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Abstract—We consider the use of energy harvesters, in place
of conventional batteries with fixed energy storage, for point-
to-point wireless communications. In addition to the challenge
of transmitting in a channel with time selective fading, energy
harvesters provide a perpetual but unreliable energy source. In
this paper, we consider the problem of energy allocation over
a finite horizon, taking into account a time varying channel
and energy source, so as to maximize the throughput. Two
types of side information are assumed to be available: causal
side information of the immediate past channel condition and
harvested energy, and full side information. We obtain structural
results for the optimal energy allocation, via the use of dynamic
programming and convex optimization techniques. In particular,
if unlimited energy can be stored in the battery with harvested
energy, we prove the optimality of a water-filling energy allocation
solution with multiple, non-decreasing water levels.

I. INTRODUCTION

In conventional wireless communications, transmissions are
limited by power constraints for safety reasons, or by energy
constraints to prolong operating time for battery-powered
devices. Energy harvesters provide viable energy sources for
low-power sensors to wirelessly communicate their data to
a sink node. For transmitters that are powered by energy
harvesters, the energy that can potentially be harvested is
unlimited, and hence the sum energy constraint does not
directly apply. Another difference with traditional communica-
tion system is that the energy available for each transmission
varies over time: energy is consumed for transmission but is
replenished by the harvested energy.

Several contributions in the literature have considered using
energy harvester as an energy source, in particular based on the
technique of dynamic programming [1]. In [2], the problem
of maximizing a reward that is linear with the energy used is
studied. In [3], the discounted throughput is maximized over
an infinite horizon, where queuing for data is also considered.
In [4], adaptive duty cycling is employed for throughput
maximization. Several solutions are implemented in practical
systems, which are benchmarked against the optimal one.

In this work, we consider the problem of maximizing the
throughput via energy allocation over a finite horizon of K <
∞ slots. The channel SNR and the energy harvested changes
over different slots, where the variation is modeled by a first-
order Markov model. Our aim is to study the structure of the
maximum throughput and the corresponding optimal energy
allocation solution, such as concavity and monotonicity. These
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Fig. 1. Block diagram of a transmitter powered by a energy harvester. Energy
is replenished by an energy harvester but is drawn for transmission.

results may be useful for developing heuristic solutions, since
the optimal solutions are often complex to obtain in practice.
We consider two types of side information (SI) available to
the transmitter:

• causal SI, consisting of past channel conditions, in terms
of SNR, and past amount of energy harvested, or

• full SI, consisting of past, present and future channel
conditions and amount of energy harvested.

The case of full SI may be justified if the environment is highly
predictable, e.g., the energy is harvested from the vibration of
motors that are turned on only during fixed operating hours and
line-of-sight is available for communications. Given causal SI,
we obtain the optimal energy allocation solution by dynamic
programming and obtain structural results to characterize the
optimal solution. Given full SI, we obtain a closed-form
solution for K = 2 slots. We also obtain the structure of this
optimal solution for arbitrary K with unlimited energy storage.
The optimal solution then has a water-filling interpretation,
as in [5]. However, instead of a single water level, there are
multiple water levels that are non-decreasing over time.

This paper is organized as follows. Section II gives the
system model. Then, Section III considers availability of
causal side information of the SNR and harvested energy,
while Section IV considers availability of full side information.
Finally, Section V concludes the paper.

II. SYSTEM MODEL

For simplicity, each packet transmission is performed in one
time slot. Each time slot allows n symbols to be transmitted,
where n is assumed to be very large. We index time by the
slot index k ∈ K � {1, · · · ,K}.

We consider a point-to-point, flat-fading, single-antenna
communication system. As shown in Fig.1, the transmitter
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consists of an energy harvester with energy as input, an energy
storage, an encoder, and a power amplifier. Energy is measured
on a per symbol (or channel use) basis, hence we use the terms
energy and power interchangeably.

Consider slot k ∈ K. At time instant k−, which denotes
the time instant just before slot k, the battery has Bk ≥ 0
stored energy per symbol available for transmitting message
Wk. The message is first encoded as data symbols1 Xn

k of
length n. In slot k, the transmitter transmits packet k as√
TkX

n
k , where 0 ≤ Tk ≤ Bk is the energy per symbol used

by the power amplifier. Except for transmission, we assume
the other circuits in the transmitter consume negligible energy.
We assume that there is always back-logged data available for
transmission.

1) Mutual Information: Given a channel of SNR γk in
slot k, the maximum reliable transmission rate is given by
the mutual information I(γk, Tk) ≥ 0 in bits per symbol. In
general, we assume that I(γ, T ) is concave in T given γ, and
is increasing in T for all γ. For example, we may employ
Gaussian signalling for transmission over a complex Gaussian
channel [6], which gives

I(γ, T ) = log2(1 + Tγ). (1)

2) Battery Dynamics: While transmitting packet k, the
energy harvester collects an average energy of Hk ≥ 0 per
symbol, which is then stored in the battery. At time instant
(k + 1)−, the energy stored is updated in general as

Bk+1 = f
(
Bk, T k, Hk

)
, k ∈ K.

The function f depends on the battery dynamics, such as the
storage efficiency and memory effects. Intuitively, we expect
Bk+1 to increase (or remains the same) if Bk increases,
Tk decreases, or Hk increases. As a good approximation in
practice, we assume the stored energy increases and decreases
linearly provided the maximum stored energy in the battery
Bmax is not exceeded, i.e.,

Bk+1 = min{Bk − Tk +Hk, Bmax}, k ∈ K. (2)

We assume the initial stored energy B1 is known, where 0 ≤
B1 ≤ Bmax. Thus, {Bk} follows a deterministic first-order
Markov model that depends only on past random variables.

3) Channel and Harvest Dynamics: To model the unpre-
dictable nature of energy harvesting and the wireless channel
over time, we model HK and γK jointly as a random
process. This pdf depends on the energy harvester used and the
channel environment. To yield tractable analysis, we model the
variation over time with a first-order stationary Markov model.
Assuming H0, γ0 is known, the joint pdf is modeled as

pHK,γK (HK, γK |H0, γ0)=
K∏

k=1

pHk
(Hk|Hk−1)pγk

(γk|γk−1) (3)

where pHk
(·|·) and pγk

(·|·) are independent of k. In (3), we
have also assumed that the harvested energy and the SNR are
independent, which is reasonable in most practical scenarios.

1In general, we write X1, · · · , XK collectively as a length-K vector XK .

We assume that the joint distribution (3) is known, which
may be obtained via long-term measurements in practice.

4) Overall Dynamics: Let us denote the state sk =
(γk, Hk, Bk+1), k ∈ K, or simply s if the index k is arbitrary.
Let the accumulated states be s

k−1 � (s0, · · · , sk−1), k ∈ K.
We assume the initial state s0 � (γ0, H0, B1) to be always

known at the transmitter, which may be obtained causally prior
to any transmission. From (2) and (3), therefore s

K follows a
first-order Markov model, i.e.,

p
s
K (sK |s0) =

K∏
k=1

psk(sk|sk−1). (4)

In particular, (4) includes the cases where the states are inde-
pendent, or where they are deterministic rather than random.

III. CAUSAL SIDE INFORMATION

A. Problem Statement

The transmitter is given knowledge2 of sk−1 before packet
k is transmitted, where k ∈ K. In practice, for instance, the
receiver feeds back γk−1, while the transmitter infers Hk−1

and Bk from its energy storage device. We say that causal SI
is available as future states are not a priori known. Thus, this
allows us to model and treat the unpredictable nature of the
wireless channel and harvesting environment.

The causal SI is used to decide the amount of energy Tk for
transmitting packet k. We want to maximize the throughput,
i.e., the expected mutual information summed over a finite
horizon of K time slots, by choosing a power allocation policy
π = {Tk(sk−1)∀sk−1, k = 1, · · · ,K}. The policy can be
optimized offline and implemented in real time via a lookup
table that is stored in at the transmitter.

A policy is feasible if 0 ≤ Tk(sk−1) ≤ Bk for all possible
s
k and all k ∈ K; we denote the space of all feasible policies

as Π. Mathematically, given s0, the maximum throughput is

T � = max
π∈Π

T (π), (5)

where

T (π) =

K∑
k=1

E [I(γk, Tk(sk−1))|s0, π] . (6)

In (6), the kth summation term represents the expected
throughput of packet k; its expectation is performed over all
(relevant) random variables given initial state s0 and policy π.

For example, consider K = 2. Then (6) simplifies as

T (π) = Es1

[
I(γ1, T1(s0)) + Es2

[I(γ2, T2(s1))|s1, π]
∣∣∣s0, π]

subject to 0 ≤ T1 ≤ B1 for the first term and 0 ≤ T2 ≤ B2

for the second term.
In general, the optimization of {Tk} cannot be performed

independently due to the constraints. In the above example, T2

is constrained by B2, which in turn depends on T1. Instead,
as will be suggested by dynamic programming, we can first
optimize T2 given all possible T1, then optimize for T1 with
T2 replaced by the optimized value (as a function of T1).

2It can be shown that having knowledge of previous states s
k−2 does not

improve throughput, due to the Markovian property of the states in (4).
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B. Optimal Solution

Given the initial state s0, the optimization problem (5) is
solved by dynamic programming in Lemma 1.

Lemma 1: Given s0 = (γ,H,B), the maximum throughput
T � = J1(γ,H,B) can be computed recursively based on
Bellman’s equations, starting from k = K until k = 1 :

JK(γ,H,B) = max
0≤T≤B

Ī(γ, T ) = Ī(γ,B), (7a)

Jk(γ,H,B) = max
0≤T≤B

Ī(γ, T ) + J̄k+1(γ,H,B − T ) (7b)

for k = 1, · · · ,K − 1, where

Ī(γ, T ) = Eγ̃ [I(γ̃, T )|γ]
J̄k+1(γ,H, x) = EH̃,γ̃

[
Jk+1(γ̃, H̃,min{Bmax, x+ H̃})

∣∣γ,H]
and H̃, γ̃ denote, respectively, the energy harvested and SNR
in the next slot (given SNR H, γ in the present slot). An
optimal policy is π� = {T �

k (sk−1)∀sk−1, k = 1, · · · ,K},
where T �

k (sk−1) is the optimal T in (7).
Proof: The proof follows by applying Bellman’s equation

[1] and using (2) and (3).
In (7a), the optimal maximization is trivial: the interpre-

tation is that we use all available energy for transmission
in slot K . We can interpret the maximization in (7b) as
a tradeoff between the present and future rewards. This is
because the term Ī is the expected mutual information that
represents the present reward, while J̄k+1, commonly known
as the value function, is the expected future mutual information
accumulated from slot k + 1 until slot K .

Next, we obtain structural properties of the maximum
throughput T � in (5) and the corresponding optimal policy
π� in Theorems 1, 2. The proofs are given in the Appendix.

Theorem 1: Suppose I(γ, T ) is concave in T given γ.
Given γ and H , then

1) Jk(γ,H,B) in (7a) is concave in B for k ∈ K,
2) J̄k(γ,H, x) in (7b) is concave in x for k ∈ K,

respectively. Thus, T � = J1(γ,H,B) is concave in B.
Theorem 2: Suppose I(γ, T ) is concave in T given γ.

Given γ and H , then T �
k (γ,H,B) is increasing in B, k ∈ K.

The structural properties in Theorems 1 and 2 simplify
the numerical computation of the optimal power allocation
solution in Lemma 1, as shown in the next section.

C. Numerical Computations

From (7a), we get the optimal solution for slot K as
T �
K(sK−1) = BK . Let us fix SNR and harvested energy as

γ,H , respectively, and drop these arguments. Consider the
unconstrained maximization over all T ≥ 0:

T †
k = argmax

T
g(T ) (8)

where g(T ) = Ī(γ, T ) + J̄k+1(B − T ). Since Ī(γ, T ) is con-
cave because expectation preserves concavity, and J̄k+1(B −
T ) is concave due to Theorem 1, the objective function g(T )
is concave. Thus, the maximization over all T gives a unique
solution T †

k , easily solved using numerical techniques. Also,

Theorem 2 helps to reduce the search space by restricting the
search to be in one direction for different B. Alternatively,
if g(T ) is differentiable, T †

k is given by solving g′(T ) = 0.
Finally, by restricting the maximization in (8) to be over
0 ≤ T ≤ B, we get the optimal solution for (7b), given by

T �
k =

⎧⎨
⎩

0, T †
k ≤ 0;

B, T †
k ≥ B;

T †
k , 0 < T †

k < B.

(9)

This is because if T †
k ≤ 0, the (concave) objective function

g(T ) must be decreasing for T ≥ 0; if T †
k ≥ B, the objective

function must be increasing for T ≤ B.

IV. FULL SIDE INFORMATION

The initial battery energy B1 is always known by the
transmitter. We say that full SI is available if the transmitter
also has priori knowledge of the harvest power HK−1 and
SNR γK before any transmission begins3. This corresponds to
the ideal case of a predictable environment where the harvest
power and channel SNR are both known in advance, and also
gives an upper bound to the maximum throughput T � for any
distribution (3). Moreover, it provides interesting insights that
are useful for constructing practical schemes.

A. Arbitrary Bmax

First, we consider the general case where Bmax may be
finite. Corollary 1, as a consequence of Lemma 1, gives the
optimal throughput T � for the same problem (5) but with full
SI available.

Corollary 1: Given full SI {HK−1, γK}, the maximum
throughput is given by

J1(B1) = max
π∈Π

K∑
k=1

I(γk, Tk), (10)

which can be computed recursively based on Bellman’s equa-
tions:

JK(B) = max
0≤T≤B

I(γK , T ) = I(γK , B), (11a)

Jk(B)

= max
0≤T≤B

I(γk, T ) + Jk+1(min{Bmax, B − T +Hk}) (11b)

for k = 1, · · · ,K − 1.
Proof: All side information are a priori known and hence

the SI is deterministic rather than random. Corollary 1 thus
follows immediately from Lemma 1, by replacing the pdfs in
(4) by Dirac delta functions accordingly.

In general, power may be allocated via these modes:

• greedy (G): use all stored energy whenever available;
• conservative (C): save as much stored energy as possible

(without wasting any harvested energy) to the last slot;
• balanced (B): stored energy is traded among slots accord-

ingly to channel conditions.

3HK is not needed in our problem, as the energy harvested in slot K
affects only the throughput for slot K + 1 onwards.
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For the last slot, or if K = 1 where there is only one slot,
from (11a) it is optimal to allocate all power for transmission.
For the case K = 2, Corollary 2 obtains the optimal power
allocation for the first slot. The proof is given in the Appendix.

Corollary 2: Consider K = 2 slots. Suppose the mu-
tual information function is given by (1). Given full SI
{B1, H1, γ1, γ2}, the optimal transmission energy for slot 1 is
given by (corresponding to the G, B, C modes, respectively)

T �
1 =

⎧⎨
⎩

B1, a < 0 or B1 < b;

T̃ , a ≥ 0 and |b| ≤ B1 ≤ c;
B1 − a, a ≥ 0 and (B1 > c or B1 < −b);

where

T̃ = (1/γ2 − 1/γ1 +B1 +H1)/2 (12)

and we denote a = Bmax −H1, b = H1 + 1/γ2 − 1/γ1 and
c = 2Bmax −H1 + 1/γ2 − 1/γ1.

In Corollary 2, the power allocation is interpreted to be in
G, B, or C mode. For example, consider b > 0. Then all modes
can be active: power allocation is greedy if the energy to be
harvested is large or the stored energy is small (a < 0 or
B1 < b); power allocation is conservative if the energy to be
harvested is small and the stored energy is large (a ≥ 0 and
B1 > c); otherwise, the allocation depends on the SI.

Remark 1: From Corollary 2, T �
1 (B1) is a piece-wise linear

function of B1. We also see that T �
1 (B1) is increasing in B1,

as predicted in Theorem 2.
Although we can derive a closed-form result for larger K ,

the expression becomes unwieldy and less intuitive. However,
if Bmax → ∞, for any K we can obtain a closed-form result
that is a variation of the water-filling power allocation policy
[5], as will be presented next.

B. Infinite Bmax

We consider the special case where Bmax → ∞. From (2),
the stored energy is then updated according to Bk+1 = Bk −
Tk +Hk, k ∈ K, which can be expressed as

Bk+1 = B1 −
k∑

i=1

Ti +

k∑
i=1

Hi, k ∈ K. (13)

The throughput maximization problem solved in Corollary 1
can be formulated as follows:

max
{Tk≥0,k∈K}

T (TK) =

K∑
k=1

I(γk, Tk) (14a)

subject to Tk ≤ Bk, k ∈ K, or equivalently, subject to

k∑
i=1

Ti ≤ B1 +
k−1∑
i=1

Hi, k ∈ K (14b)

due to (13). Theorem 3 gives the structure for the optimal
power allocation solution T �

k , k ∈ K. Let us denote [x]+ �

max(0, x).

Time slot k

T �
k

γ−1
k

νk

Fig. 2. Structure of optimal power allocation T �

k
with full SI and infinite

Bmax. We assume two distinct water levels for νk , and arbitrary SNR γk’s.

Time slot k

T �
k

γ−1
k

νk

Fig. 3. Same as Fig. 2 but with increasing SNR γk , i.e, decreasing γ−1

k
,

over slot k. In this case, T �

k
must increase over slot k.

Theorem 3: Suppose the mutual information function is
given by (1) and Bmax → ∞. Given full SI, the optimal power
allocation is given by

T �
k =

[
νk − 1

γk

]+
, k ∈ K, (15)

where the water-levels {νk} satisfy 0 ≤ ν1 ≤ ν2 ≤ · · · ≤ νK .
Fig. 2 gives an example of the optimal power allocation. It

is possible to have multiple distinct water levels for νk, but the
water levels are non-increasing. In conventional water-filling,
however, there is only one distinct water level.

Proof: The optimization problem in (14) is convex and so
can be solved by the dual problem [7]. The Lagrangian asso-
ciated to the primal problem (14) is L(λK , TK) = T (TK)−∑K

k=1 λk ·
(∑k

i=1 Ti −
∑k−1

i=1 Hi −B1

)
+
∑K

k=1 μkTk, where
λk is the Lagrangian multiplier for the kth constraint in (14b)
and μk is the Lagrangian multiplier for the constraint Tk ≥ 0
with λk, μk ≥ 0. Solving ∂L/∂Tk = 0, and with the Karush-
Kuhn-Tucker conditions, we get the optimal solution

T �
k =

[
νk −

1

γk

]+
, νk �

1

ln 2
∑K

i=k λi

for k ∈ K. Since λk ≥ 0, it follows that νk ≥ 0 and also that
νk increases with k.

Remark 2: Suppose the SNR is non-decreasing over slots.
Then the optimal power allocation is non-decreasing over slots,
since from Theorem 3, we get T �

l ≤ T �
k if γl ≤ γk for l < k.

An example that illustrates Remark 2 is given in Fig. 3. The
converse of Remark 2 is not true in general. In conventional
water-filling, however, both Remark 2 and its converse hold.

V. CONCLUSION

We considered a communication system where the energy
available for transmission varies from slot to slot, depending
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on how much energy is harvested from the environment and
expended for transmission in the previous slot. We studied the
problem of maximizing the throughput via power allocation
over a finite horizon, given either causal SI or full SI. We
obtained structural results for the optimal power allocation,
which provides intuition that is useful for heuristic implemen-
tation in practice.

APPENDIX A
PROOF OF THEOREM 1

Fix γ,H , so we take all functions, e.g., Jk(γ,H,B), as
functions of B only. We now prove by induction that Jk is
concave in B for decreasing k = K, · · · , 1.

Consider k ∈ {1, · · · ,K−1}. Suppose that Jk+1 is concave
in B. Clearly Jk+1(γ,min{Bmax, x+H}) is concave in x, as
it is the minimum of the constant Jk+1(γ,Bmax) (independent
of x) and the concave function Jk+1(γ, x+H). It follows that
J̄k+1 is concave in x, since expectation preserves concavity.
From (7b), Jk is a supremal convolution of two concave
functions in B, namely Ī and J̄k+1 (with γ,H fixed). It
follows that Jk is concave in B, since the infimal convolution
of convex functions is convex [8, Theorem 5.4]. To complete
the proof by induction, we need to show that JK in (7a) is
concave; this holds as expectation preserves concavity and I
is concave in the second argument by assumption.

APPENDIX B
AN AUXILIARY LEMMA

We need Lemma 2 to prove Theorem 2.
Lemma 2: Consider T �(B) = argmaxF (B, T ), where the

maximization is over interval Tl(B) ≤ T ≤ Tu(B) that
depends on B. If Tl(B), Tu(B) are increasing in B, and if F
has increasing differences in (B, T ), i.e., ∀T ′ ≥ T,B′ ≥ B,

F (B′, T ′)− F (B, T ′) ≥ F (B′, T )− F (B, T ), (16)

then the maximal and minimal selections of T �(B), namely
T (B), T (B), are increasing.

Proof: See proof in [9, Theorem 2].

APPENDIX C
PROOF OF THEOREM 2

Fix γ,H ; we drop these arguments from all functions. From
(7a), we get T �

K(B) = B, which is increasing in B. We apply
Lemma 2 above to establish that Theorem 2 hold for k < K .
Let F (B, T ) = Ī(T ) + J̄k+1(B − T ), according to (7b). Let
Tl(B) = 0, Tu(B) = B, which are increasing in B. To apply
Lemma 2, it is sufficient to show that each term in F has
increasing differences in (B, T ). Since Ī(T ) is independent
of B, trivially Ī(T ) has increasing differences in (B, T ). To
show that g(B−T ) � J̄k+1(B−T ) has increasing differences
in (B, T ), we note that g(y+ δ)− g(y) ≤ g(x+ δ)− g(x) for
x ≤ y, δ ≥ 0, since g(x) = J̄k+1(x) is concave in x from the
proof in Theorem 1. Substituting x = B−T ′, y = B−T, δ =
B′−B, we then obtain (16) with F (B, T ) = g(B−T ). Since
the objective function is concave (as shown in Appendix A),
T �(B) is unique. Thus, from Lemma 2, T �(B) = T (B) =
T (B) is increasing in B, k ∈ K.

APPENDIX D
PROOF OF COROLLARY 2

Since K = 2 and full SI is available, from (1), (11) we get

J1(γ1, B1) = max
0≤T≤B1

g(T ), (17)

g(T ) � log2(1+γ1T )+log2(1+γ2min{Bmax, B1−T+H1}).
Suppose H1 > Bmax. Then min{Bmax, B1 − T +H1} =

Bmax if T ≤ B1. The optimal T that solves (17) is then

T �
1 = B1 if H > Bmax. (18)

Suppose H1 ≤ Bmax. Consider T ≤ B1+H1−Bmax. Then
min{Bmax, B1 − T +H1} = Bmax, which implies

arg max
T≤B1+H1−Bmax

g(T ) = B1 +H1 −Bmax. (19)

This shows that the optimal T for (17) cannot be less than
B1 +H1 −Bmax. Denote [x]+ = max(0, x). Without loss of
generality, the optimal T in (17) is therefore given by

T �
1 = arg max

[B1+H1−Bmax]+≤T≤B1

g(T ) (20)

if H1 ≤ Bmax. For T ≥ [B1 +H1 −Bmax]
+, we have

g(T ) = log2(1 + γ1T ) + log2(1 + γ2(B1 − T +H1)),

which is differentiable and concave. Observe that T̃ in (12)
solves the equation g′(T̃ ) = 0, i.e., T̃ is the optimal solution
for the unconstrained optimization problem max g(T ). By
concavity of g(T ), we can then obtain (20) as

T �
1 = arg max

[B1+H1−Bmax]+≤T≤B1

g(T )

=

⎧⎪⎨
⎪⎩

B1, T̃ > B1;

T̃ , [B1 +H1 −Bmax]
+ ≤ T̃ ≤ B1;

B1 +H1 −Bmax, T̃ < [B1 +H1 −Bmax]
+

if H1 ≤ Bmax. By re-writing the above conditions in terms of
B1 and combining the result with (18), we then obtain T �

1 as
stated in Corollary 2.
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