Wireless Powered Communication Networks: An Overview

Rui Zhang

(e-mail: elezhang@nus.edu.sg)

ECE Department, National University of Singapore (NUS)

WCNC Doha, April 3 2016

Wireless Communication Powered by Batteries (Conventional)

- □ Need manual battery recharging/replacement
- □ Costly, inconvenient, abruption to use
- Inapplicable in some scenarios, e.g., implanted medical devices, sensors built in cement structures

Wireless Communication Powered by Energy Harvesting (More Recent)

- External energy source: solar, wind, vibration, ambient radio power, etc.
- □ Inexpensive, green, renewable
- □ Intermittent and uncontrollable, costly/bulky harvesting and storage devices

Wireless Communication Powered by Wireless Power Transfer (Emerging)

- Wireless charging fully controllable
- Wide coverage, low production cost, and small receiver
- Main challenges: low efficiency of wireless power transfer, wireless information and power transfer joint design

Wireless Powered Communication Applications (1)

Wireless Powered Communication Applications (2)

Wireless Powered Communication Applications (3)

Wireless Powered Communication Applications (4)

A Generic Model

□ Three "Canonical" Models/Modes

- Wireless Power Transfer (WPT) in DL
- Wireless Powered Communication Network (WPCN): DL WPT and UL wireless information transmission (WIT)
- Simultaneous wireless information and power transfer (SWIPT): DL WPT and WIT at the same time

General Network Model

- □ Three canonical operating modes
 - Wireless power transfer: AP2 -> WD5;
 - Wireless powered communication: AP1 <-> WD3, AP2->WD6->AP3;
 - Simultaneous wireless information and power transfer: AP1->WD4, AP1->WD1,WD2

Outline

Wireless Power Transfer

□ Wireless Powered Communications

□ Simultaneous Wireless Information and Power Transfer

Wireless Power Transfer: Main Technologies

<5cm

>1m

Range

	Field	Advantages	Disadvantages
Inductive Coupling	Near field	Very high efficiency	Very short distance Require stringent TX-RX alignment
Magnetic Resonant Coupling	Near/Mid field	High efficiency	Short distance Unsuitable to charge moving devices Bulky energy RX
EM/Microwave Radiation (focus of this talk)	Far field	Long distance Energy multicasting Small RX form factor Mobility support	Low efficiency Safety issue with high power

Microwave Enabled Wireless Power Transfer: Nikola Tesla and his Wardenclyffe Project in early 1900

150 KHz and 300 kW. Unsuccessful and never put into practical use.

The Invention of ``Rectenna" for Microwave Power Transmission: the Microwave Powered Helicopter by William C. Brown in 1960s

2.45 GHz and less than 1kW. Overall 26% transfer efficiency at 7.6 meters high.

Solar Satellite with Microwave Power Transmission (1970s-current)

NASA Sun Tower

Target at GW-level power transfer with more than 50% efficiency

Microwave Power Transfer Field Experiment with Phased Array (1992)

➤ 2.411 GHz

- 288 elements phased array on the roof of the car
- 120 rectennas on the fuel-free airplane
- DC output power ~88W

WPT: End-to-End Efficiency

• Overall power transfer efficiency: $e = \frac{Q}{P_t} = \frac{P_r}{\frac{Q}{P_t}} \frac{Q}{\frac{Q}{P_r}}$

 \Box Improve RF-to-RF efficiency α (decays quickly with distance) by

- Using high-gain directional antennas: parabolic, horn antennas
- > Energy beamforming: adaptive beam control

 \Box Improve RF-to-DC conversion efficiency ξ (typically 30%-70%) by

- Rectifier design
- Waveform optimization

Energy Receiver Architecture

The receiver uses rectifier to convert RF signal into DC signal
 Assuming linear energy harvesting model, the harvested power is

$$Q = E[i_{DC}(t)] \approx \xi E[||y(t)||^2] = \xi hP$$

Modulated vs. Unmodulated Energy Signal

PSD of unmodulated energy signal

PSD of modulated energy signal

Use pseudo-random modulated energy signal to avoid the "spike" in the power spectral density (PSD) with constant unmodulated energy signal

Scaling Up WPT: Energy Beamforming in MIMO Channel

Energy near-far problem: fairness is a key issue in the multi-user EB design
 Challenge: EB requires accurate channel state information at the transmitter (CSIT)

Channel Estimation for Energy Beamforming (1)

(a) Forward-link training with CSI feedback

Conventional training in Wireless Communication:

- Forward link training with CSI feedback
- Objective: Efficient pilot design to minimize spectral efficiency loss
- □ New considerations for WPT:

Energy receiver (ER) has limited energy and processing capability

- ER does not need CSI for energy harvesting (vs. information receiver)
 Potential solutions:
 - Energy feedback
 - Reverse-link training

Channel Estimation for Energy Beamforming (2)

(b) Forward-link training with one-bit feedback

• One-bit energy feedback based on the change of received power level

(c) Reverse-link training w/o feedback

Reverse link training: exploit channel reciprocity, no feedback required

Maximize Rx's NET energy:=harvested energy – energy consumed for training

Nonlinear Energy Harvesting Model (1): Efficiency vs. Input Power

□ Energy beamforming needs to take into account this non-linear model

Nonlinear Energy Harvesting Model (2): Efficiency vs. Waveform

□ Waveform with high peak-to-average power ratio (PAPR) tends to give better energy conversion efficiency, thus new waveform design is needed for WPT

Outlines

□ Wireless Power Transfer

Wireless Powered Communications

□ Simultaneous Wireless Information and Power Transfer

Wireless Powered Communication: Basic Models

(a): Separate energy/information APs; (b): co-located energy/information AP

(c): Out-band half-duplex energy/information; (d): In-band full-duplex energy/information

Coupled DL (energy) and UL (information) transmissions
 Need joint energy and communication scheduling and resource allocation

Throughput Comparison of Different Setups

G For full-duplex:

- 80 dB self-interference cancellation at AP
- 10% self-energy recycling at wireless device (WD)

"Doubly" Near-far Problem

Doubly Near-Far Problem

Near user harvests more energy in DL but requires less power in UL communication

Far user harvests less energy in DL but requires more power in UL communication

Solutions to Doubly Near-far Problem

(a): Joint communication and energyscheduling, transmit (energy)/receive(information) beamforming

(b): Wireless powered cooperative communication

Wireless Power Meets Energy Harvesting

Hybrid energy supplies via both environmental energy harvesting and dedicated wireless power transfer

Wireless powered communication needs to be jointly designed with energy harvesting communication

Wireless Powered Cognitive Radio Network

Conventional cognitive radio (CR): secondary user is idle when nearby primary user is transmitting

Wireless powered CR: secondary user harvests energy from nearby active primary transmitters

Wireless Information and Power Transfer Coexisting

Wireless power transfer/wireless powered communication coexists with existing communication systems

New spectrum sharing models and techniques needed to maximize spectrum/energy efficiency

Outlines

□ Wireless Power Transfer

□ Wireless Powered Communications

Simultaneous Wireless Information and Power Transfer

SWIPT: Rate-Energy Tradeoff at Transmitter Side

SWIPT: Rate-Energy Tradeoff at Receiver Side

Practical receiver cannot harvest energy and decode information from the same signal

Rate-Energy Region of SWIPT in Point-to-Point AWGN

SWIPT with Co-located EH/ID Receivers

Joint Information and Energy Beamforming for SWIPT

SWIPT with Separate EH/ID Receivers

Joint transmit beamforming and receiver design optimization to maximize transferred energy and information under heterogeneous power/rate requirements of the users

Secure Communication in SWIPT

Security issue in SWIPT

- ER can easily eavesdrop IR's information
- Two conflicting goals:
 - Energy transfer: received power at each ER should be large
 - Secure information transfer: received power at each ER should be small
- How to resolve this conflict? Exploiting artificial noise

$$x = v_0 s_0 + \sum_{i=1}^d w_i s_i \longrightarrow$$
 energy signal artificial noise information signal

Dual Role of Interference in SWIPT

Interference is harmful to information receiver but useful to energy harvesting
 Opportunistic EH and ID in fading channel via receiver mode switching
 In general, this opens a new paradigm for interference management

Multi-Transmitter Collaborative SWIPT

An 2×2 interference channel for SWIPT with TS receivers

Receivers use time switching (TS) or power splitting (PS)

- □ Transmitters cooperate in joint information and energy transmission
- □ Interference channel rate-energy tradeoff

Conclusions

Joint energy and communication scheduling

Doubly near-far problem

Energy/Communication full-duplex

Self-energy recycling

Wireless information and power transfer coexisting

Wireless powered communication network (WPCN) Energy

Information

Rate-energy tradeoff

Separated vs. Integrated receivers

Joint information and energy beamforming

Secrecy SWIPT

Harmful vs. useful interference

Simultaneous wireless information and power transfer (SWIPT)

Future Work Directions

- □ Nonlinear energy harvesting model, waveform design for WPT
- □ Near-field WPT/WPCN/SWIPT: energy beamforming, etc.
- □ Information-theoretic limits and coding for WPCN/SWIPT
- □ Massive MIMO/Millimeter wave based WPT/WPCN/SWIPT
- Small-cell, C-RAN, and distributed antennas for WPT/WPCN/SWIPT
- Imperfect CSIT and practical feedback in WPT/WPCN/SWIPT
- □ Full-duplex WPCN/SWIPT
- Coexistence of wireless communication and power transfer
- Higher layer (MAC, Network, etc.) design issues in WPT/WPCN/SWIPT
- □ Safety/security/economic issues in WPT/WPCN/SWIPT
- □ Hardware development, applications,

References

For more details, please refer to

S. Bi, C. K. Ho, and R. Zhang, "<u>Wireless powered</u> <u>communication: opportunities and challenges</u>," *IEEE Communications Magazine*, vol. 53, no. 4, pp.117-125, April, 2015.

S. Bi, Y. Zeng, and R. Zhang, "Wireless powered communication networks: an overview," IEEE Wireless Communications, to appear. (available on-line at arXiv:1508.06366)