial textile. 
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Figure 3c shows that the relative signal strength indicator (RSSI) 
from one subject during 5 min intervals of standing, walking and 
running was enhanced by ~31 dB for both devices. Across a group 
of subjects (n = 3), the enhancement in RSSI averaged over each 
activity was 32.1 dB for the shoulder device and 32.7 dB for the 
back device (Fig. 3d). This enhancement of the signal transmis-
sion efficiency by three orders of magnitude translates into lower 
power consumption and higher data throughput. In particular, 
the metamaterial textile enables operation of the sensor at the 
lowest available transmit power setting (−55 dBm) without signif-
icant increase in packet latency (Fig. 3e). In contrast, connection 
could not be established at power levels below −20 dBm in the 
absence of the textile. Cumulative measurements show a rate of 
4.53 packets per second for the radiative network and 31.86 pack-
ets per second for the metamaterial textile network at the lowest 
power setting where connection could be established (Fig. 3f).  
Lowering the transmit power enables significantly prolonged 
sensor battery lifetimes as wireless communication is one of the 
most energy-demanding functions performed by the sensor26,27. 
Battery-powered sensor nodes operated reliably for ~40 h dur-
ing continuous radiative Bluetooth transmission, whereas sensor 

nodes interconnected via metamaterial textiles could operate well 
beyond 70 h because of the reduced transmit power (Fig. 3g).

Secure wireless communication
Data security is essential for the transmission of health and other 
personal data within body networks. Conventional wireless sys-
tems, however, are vulnerable to eavesdropping because signal 
transmission from sensor nodes on the body to another relies 
on radiation into the surrounding space. Due to obstruction by 
the body, the range at which a radiative signal can be intercepted 
is generally much larger than the separation distance between 
the devices. As an illustrative example, we performed full-wave 
simulations of radiative propagation from a transmit node on 
the abdomen to a receiver node on the back (Supplementary  
Fig. 9b). The field intensity at the receiver is the same as at ~22 m 
in front of the subject (Supplementary Fig. 9c); this eavesdrop-
ping range cannot be reduced by power control without compro-
mising communication between the wearable devices. In contrast, 
metamaterial textiles localized the wireless signal within 10 cm  
of the body, enabling efficient transmission around the body 
without radiation into the surrounding space (Supplementary  
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Fig. 9b). This physical-layer security can complement cryptogra-
phy and protocol-based approaches because it requires no addi-
tional computation or modification of the wireless device.

To experimentally demonstrate the localization of signals on the 
body, we measured the wireless signal strength as a function of dis-
tance from the body during Bluetooth interconnection of two sen-
sor nodes worn on the body (Fig. 4a). Figure 4b shows the signal 
strength from each sensor node measured by an eavesdropper near 

the subject, both wearing and and not wearing the metamaterial 
textiles. Without the metamaterial textiles, wireless communication 
is radiative and is partially obstructed by the body, which results in 
an increase in signal strength for a distance up to 20 cm from the 
body. At larger distances, the signal decays due to radiative losses, 
and the signal strength is comparable whether on the body or 2.5 m 
away from the subject. Wireless interconnection with the metama-
terial textiles, in contrast, exhibits an exponential decay in signal 
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strength with distance. The signal strength falls below thresholds for 
communication at a distance of 10 cm while maintaining wireless 
interconnection between the sensor nodes.

As an example of secure Bluetooth data transfer, we demon-
strated wireless transmission of electrocardiography (ECG) data 
along a sleeve integrated with an antenna near the wrist (Fig. 4c). 
The data can be wirelessly transmitted to the phone only when the 
wrist is placed a few centimetres above a smartphone; motion of 
the wrist away from the smartphone results in no detectable sig-
nal (Fig. 4d). Furthermore, the localization of wireless signals on 
the body can suppress interference between neighbouring networks 
and reduce spectrum-sharing requirements. Supplementary Fig. 10 
shows an illustrative example in which communication between two 
devices on the body is subject to interference by an external device 
transmitting at the same power level. The signal-to-interference 
ratio (SIR) exceeds 20 dB when the interfering device is at a distance 
greater than 20 cm. Such personal networks that are immune to 
interference could enable individual utilization of full radio bands 
without degradation of performance from nearby devices.

Wireless power transfer and touch sensing
The efficient propagation of radio surface plasmons on metamate-
rial textiles enables wireless power transfer to many classes of low-
power sensor. As a demonstrative example, we wirelessly powered a 
pulse indicator on the wrist by guiding energy along a long-sleeved 
sweater along the length of the arm (Fig. 5a,b). When powered, the 
pulse indicator provides a visual indication of the subject’s heartbeat 
because the intensity of the light-emitting diode (LED) is modulated 
by a resistive pressure sensor (Supplementary Fig. 11) that senses 
pulsation on the wrist of the user (see Methods). The transmitter was 
placed on the shoulder and the output power set to 20 dBm (100 mW, 
equivalent to a WiFi transmitter). Monitoring the LED brightness 
during wireless power transfer shows that the pulses correspond 
to periodic cardiac activity recorded by ECG (Fig. 5c). The trans-
fer efficiency in this configuration is estimated to be 10.5% to the 
loop antenna and, including losses due to the rectifier, 3.5% to the 
LED (Supplementary Fig. 12). These power levels meet requirements 

for many low-power sensors, including temperature, pH and other 
physiological markers, which consume less than 1 mW (ref. 26).

To demonstrate that wireless, battery-free sensors can be inter-
connected within our platform, we wirelessly powered Bluetooth 
sensor nodes placed on the shoulder and on the wrist along the meta-
material textile. The sensor circuit is powered by a custom wireless 
energy harvesting unit (Fig. 5b) and integrates a temperature sensor, 
a humidity sensor and a Bluetooth module that wirelessly transmits 
data to a smartphone placed near the body (Fig. 5d). Touching the 
sensors results in an increase in temperature and humidity, which 
can be detected by the respective sensors and displayed by an appli-
cation on the smartphone (Fig. 5e and Supplementary Fig. 13). The 
distributed and synchronized capabilities of such wireless sensor 
networks could be used to monitor clinically important physiologi-
cal signals such as pulse pressure propagation and electrical activity.

The interaction of surface waves with nearby objects also pro-
vides sensing capabilities in analogy to optical plasmonic sensors28. 
To demonstrate the potential of our platform for human–machine 
interaction, we created an interactive smartphone application that 
changes the display image when an abrupt change in Bluetooth RSSI 
is detected (Fig. 5f). When the smartphone is placed near a metama-
terial textile on which a Bluetooth signal is propagating, the display 
image can be changed by touching the textile with the index finger, 
even if the smartphone and the finger are not both in physical con-
tact with the textile (Fig. 5g and Supplementary Video 2). Our mea-
surements show that the proximity of the textiles to biological tissue 
decreases the transmission by up to 6 dB, due to interaction with the 
surface wave (Supplementary Fig. 14). By tailoring the geometry of 
the metamaterial structure to modify the localization of the surface 
plasmons, this sensitivity to the proximity of biological tissue could 
be suppressed to improve robustness to environmental effects, or 
further enhanced for applications in gesture sensing, proximity 
detection and physiological monitoring.

Conclusions
We have demonstrated the energy-efficient and secure interconnec-
tion of wireless sensor networks by confining radio-waves emitted  
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by standard wireless devices onto metamaterial textiles. We show that 
the transmission efficiency of a wireless network can be enhanced 
by over three orders of magnitude compared to conventional radia-
tive networks without metamaterial textile. Furthermore, we have 
demonstrated the wireless transmission of personal health data 
along a sleeve near the wrist and shown that Bluetooth signals can be 
localized to within 10 cm of the body. We have also shown that our 
metamaterial textiles can support the robust propagation of wireless 
signals, even across discontinuities in the conductive structure, and 
enable networks with new capabilities in wireless power transfer 
and wireless touch sensing. Our results highlight the potential of 
using clothing to engineer electromagnetic propagation around the 
body and provide a starting point for the translation of concepts 
from microwave and photonic circuits onto a textile platform for 
wireless sensing, signal processing and energy transfer. We envision 
that endowing athletic wear, medical clothing and other apparel 
with such advanced electromagnetic capabilities can enhance our 
ability to perceive and interact with the world around us.

Methods
Metamaterial textile design. The metamaterial shown in Fig. 2a supports a surface 
plasmon dispersion of the form

β ω ε ε
ε ε

=
+c
1 2

1 2

where ε1 is the permittivity of the dielectric and ε2 is the permittivity of the metal. 

Using the Drude model without damping, ε2 can be modelled as ε = −
ω

ω
12

p
2

2  where  
ωp is a parameter analogous to the plasma frequency. The metamaterial has 
a negative permittivity parameter ε2 < 0 at frequencies ω < ωp. The resulting 
dispersion curve lies right of the light line and approaches a horizontal asymptote 
ω = ωsp, where ω ω ε= ∕ +1sp p 1 is the surface plasma frequency. The parameters 
ε1 and ωp for the metamaterial textile can be found by fitting the numerically 
calculated dispersion curve to this model.

The metamaterial textile is designed by determining the geometrical 
parameters of the structure to support a surface mode with a desired wavenumber 
βs at the design frequency f0 = 2.4 GHz. The resulting surface plasmon wavelength is 
given by λsp = 2π/βs and the decay length α β ω= ∕ − ∕− c1 ( )1

1
s
2 2 , which determines 

the distance at which wireless devices can interact with the textile. The design 
procedure (Supplementary Fig. 1a) proceeds as follows. (1) The length of the unit 
cell is set to d = 0.2λs. Simulations show that d has negligible effect on βs if it is 
significantly subwavelength (Supplementary Fig. 1d), while larger values result  
in designs that are easier to fabricate. (2) The parameters of the comb-like  
structure are set as a = 0.5d and b = 0.75d. Supplementary Fig. 1b,c shows  
that βs is largely insensitive to a and b but can be tuned over a broad range by h.  
(3) Parameter h is initialized to h0 = πc/(4πεtexf0), where εtex is the relative dielectric 
permittivity of the textile. (4) The width of the bottom textile layer is set to 
w = a + h. This design suppresses nearly all coupling to the body (Supplementary 
Fig. 15) while minimizing the area of conductive textile required (Supplementary 
Fig. 16). (5) Given the thickness of the textile, tf, the dispersion curve of the 
structure is obtained by an eigenmode solver with varying h between 0.5h0 and 
2h0, yielding the value for which β = βs. The designed metamaterial textile supports 
the dispersion curve shown in Fig. 1h and fits the surface plasmon model with 
parameters ε1 = 4 and ωp = 3.75 × 1010 rad m−1.

Numerical simulations. Electromagnetic simulations were carried out with CST 
Microwave Studio (Dassault Systems). Field distributions were calculated using 
the finite-difference time-domain method using dipole excitation. Materials 
were assigned properties εtex = 1.5 for textiles and εbody = 40 for tissue, while the 
computational body model used an anatomically accurate voxel model (Laura, 
CST Voxel Family) with resolution of 1.875 × 1.875 ×1.25 mm. Dispersion 
curves were obtained by defining a unit cell of the structure and solving for the 
eigenfrequencies with periodic boundary conditions in the longitudinal directions 
and phase shift varying from 0 to π.

Metamaterial textiles. Conductive textile patterns were laser-cut (Universal Laser 
Systems, VLS 2.30) from adhesive Cu/Ni polyester fabric sheets (Conductive Fabric 
Tape 86750, Laird Technologies; Conductive Non-woven Fabric 4770, Holland 
Shielding Systems). Patterns were attached on a cotton–polyester blend athletic 
shirt for radio-wave device and wireless communication experiments, and a cotton 
sweater for the wireless powering experiments.

Field measurements. Field mapping experiments used an electric field probe 
mounted on a three-dimensional positioning system (RSE644, Detectus). Signals 

from the probe were measured by a spectrum analyser as the probe was scanned 
5 mm above the textile surface with 2 mm step size. Continuous-wave excitation 
was performed using a dipole with 1 cm length placed 2 mm above the input 
position, driven by a signal generator (Model 835, Berkeley Nucleonics).

Transmission measurements. Transmission was measured as |S21| between two 
identical 1-inch short antennas (2.4 GHz, RN-SMA-S-RP, Microchip Technologies) 
connected to a vector network analyser (PicoVNA 106, Pico Technology) using 
coaxial cables (SMA-SMA, 50 Ω, Amphenol). The spacing between the antennas 
and the textile surface was set to 2 mm using foam separators.

Wireless communication. Wireless communication was performed using the 
Bluetooth low energy (BLE) protocol. Sensor nodes made use of single-mode 
Bluetooth v4.0 modules (BL600, Laird Technologies) configured with an integrated 
antenna, a coin cell battery adapter (BA600, Laird Technologies) and a 3 V lithium 
battery (CR1632, Energizer). Sensors transmitted to a central hub consisting of an 
Android smartphone running a connectivity application (nRF Connect, Nordic 
Semiconductor) that recorded the signal strength from each sensor. Latency 
measurements were performed using connectivity testing software (UwTerminalX, 
Laird Technologies) run from a laptop connected to a hub device (BL620, Laird 
Technologies) wirelessly connected to the sensor nodes.

Wireless power transfer. Wireless power transfer used a 1-inch short antenna 
(RN-SMA-S-RP, Microchip Technologies) placed on the textile surface for power 
transmission. The antenna was driven by a 2.4 GHz signal input directly from 
a signal generator (SMB100A, Rohde and Schwarz) at 20 dBm (100 mW). The 
wireless energy harvesting unit was implemented using flexible printed circuit 
boards (PCBs) integrating the loop antenna and interconnection traces, fabricated 
commercially (0.1-mm-thick polyimide, 0.5 oz Cu, Gold Phoenix Printed Circuit 
Board). The rectifier was assembled on a rigid PCB (R4-TG130 substrate, 1 oz Ag, 
Interhorizon Corporation Pte) by microsoldering (NAE-2A, JBC) the following 
components: (1) 10 pF capacitor (Johanson Technology, 250R05L100GV4T), 
(2) 10 nF capacitor (Murata Electronics, GRM0335C1HR20WA01D), (3) 0.2 pF 
capacitor (Murata Electronics, GRM0335C1ER50BA01D) and (4) Schottky diode 
(Skyworks, SMS7621-060). The PCBs were integrated together with a red LED 
chip (Lumex, SML-LX0603SRW-TR) by microsoldering. The pressure sensor 
was connected in parallel with the LED by copper wire to yield the wireless pulse 
sensor device.

On-body evaluation. Evaluation of wireless sensor networks on the body was 
performed with six healthy subjects (three females and three males), aged 20 to 
40 years, recruited from the National University of Singapore campus through 
advertisement by posted notices. Subjects wore an athletic shirt integrated with 
metamaterial textiles with sensors attached on the back and shoulder, and a 
smartphone worn over the shirt above the abdomen using a waistband. The 
smartphone recorded the receive signal strength during indoor physiological 
activity (standing, walking and running) in 5 min trials with a 2 min rest period in 
between each trial. Controls were performed by repeating the activity protocol with 
an unpatterned athletic shirt.

Evaluation of the wirelessly powered sensor was performed with one healthy 
volunteer. The subject was asked sit back and relax on a chair while a custom pulse 
sensor was attached to a wrist and electrodes on the arm (Red Dot Electrodes, 
3M). The antenna was attached on a long-sleeved sweater integrated with 
metamaterial textiles at the shoulder and driven with a continuous-wave signal. 
For quantification, the light intensity from the pulse sensor was measured by using 
optical fibre connected to a Si amplifier detector (PDA26A-EC, Thorlabs). ECG 
measurements were simultaneously obtained from the electrodes using a custom 
amplifier29. ECG and optical data were simultaneously recorded using a digital 
oscilloscope (PicoScope 6402D, Pico Technology).

All experiments complied with a protocol approved by the National University 
of Singapore Institutional Review Board (N-18-069). All subjects were volunteers, 
were informed of risks and benefits, and provided informed consent.

Sensor design and fabrication. Pressure sensor. Microstructured pyramid films30 
were fabricated from a 20:1 mixture of polydimethylsiloxane (PDMS) elastomer 
base and curing agent (Sylgard 184, Dow Corning). Polyethylene terephthalate 
(PET) film with 12 μm thickness was used as the substrate. The PDMS mixture 
was mixed for 1 min at 2,500 r.p.m. using a SpeedMixer (FlackTek) and transferred 
onto a silicon wafer mould pretreated with octadecyltrichlorosilane. The mixture 
was spin-coated on the mould at 1,000 r.p.m. for 30 s. A plasma-treated PET film 
substrate was placed on top of the degassed PDMS film and thermally cured for 
4 h. The moulded PDMS film on the PET substrate was plasma-treated and coated 
with a thin layer of PEDOT:PSS (CLEVIOS PH1000; Heraues) that was premixed 
with 5 wt% DMSO and 0.1 wt% Zonyl FS-300. The conductive layer was dried in 
a 70 °C oven for 30 min before use. The pressure sensor was placed on top of the 
etched copper electrodes and sealed.

Wirelessly powered, battery-free Bluetooth sensors. The sensor nodes were made 
from commercial BLE sensors (CYALKIT-E02) with an integrated power 
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management component (S6AE103A) and temperature and humility sensors 
(Si7020-A20). The output terminals of the rectifier in the wireless energy 
harvesting unit were connected to the input of the power management  
component on the back side of the sensor. The sensors were attached onto the 
metamaterial textile with the antenna of the energy harvesting unit facing down 
and configured to transmit sensor data via BLE immediately when powered on. 
The data were wirelessly received using a smartphone and displayed using  
an application.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.
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Access and import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and 
in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing 
authority, the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Evaluation of wireless sensor networks on the body was performed with 3 healthy subjects (1 female and 2 males), aged 20 to 
40.

Recruitment  Subjects were recruited from the National University of Singapore campus through advertisement by posted notices

Ethics oversight All experiments complied with protocol approved by the National University of Singapore Institutional Review Board (N-18-069).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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