Cost-Aware Green Cellular Networks with Energy and Communication Cooperation

Rui Zhang (e-mail: elezhang@nus.edu.sg)

ECE Department, National University of Singapore

IEEE OnlineGreenComm 2014

Wireless Communications in the Age of "Energism"

Energy Harvesting Wireless Communication: A Brief Overview

- Point-to-point link with an energy harvesting transmitter
 - Throughput maximization: Staircase/directional water-filling power allocation [1,2]
 - Outage probability minimization [3]
- Practical considerations
 - Imperfect energy storage [4], half-duplex energy harvesting constraint [5], circuit power [6], ...

Other setups

Relay channel [7], broadcast channel, multiple-access channel, ...

New Challenge: Cellular Networks with Energy Harvesting and Smart Grid Powered Base Stations (BSs)

Hybrid Energy Supply

 Renewable Energy: cheap but intermittent; unevenly distributed over both time and space
 Smart grid power: reliable but expensive; time-varying energy prices; two-way energy flow

BSs' Energy Demand

To meet the quality of service (QoS) requirements of mobile terminals (MTs)
Time, and space varying traffic loads due

Time- and space-varying traffic loads due to mobility of MTs

□ Challenge

➢ How to use the stochastically and spatially distributed renewable energy at cellular BSs to reliably support time- and space-varying wireless traffic cost-effectively?

Energy Supply and Demand Models for Cellular Networks

Energy Cost by Directly Employing Renewable Energy at BSs

- Renewable energy deficit BS *i* with $\delta_i > 0$
 - \blacktriangleright Purchase δ_i unit of energy from the grid
- **C** Renewable energy adequate BS *j* with $\delta_i < 0$
 - > Waste $-\delta_j$ unit of renewable energy (if not selling back to the grid or stored for future use)
- ☐ Total energy cost of the *N* BSs:

$$C_1 = \pi \Delta_+$$

- > Total energy purchased from the grid: $\Delta_+ \Box \sum_{i=1}^N [\delta_i]^+$ with $[x]^+ = \max(x, 0)$
- \blacktriangleright Price for BSs to purchase one unit of energy from the grid: π
- □ Inefficient renewable energy utilization:
 - ▶ In total $\Delta_{-} \Box \sum_{j=1}^{N} \left[\delta_{j} \right]^{-} \ge 0$ unit of energy wasted, where $[x]^{-} = \min(x, 0)$

Energy Cost Saving for Cellular Networks by Energy and/or Communication Cooperation

- Approach I: Energy Cooperation on Supply Side
 - BSs exploit two-way energy flow in smart grid to share their renewable energy supply E_i's to match the wireless traffic loads
- Approach II: Communication Cooperation on Demand Side
 - BSs share wireless resources and reshape wireless loads Q_i's to match their renewable energy supplies
- Approach III: Joint Energy and Communication Cooperation on Both Supply an Demand Sides

Agenda

Approach I: Energy Cooperation on Supply Side

Approach II: Communication Cooperation on Demand Side

Approach III: Joint Energy and Communication Cooperation on Both Supply and Demand Sides

□ Conclusion and Future Work Direction

Energy Cooperation Among BSs

Exploiting the two-way energy flow between cellular BSs and smart grid

 \blacktriangleright To better utilize the otherwise wasted renewable energy surplus (Δ_{-}) at BSs

Practical implementation

- Aggregator serves as an intermediary party to control a group of BSs for energy sharing via the grid
- Smart meters enable the two-way energy and information flows between the grid and BSs

Energy Cooperation Based on Different Energy Harvesting Rates

BS 1 injects excessive harvested energy to Aggregator, and BS 2 draws extra energy from Aggregator, to reduce the total energy cost

Two schemes

- Aggregator-assisted energy trading with BSs
- Aggregator-assisted energy sharing among BSs

Aggregator-Assisted Energy Trading with BSs

The aggregator trades energy with BSs at different selling and buying prices

- > $\pi_{\text{buy}} > 0$ and $\pi_{\text{sell}} > 0$ denote the unit energy prices for the BSs to buy and sell energy from/to the aggregator
- > $\pi_{sell} < \pi_{buy} < \pi$: both prices are cheaper than the grid energy price so that the BSs and aggregator both benefit from the trading

Energy trading at the BSs

- > The BSs with adequate renewable energy will sell their total Δ_{-} unit of surplus energy to the aggregator at the price π_{sell}
- > The BSs short of renewable energy will first purchase $\min(\Delta_+, \Delta_-)$ unit of energy from the aggregator at the price π_{buy} , (if not enough) then will buy $\Delta_+ \min(\Delta_+, \Delta_-)$ additional energy from the grid at the price π

Total energy cost of the *N* BSs:

$$\begin{vmatrix} C_2 = \begin{cases} \pi_{\text{buy}} \Delta_+ - \pi_{\text{sell}} \Delta_-, & \text{if } \Delta_+ \leq \Delta_- \\ \pi_{\text{buy}} \Delta_- - \pi_{\text{sell}} \Delta_- + \pi (\Delta_+ - \Delta_-), & \text{if } \Delta_+ > \Delta_- \end{vmatrix}$$

Aggregator-Assisted Energy Sharing Among BSs

- The BSs mutually negotiate and share renewable energy by simultaneously injecting or drawing energy to/from the aggregator
 - > The group of BSs should sign a contract with the aggregator by paying a contract fee \overline{C}
- Energy sharing among the BSs
 - ➤ When Δ₊ ≤ Δ₋, the N BSs can maintain their operation without purchasing any energy from the grid; otherwise, a total Δ₊ − Δ₋ amount of energy should be purchased from the grid at the price π
 - Total energy cost of the *N* BSs:

$$C_{3} = \begin{cases} \overline{C}, & \text{if } \Delta_{+} \leq \Delta_{-} \\ \pi (\Delta_{+} - \Delta_{-}) + \overline{C}, & \text{if } \Delta_{+} > \Delta_{-} \end{cases}$$

A Case Study [8]

Schemes for comparison

- Conventional design without energy or communication cooperation
- Approach I: energy cooperation via aggregator-assisted energy trading (without communication cooperation)
- Approach I: energy cooperation via aggregator-assisted energy sharing (without communication cooperation)
- Parameters
 - Energy prices: $\pi = 1$, $\pi_{buy} = 0.5$, $\pi_{sell} = 0.4$; contract fee for the aggregator: $\overline{C} = 0.1$

Performance Comparison

	BS 1's renewable	BS 2 's renewable	BS 1's energy	BS 2's energy	Total energy
	energy supply	energy supply	consumption	consumption	cost
Conventional design without energy or	10	2.5	4.14	18.28	15.78
communication cooperation					
Approach I: energy cooperation via	4.14	8.36	4.14	18.28	10.51
aggregator-assisted energy trading					
Approach I: energy cooperation via	4.14	8.36	4.14	18.28	10.03
aggregator-assisted energy sharing					
	Renewable energy supplies are modified via energy cooperation		Energy demands remain unchanged		

Energy cooperation saves energy cost

Agenda

Approach I: Energy Cooperation on Supply Side

Approach II: Communication Cooperation on Demand Side

Approach III: Joint Energy and Communication Cooperation on Both Supply and Demand Sides

□ Conclusion and Future Work Direction

Communication Cooperation on Demand Side

Wireless resource sharing via communication cooperation

Reshape BSs' wireless load and energy consumption (Q_i 's) to better match their individual renewable energy supply, thus minimizing the use of more expensive grid energy

Practical implementation

- Communication/energy information sharing among BSs through backhauls
- Communication protocols need to be redesigned to be aware of "energy cost" saving

Communication Cooperation Design with New Energy Cost Consideration

BS 1 shares wireless resource (e.g., spectrum) to BS 2, and/or BS 2 shifts wireless load to BS 1, to reduce BS 2's energy purchased from the grid.

Three "energy cost"-aware communication cooperation schemes

- Cost-aware traffic offloading
- Cost-aware spectrum sharing
- Cost-aware coordinated multi-point (CoMP) transmission
- Key difference from conventional communication cooperation
 - Need to consider the price differences of renewable and grid energy for cost minimization

Cost-Aware Traffic Offloading

User association before traffic offloading

User association after traffic offloading

Traffic offloading between BSs based on renewable energy availability

- BSs short of renewable energy can offload their MTs to neighboring BSs with surplus renewable energy, thus reducing the energy drawn from the gird
- Different from conventional traffic offloading, which shifts the traffic of heavily loaded BSs to more lightly loaded BSs for load balancing

Cost-Aware Spectrum Sharing

Bandwidth allocation before spectrum sharing

Bandwidth allocation after spectrum sharing

Spectrum sharing between BSs based on renewable energy availability

- Energy and spectrum can partially substitute each other to support the same wireless transmission QoS, thus sharing spectrum to a BS short of renewable energy can help reduce its transmit power and save the energy cost
- Different from conventional spectrum sharing, which aims to improve the spectrum utilization efficiency

Cost-Aware CoMP

Downlink transmission without CoMP

Downlink transmission with CoMP

CoMP downlink transmission based on BSs' renewable energy availability

- BSs adjust transmit power to match individually harvested energy, thus minimizing the total energy drawn from the grid while meeting MTs' QoS
- Different from conventional CoMP, which aims to maximize the spectrum efficiency subject to BSs' given transmit power
- Need to implement at baseband signal level and require instantaneous channel state information (CSI) at BSs

A Case Study [8]

□ Schemes for comparison

- Conventional design without energy or communication cooperation
- Approach II: communication cooperation via spectrum sharing (without energy cooperation)
- Approach II: communication cooperation via CoMP (without energy cooperation)

Performance Comparison

	1	1	1	1		
	BS 1's renewable	BS 2 's renewable	BS 1's energy	BS 2's energ	gy Total	energy
	energy supply	energy supply	consumption	consumption	cost	
Conventional design without energy or	10	2.5	4.14	18.28	15.78	
communication cooperation						
Approach II: communication coopera-	10	2.5	10.00	14.04	11.54	
tion via spectrum sharing						
Approach II: communication coopera-	10	2.5	10.00	3.75	1.25	
tion via CoMP						
	Renewable er remain ur	nergy supplies nchanged	Energy o are rescho commu coope			
					Commun cooper saves e cos	ication ation nergy t

Agenda

Approach I: Energy Cooperation on Supply Side

Approach II: Communication Cooperation on Demand Side

Approach III: Joint Energy and Communication Cooperation on Both Supply and Demand Sides

□ Conclusion and Future Work Direction

Joint Energy and Communication Cooperation on Both Supply and Demand Sides

Two schemes considered for energy cooperation on supply side

- Aggregator-assisted energy trading with BSs
- Aggregator-assisted energy sharing among BSs

Three schemes considered for communication cooperation on demand side

- Cost-aware traffic offloading
- Cost-aware spectrum sharing
- Cost-aware CoMP transmission
- Many combined solutions for joint energy and communication cooperation on both supply and demand sides with different complexity-performance tradeoffs

Joint Energy and Communication Cooperation on Both Supply and Demand Sides

Practical implementation

- Communication information sharing among BSs through backhauls
- Energy information sharing among BSs through smart meters

Three specific schemes to be considered

- Joint energy and spectrum sharing [9]
- Joint energy trading and CoMP [10]
- Joint energy sharing and CoMP [11]

Joint Energy and Spectrum Sharing

- Aggregator-assisted energy trading with BSs on supply side and communication spectrum sharing on demand side
 - BSs exchange energy and spectrum to take advantage of the resource complementarity
- Two scenarios
 - Unidirectional sharing: one BS adequate in energy and spectrum shares both resources to the other
 - Bidirectional sharing: one BS exchanges its energy for spectrum with the other

Joint Energy Trading/Sharing and CoMP

- Aggregator-assisted energy trading/sharing with BSs on supply side and CoMP transmission on demand side
 - BSs jointly optimize the energy trading/sharing via the aggregator and their CoMP based cooperative transmission to minimize the total energy cost

A Case Study [8]

Schemes for comparison

- Conventional design without energy or communication cooperation
- Approach I: energy cooperation via aggregator-assisted energy trading/sharing
- Approach II: communication cooperation via spectrum sharing/CoMP
- Approach III: joint energy and spectrum sharing
- Approach III: joint aggregator-assisted energy trading and CoMP
- Approach III: joint aggregator-assisted energy sharing and CoMP

Performance Comparison

	BS 1's renewable	BS 2 's renewable	BS 1's energy	BS 2's energy	Total energy	
	energy supply	energy supply	consumption	consumption	cost	
Conventional design without energy or	10	2.5	4.14	18.28	15.78	
communication cooperation						
Approach I: energy cooperation via	4.14	8.36	4.14	18.28	10.51	
aggregator-assisted energy trading						
Approach I: energy cooperation via	4.14	8.36	4.14	18.28	10.03	
aggregator-assisted energy sharing						
Approach II: communication coopera-	10	2.5	10.00	14.04	11.54	
tion via spectrum sharing						
Approach II: communication coopera-	10	2.5	10.00	3.75	1.25	
tion via CoMP						
Approach III: joint energy and spec-	5.00	7.50	5.00	15.00	7.60	
trum sharing						
Approach III: joint aggregator-assisted	6.87	5.62	6.87	5.77	0.46	
energy trading and CoMP						
Approach III: joint aggregator-assisted	5.47	7.03	5.47	7.03	0.10	
energy sharing and CoMP						
	Renewable energy supplies are Energy demands are					
	modified via energy rescheduled via communication					
	coope	cooperation cooperation				
	Joint energy trading/sharing and CoMP save the most energy cost					

Agenda

Approach I: Energy Cooperation on Supply Side

Approach II: Communication Cooperation on Demand Side

Approach III: Joint Energy and Communication Cooperation on Both Supply and Demand Sides

Conclusion and Future Work Direction

Conclusion

Cellular Networks with Energy Harvesting and Smart Grid Powered BSs

Challenges and opportunities

- Unevenly distributed energy harvesting rates over both time and space
- ✓ Cost differences between harvested energy versus smart grid power
- ✓ Time-varying buying/selling energy prices for the smart grid power
- ✓ Time- and space-varying traffic loads and energy demands
- Energy and/or communication cooperation
 - Energy cooperation on supply side: BSs exploit two-way energy flow in smart grid to share their renewable energy to match the given wireless traffic load
 - Communication cooperation on demand side: BSs share wireless resources and reshape wireless loads to match the given renewable energy supplies
 - Joint energy and communication cooperation on both supply and demand sides: BSs jointly optimize the energy and communication cooperation to exploit both benefits

Future Work Direction

Multi-time-scale implementation of joint energy and communication cooperation under practical constraints

- Energy harvesting rates in general change slowly as compared to wireless channel and traffic load variations [13]
- Cooperation between self-interested system operators with incomplete and private information sharing constraints
 - Incentive mechanisms design to motivate different systems to cooperate with "win-win" and fair cost reductions [9]

Energy and communication cooperation in heterogeneous networks

- Need to address both heterogeneous communication demands and heterogeneous energy supplies
- Joint spatial and temporal energy/communication cooperation with energy storage management
 - Exploit both time and space energy diversity [12]

References

[1] C. K. Ho and R. Zhang, "Optimal energy allocation for wireless communications with energy harvesting constraints," *IEEE Transactions on Signal Processing*, vol. 60, no. 9, pp. 4808-4818, Sep. 2012.

[2] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, "Transmission with energy harvesting nodes in fading wireless channels: optimal policies," *IEEE Journal on Selected Areas in Communications*, vol. 29, no. 8, pp. 1732–1743, Sep. 2011.

[3] C. Huang, R. Zhang, and S. Cui, "Optimal power allocation for outage probability minimization in fading channels with energy harvesting constraints," *IEEE Transactions on Wireless Communications*, vol. 13, no.2, pp.1074-1087, Feb. 2014.

[4] B. Devillers and D. Gunduz, "A general framework for the optimization of energy harvesting communication systems with battery imperfections," *Journal of Communications and Networks*, vol. 14, no. 2, pp. 130-139, Apr. 2012.

[5] S. Luo, R. Zhang, and T. J. Lim, "Optimal save-then-transmit protocol for energy harvesting wireless transmitters," *IEEE Transactions on Wireless Communications*, vol. 12, no. 3, pp. 1196-1207, March, 2013.
[6] J. Xu and R. Zhang, "Throughput optimal policies for energy harvesting wireless transmitters with non-ideal circuit power," *IEEE Journal on Selected Areas in Communications*, vol. 32, no. 2, pp. 322-332, Feb. 2014.

[7] C. Huang, R. Zhang, and S. Cui, "Throughput maximization for the Gaussian relay channel with energy harvesting constraints," *IEEE Journal on Selected Areas in Communications*, vol. 31, no. 8, pp. 1469-1479, Aug. 2013.

References

[8] J. Xu, L. Duan, and R. Zhang, "Cost-aware green cellular networks with energy and communication cooperation," submitted to *IEEE Communications Magazine*.

[9] Y. Guo, J. Xu, L. Duan, and R. Zhang, "Joint energy and spectrum cooperation for cellular communication systems," *IEEE Transactions on Communications*, vol. 62, no. 10, pp. 3678-3690, Oct. 2014.

[10] J. Xu and R. Zhang, "Cooperative energy trading in CoMP systems powered by smart grids," to appear in *IEEE Global Communications Conference (Globecom)*, 2014. (Available on-line at arXiv:1403.5735)

[11] J. Xu and R. Zhang, "CoMP meets smart grid: a new communication and energy cooperation paradigm," to appear in *IEEE Transactions on Vehicular Technology*. (Available on-line at arXiv:1303.2870)
[12] Y. K. Chia, S. Sun, and R. Zhang, "Energy cooperation in cellular networks with renewable powered base stations," to appear in *IEEE Transactions on Wireless Communications* (Available on line)

base stations," to appear in *IEEE Transactions on Wireless Communications*. (Available on-line at arXiv:1301.4786)

[13] H. Li, J. Xu, R. Zhang, and S. Cui, "A general utility optimization framework for energy harvesting based wireless communications," submitted to *IEEE Communications Magazine*.