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Summary 
Integrating sensor networks and grid computing in sensor-grid computing on a SensorGrid 
architecture is like giving ‘eyes’ and ‘ears’ to the computational grid.  Real-time information about 
phenomena in the physical world can be processed, modelled, correlated and mined to permit ‘on-the-
fly’ decisions and actions to be determined on a large scale.  Examples include surveillance for 
homeland security, business process optimization, environment monitoring with prediction and early 
warning of natural disasters, and threat management (e.g. missile detection, tracking and interception).  
In this chapter, we describe the sensor-grid computing concept, the SensorGrid architecture and 
present our work on information fusion, event detection and classification, and distributed 
autonomous decision-making on SensorGrid, as examples of what can be achieved.  Finally, we 
discuss several research challenges that need to be overcome before such a concept can become 
reality. 
Keywords: sensor networks, grid computing, information fusion, detection, classification 
 
 
1.  Introduction 
 
Recent advances in electronic circuit miniaturization and micro-electromechanical systems (MEMS) 
have led to the creation of small sensor nodes which integrate several kinds of sensors, a central 
processing unit (CPU), memory and a wireless transceiver.  A collection of these sensor nodes forms 
a sensor network which is easily deployable to provide a high degree of visibility into real-world 
physical processes as they happen, thus benefitting a variety of applications such as environmental 
monitoring, surveillance and target tracking.  Some of these sensor nodes may also incorporate 
actuators such as buzzers and switches which can affect the environment directly.  We shall simply 
use the generic term ‘sensor node’ to refer to these sensor-actuator nodes as well. 
 
A parallel development in the technology landscape is grid computing, which is essentially the 
federation of heterogeneous computational servers connected by high-speed network connections.  
Middleware technologies such as Globus (2006) and Gridbus (2005) enable secure and convenient 
sharing of resources such as CPU, memory, storage, content and databases by users and applications.  
This has caused grid computing to be referred to as ‘computing on tap’, utility computing and IBM’s 
mantra, ‘on demand’ computing. Many countries have recognized the importance of grid computing 
for ‘eScience’ and the grid has a number of success stories from the fields of bioinformatics, drug 
design, engineering design, business, manufacturing and logistics. 
 
There is some existing work on the intersecting fields of sensor networks and grid computing which 
can be broadly grouped into three categories: (1) ‘sensorwebs’, (2) sensors to grid, and (3) sensor 
networks to grid.  In the first category of ‘sensorwebs’, many different kinds of sensors are connected 
together through middleware to enable timely and secure access to sensor readings.  Examples are the 
SensorNet effort by the Oak Ridge National Laboratories (ORNL) and NIST (USA) which aims to 
collect sensor data from different places to facilitate the operations of the emergency services; the 
IrisNet effort by Intel to create the ‘seeing’ Internet by enabling data collection and storage, and the 
support of rich queries over the Internet; and the Department of Defense (USA) ForceNet which 
integrates many kinds of sensor data to support air, sea and land military operations.  In the second 
category of sensors to grid, the aim is to connect sensors and instruments to the grid to facilitate 



CK Tham, “Sensor-Grid Computing and SensorGrid architecture for Event Detection, Classification and Decision-Making”,  
book chapter in “Sensor Network and Configuration: Fundamentals, Techniques, Platforms, and Experiments”, ed. NP Mahalik, 
Springer-Verlag, Germany, June/July 2006 

 Page 2 of 16 

collaborative scientific research and visualization (Chiu and Frey 2005).  Examples are the efforts by 
the Internet2 and eScience communities in areas such as the collaborative design of aircraft engines 
and environment monitoring; DiscoveryNet (Imperial College UK) which aims to perform knowledge 
discovery and air pollution monitoring; and the earthquake science efforts by the CrisisGrid team 
(Indiana University USA) and iSERVO (International Solid Earth Research Virtual Observatory).  
Finally, in the third category of sensor networks to grid, the aim is mainly to use grid web services to 
integrate sensor networks and enable queries on ‘live’ data.  Examples are efforts by Gaynor et al 
(2004) to facilitate quicker medical response and supply chain management; and the SPRING 
framework proposed by Lim et al (2005). 
 
Our focus and approach, which we refer to as sensor-grid computing executing on an integrated 
sensor-grid architecture or simply ‘SensorGrid’ for short (Tham and Buyya 2005) - see Fig. x.1 - 
builds on the three categories of existing work described above and aims to achieve more by 
exploiting the complementary strengths and characteristics of sensor networks and grid computing. 
Essentially, sensor-grid computing combines the real-time acquisition and processing of data about 
the environment by sensor networks with intensive distributed computations on the grid.  This enables 
the construction of real-time models and databases of the environment and physical processes as they 
unfold, from which high-value computations such as analytics, data mining, decision-making, 
optimization and prediction can be carried out to generate ‘on-the-fly’ results. This powerful 
combination would enable, for example, effective early warning of threats (such as missiles) and 
natural disasters (such as tornados and tsunamis), and real-time business process optimization.   
 
One other key aspect of sensor-grid computing is the emphasis on distributed and hierarchical in-
network processing at several levels of the SensorGrid architecture.  As will be explained later, the 
sensor-grid computing approach is more robust and scalable compared to other approaches in which 
computations are mainly performed on the grid itself.  The sensor-grid computing approach together 
with the SensorGrid architecture enable more timely responses to be achieved and useful results to be 
available even in the presence of failures in some parts of the architecture. 
 
The organization of this chapter is as follows.  In Section 2, we describe a simple centralized 
approach to realize sensor-grid computing.  We then point out its weaknesses and propose a 
distributed approach.  In Section 3, we describe two applications of distributed sensor-grid computing 
which we have implemented. In Section 4, several challenges and research issues related to sensor-
grid computing are discussed.  Finally, we conclude in Section 5. 
 
 
2.  Approaches to Sensor-Grid Computing 
 
One simple way to achieve sensor-grid computing is to simply connect and interface sensors and 
sensor networks to the grid and let all computations take place there. The grid will then issue 
commands to the appropriate actuators. In this case, all that is needed are high-speed communication 
links between the sensor-actuator nodes and the grid.  We refer to this as the centralized sensor-grid 
computing approach executing on a centralized SensorGrid architecture. 
 
However, the centralized approach has several serious drawbacks. Firstly, it leads to excessive 
communications in the sensor network which rapidly depletes its batteries since long range wireless 
communications is expensive compared to local computation.  It also does not take advantage of the 
in-network processing capability of sensor networks which permits computations to be carried out 
close to the source of the sensed data.  In the event of communication failure, such as when wireless 
communication in the sensor network is unavailable due to jamming, the entire system collapses. 
Other drawbacks include long latencies before results are available on the field since they have to be 
communicated back from the grid, and possible overloading of the grid (although this is unlikely). 
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Fig. x.1 – SensorGrid architecture integrating sensor networks1 and grid computing 

 
 
The more robust and efficient alternative is the decentralized or distributed sensor-grid computing 
approach which executes on a distributed SensorGrid architecture and alleviates most of the 
drawbacks of the centralized approach. The distributed sensor-grid computing approach involves in-
network processing within the sensor network and at various levels of the SensorGrid architecture. 
We present specific realizations of the SensorGrid architecture with sensor nodes which are Crossbow 
motes, Stargate nodes, Hewlett Packard iPAQ nodes, grid clients and the grid comprising a number of 
grid server nodes2.  Fig. x.2 shows several possible configurations of the SensorGrid architecture.  
The role and characteristics of each of the components and the features of the different configurations 
will be discussed later in this chapter. 
 
 

 
Fig. x.2 – Several possible configurations of the SensorGrid architecture 

(Note: The squares with ‘S’ denote sensor nodes. Wired links are shown by solid lines and wireless 
links by dotted lines.) 

 
 

                                                 
1 The Stargate and sensor nodes shown are products by Crossbow – see http://www.xbow.com 
2 The SensorGrid architecture can be constructed using other components with similar characteristics. 
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3.  Distributed Sensor-Grid Computing Applications 
 
The distributed sensor-grid computing approach is highly suitable for a number of distributed 
applications such as analytics, data mining, optimization and prediction.  In this chapter, we present a 
distributed information fusion, event detection and classification application, and a distributed 
autonomous decision-making application, as two examples of sensor-grid computing on the 
SensorGrid architecture. 
 
3.1  Distributed information fusion, event detection and classification 
 
Since the nodes in a sensor network are independently sensing the environment, this gives rise to a 
high degree of redundant information.  However, due to the severely resource-constrained nature of 
sensor nodes, some of these readings may be inaccurate. Information fusion algorithms, which 
compute the most probable sensor readings, have been studied extensively over the years, especially 
in relation to target detection and tracking. 
 
There are two methods for performing information fusion in the context of classification (Brooks et al 
2003): (i) decision fusion, which is done when the different measurements are statistically 
independent, and (ii) data or value fusion, which is done when different measurements yield 
correlated information.  In the case of decision fusion, classification is done at individual sensor nodes 
or sensing modalities and the classification results are combined or fused at the fusion center in a 
number of ways, such as by applying the product or sum rule on the likelihood estimates.  In the case 
of data fusion, feature vectors from individual sensors are concatenated and a classification algorithm 
is applied on the concatenated feature vector at the fusion center. Although data fusion is likely to 
yield better classification performance, it is more expensive to implement from the communication 
and computational points of view.  If there are M sensing modalities at each sensor node, K sensor 
nodes and n dimensions in each measurement, data fusion typically requires the transmission of  
(K-1)Mn values to the fusion center (which is one of the K sensor nodes) and the classification 
algorithm there would need to operate on a KMn-dimensional concatenated feature vector. In contrast, 
decision fusion requires a classification operation to be applied on either an n or Mn-dimensional 
feature vector at each sensor node, followed by the communication of (K-1) decisions to the fusion 
center and the application of a decision fusion algorithm on the K component decisions there.  In the 
subsequent parts of this sub-section, we will describe the design and implementation of a distributed 
decision fusion system for event detection and classification using the SensorGrid architecture and 
evaluate its performance. 
 
3.1.1  Distributed Decision Fusion 
 
To begin, we review basic statistical pattern classification theory and describe the optimal decision 
fusion (ODF) algorithm proposed by Duarte and Hu (2003). 
 
Maximum a posteriori (MAP) classification 
 
In statistical pattern classification, a feature vector x is assumed to be drawn from a probability 
distribution with probability density function ( )p x .  Due to a natural assignment process beyond our 
control, each sample x is assigned a class label nC  and we say that nx C∈ .  The probability that any 

sample x belongs to a class nC , denoted by ( ) ( )n nP x C P C∈ = , is known as the prior probability.  
The likelihood that a sample will assume a specific feature vector x given that it is drawn from a class 

nC  is denoted by the conditional probability ( ) ( )| |n np x C p x x C= ∈ . Using Bayes’ rule, the 

probability that a particular sample belongs to class nC , given that the sample assumes the value of x, 
is denoted by the a posteriori probability  
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A decision rule or classifier ( )d x  maps a measured feature vector x to a class label nC  which is an 

element of the set of N class labels { }1 2, , , NC C C=C … , i.e. ( )d x ∈C . If nx C∈  and ( ) nd x C= , 
then a correct classification has been made, otherwise it is a misclassification.  The maximum a 
posteriori (MAP) classifier chooses the class label among the N class labels that yields the largest 
maximum a posteriori probability, i.e.  
 ( ) ( )arg max |nn

d x P C x=  (0.2) 

where ( )d x n=  means ( ) nd x C= . 
 
Optimal decision fusion (ODF) 
 
Let us consider a sensor network or SensorGrid configuration that consists of a fusion center and K 
distributed sensor nodes. Each sensor node observes feature vector x and applies a classification 
algorithm, such as the MAP classifier described above, to arrive at a local decision ( )d x ∈C .  The K 
sensor nodes forward their local decisions kd ∈C  to the fusion center which forms a 1K ×  decision 

vector [ ]1 2( ) Kx d d d=d " . 
 
Duarte and Hu (2003) devised a decision fusion method which they referred to as optimal decision 
fusion (ODF).  The decision fusion algorithm is itself a decision rule ( ( ))l x ∈d C  that maps a feature 
vector [ ]1 2( ) Kx d d d=d "  to one of the class labels.  The sample space of the decision fusion 

classifier is finite and countable: since each decision kd  has N possible values, the combined decision 

vector ( )xd  can have at most KN  different combinations.   
 
For each feature vector x, the set of K sensor nodes provide a unique decision vector ( )xd . The set of 

KN  decision vectors partition the feature space into KN  disjoint regions, denoted by 

{ };1 K
mr m N≤ ≤ . Furthermore, let us denote the unique decision vector that every mx r∈  maps to as 

( )md .  Following the MAP principle at the fusion center, we have 
 * *( ( ))  if  ( | ( )) ( | ( ))n n nl m C P C m P C m= >d d d  (0.3) 

for *n n≠ . Using Bayes’ rule, if ( ) 0mP x r∈ ≠ , then 
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where { }…  is the cardinal number of the set.  Hence, the MAP classification label *nC  for mr  can be 

determined by 
 { }* arg max | m nn

n x x r C= ∈ ∩  (0.5) 

when the feature space is discrete.  Essentially, this means that the class label of ( )md  should be 
assigned according to a majority vote of class labels among all mx r∈ . 
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The ODF decision fusion algorithm is robust and produces high classification accuracy in the final 
classification even in the presence of faulty or noisy sensors or sensor node failures. 
 
3.1.2  Event detection and classification on SensorGrid 
 
The classification and decision fusion algorithms described above are implemented on the SensorGrid 
configuration shown in Fig. x.2(a) which consists of leaf sensor nodes and several levels of fusion 
centers implemented in sensor nodes, one or more grid client(s) and one or more grid server node(s). 
The actual system can be seen in Fig. x.3. 
 

 
Fig. x.3 – SensorGrid for decision fusion 
 
 
Sensor nodes 
 
The sensor nodes are Crossbow MPR410 MICA2 nodes, each having a basic CPU, 433 MHz radio 
board and some SRAM, flash and non-volatile memory.  The nodes run the TinyOS operating system 
which has a component-based architecture that allows modules to be ‘wired’ together for rapid 
development of applications, and an event-driven execution model designed for effective power 
management. The MTS310 sensor add-on board has sensing modalities such as 2-axis accelerometer, 
2-axis magnetometer, light, temperature, acoustic and a sounder.  We use the light and temperature 
sensing modalities in our application. 
 
Grid client and grid server nodes 
 
Components from the Globus Toolkit (Globus 2006) are implemented on the grid client and grid 
server nodes. The Globus Toolkit is an open source middleware platform which allows the sharing of 
computational resources and the development of grid applications. There are several primary 
components which make up the Globus Toolkit: 
(a) Resource Management 
Globus Resource Allocation Manager (GRAM) provides a standardized interface for resource 
allocation to all local resource management tools and the Resource Specification Language (RSL) is 
used to exchange information between the resource management components. 
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(b) Information Services 
The Globus Metacomputing Directory Service (MDS) makes use of the Lightweight Directory Access 
Protocol (LDAP) as a means to query information from system components. The Grid Resources 
Information Service (GRIS) also provides a standardized method of querying nodes in the grid for 
information on their configuration, capabilities and status. 
(c) Data Management 
GridFTP, based on the popular Internet-based File Transfer Protocol (FTP), is used to perform 
transfer of data or allow data access.  
(d) Grid Security Infrastructure (GSI) 
Underlying the three above-mentioned modules is the GSI security protocol which provides secure 
communications and a ‘single sign on’ feature for users who use multiple resources. 
 
The Open Grid Services Architecture (OGSA) in current versions of the Globus Toolkit enable the 
computational, data and storage resources on the grid to be packaged as services which are easily 
discovered and accessed by various users (see Section 4.1). 
 
Implementation on SensorGrid 
 
As mentioned earlier, our proposed sensor-grid computing approach involves more than simply 
connecting a sensor network and a grid computing system together.  The judicious exploitation of the 
in-network processing capability of the SensorGrid architecture will lead to more efficient 
implementations of distributed algorithms, such as those for event detection and classification, in 
terms of the amount of processing and data transmission that needs to be carried out and the 
timeliness of the computed response. 
 
The MAP classifier of equations (x.1) and (x.2) is implemented on all the leaf sensor nodes and the 
optimal decision fusion (ODF) algorithm of equations (x.4) and (x.5) is implemented on the sensor 
nodes which take on the role of fusion centers, grid clients and a grid server node. 
 

 

(a) (b) 
Fig. x.4 – (a) Sensor node component ‘wiring’. (b) Fusion center component ‘wiring’. 

 
The ‘wiring’ of TinyOS components in sensor nodes performing light and temperature sensing is 
shown in Fig. x.4(a), while the ‘wiring’ of components which perform decision fusion at the sensor 
nodes which take on the role of fusion center is shown in Fig. x.4(b).  
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3.1.3  Training phase and Operation phase 
 
Before the SensorGrid architecture can be used for event detection and classification, the MAP 
classifiers and fusion centers running the ODF algorithm need to be trained.  
 
We developed a user client application which initiates the training and operation phases, as well as 
specifies key parameters such as number of classes, details of the particular SensorGrid architecture 
configuration, number of samples for each class etc. 
 
Training is carried out in a natural manner one class at a time where a number of training samples of 
sensor readings under a variety of conditions corresponding to the same class are collected. A 
convenient method of finding the likelihood ( ) ( )| |n np x C p x x C= ∈  is to use the Gaussian 
probability density function and determine the mean and covariance of the training feature vectors 
belonging to the same class. By using the ‘equal priors’ assumption, the MAP classifier shown in 
equation (x.2) becomes the Maximum Likelihood (ML) classifier where the decision rule is given by 
 ( ) ( )arg max | nn

d x P x C=  (0.6) 

Equation (x.6) is implemented at every leaf sensor node to provide the local classification result. 
 
The local classification results for every sample of each known class, i.e. with the same class label 

nC , are sent to the fusion center at the next higher level which then forms the decision vector 

[ ]1 2( ) Kx d d d=d "  defining the region mr , where K is the number of sensor nodes or lower 
level fusion centers reporting to a particular fusion center. As mentioned earlier, the fusion center can 
be a sensor node, grid client or grid server node. The counter corresponding to { }| m nx x r C∈ ∩  is 

incremented for each sample presented.  This process is repeated for every class at various levels of 
the decision fusion system until the highest level, i.e. grid server node, is reached. 
 
At the end of the training phase, the decision fusion system is switched to the operation phase during 
which ‘live’ sensor measurements are made at regular intervals and a process similar to the training 
phase takes place, except that the counter corresponding to { }| m nx x r C∈ ∩  is not incremented, but 

instead, equation (x.5) is used to determine the classification outcome *nC  of the entire decision 
fusion system. 
 
3.1.4  Experimental results 
 
This sub-section describes a few experiments which were conducted to validate the effectiveness of 
the decision fusion-based event detection and classification system implemented on the SensorGrid 
architecture. 
 
The environment is divided into four regions, each having a sensor node which takes on the role of a 
fusion center, as shown in Fig. x.2(a). The task is to accurately detect and classify different types and 
severities of fire occurring in the environment, as shown in Table x.1. 
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Class Description 

1 No fire 
2 Fire in one region 
3 Fire in two regions 
4 Fire in all four regions

Table x.1 – ‘Fire’ event detection and classification 
 

It is common practice to tabulate the results of classification experiments in an N N× confusion 
matrix whose elements [ ] ijij

n=CM  are the number of feature vectors from class iC  classified as 

class jC .  Two performance metrics can be computed from the confusion matrix: (1) the probability 

of correct detection mPD  for class m is given by 
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and (2) the probability of false alarm mPFA  for class m, which is the probability that an event is 
classified as class m when the true underlying class is different, is given by 
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Class Dec = 1 Dec = 2 Dec = 3 Dec = 4
Class = 1 20 0 0 0 
Class = 2 2 18 0 0 
Class = 3 2 2 16 0 
Class = 4 0 4 0 16 

Table x.2 – Classification results of the ODF decision fusion method on SensorGrid 
 
From Table x.2, we see that the ODF decision fusion method yields PD = 1.0, 0.9, 0.8, 0.8 (average 
PD = 0.875) and PFA = 0.067, 0.1, 0.0, 0.0 (average PFA = 0.042) for the four classes. 
 
The performance of the ODF decision fusion method is compared with the majority voting decision 
fusion method in which the final classification outcome is simply the highest frequency class label 
from among the classification decisions of local classifiers. 
 

Class Dec = 1 Dec = 2 Dec = 3 Dec = 4
Class = 1 20 0 0 0 
Class = 2 3 17 0 0 
Class = 3 1 3 16 0 
Class = 4 0 3 2 15 

Table x.3 – Classification results of the majority voting decision fusion method  
on SensorGrid 

 
From Table x.3, we see that the majority voting method yields PD = 1.0, 0.85, 0.8, 0.75 (average PD 
= 0.850) and PFA = 0.067, 0.1, 0.033, 0.0 (average PFA = 0.050) for the four classes.  Hence, the 
ODF decision fusion algorithm outperforms the majority voting method, and we have also validated 
the correct implementation of these algorithms on the SensorGrid architecture.  
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3.1.5  Other possible SensorGrid configurations 
 
In the previous section, the SensorGrid configuration shown in Fig. x.2(a) have been used extensively.  
The drawback of this configuration is that, due to the limited radio range of the sensor nodes, the grid 
client has to be placed fairly close to the fusion centers and clusters of sensor nodes.  Although multi-
hop data forwarding over a series of sensor nodes can be done to extend the range of data 
communication, the latency between the occurrence of an event and its measurement reaching the 
‘sink’, which is the grid and user applications in this case, is likely to be significant  (Intanagonwiwat 
et al 2000).  Furthermore, due to the limited energy available on sensor nodes, multi-hop data 
forwarding in a sensor network is likely to be unreliable with a high data loss rate. 
 
To overcome these difficulties and to facilitate more computationally intensive in-network processing 
close to the source of the sensor data, we introduce more powerful processing and communication 
nodes into the SensorGrid architecture, such as: (1) the Crossbow Stargate SPB400 single board 
computer, which is essentially a 400 MHz Linux computer with an Intel XScale processor with 
CompactFlash, PCMCIA, Ethernet and USB connectivity options (e.g. a CompactFlash WiFi network 
adapter can be connected for high speed wireless communications), and (2) Hewlett Packard iPAQ 
personal digital assistants (PDAs) with WiFi connectivity.  The resulting configurations of the 
SensorGrid architecture are shown in Fig. x.2(b) and (c). 
 
In the SensorGrid configuration of Fig. x.2(c), two additional levels in the form of Stargate and iPAQ 
cluster heads have been added between the sensor nodes and grid client levels to form a hierarchical 
SensorGrid architecture in which computational and communication resources, as well as the degree 
of data aggregation, increases when we move up the hierarchy.  An implementation of the resulting 
system is shown in Fig. x.5.  This configuration also reduces the communication distances between 
the different levels, thus conserving power since radio communications over long distances consumes 
substantial amounts of energy in sensor networks.  Instead of executing complex algorithms only at 
the grid, the presence of a larger amount of computational resources for in-network processing close 
to the source of sensor data improves the timeliness of the local and regional responses to sensed 
events. 
 

 
Figure x.5 – Hierarchical SensorGrid architecture 

display showing output 
from process on Grid 

Stargate as 
Cluster Head 

iPAQ as 
Higher-level 
Cluster Head 

sensor & 
actuator 
nodes 

WiFi 



CK Tham, “Sensor-Grid Computing and SensorGrid architecture for Event Detection, Classification and Decision-Making”,  
book chapter in “Sensor Network and Configuration: Fundamentals, Techniques, Platforms, and Experiments”, ed. NP Mahalik, 
Springer-Verlag, Germany, June/July 2006 

 Page 11 of 16 

 
 
3.2  Distributed autonomous decision-making 
 
There are many cases in which a response is needed from the sensor-grid computing system, but the 
best action to take in different situations or states is not known in advance.  This can be determined 
through an adaptive learning process, such as the Markov Decision Process (MDP) or reinforcement 
learning (RL) (Sutton and Barto 1998) approach.  MDP problems can be solved off-line using 
methods such as policy- or value-iteration, or on-line using RL or neuro-dynamic programming 
(NDP) (Bersekas and Tsitsiklis 1996) methods. 
 
We developed a multi-level distributed autonomous decision-making system and implemented it on 
the hierarchical SensorGrid architecture shown in Figure x.5.  Basic NDP agents were implemented in 
Crossbow motes (Tham and Renaud 2005) at the local or ground level, and more complex NDP 
agents at grid server nodes were implemented at the core of the grid3.  Each NDP agent is able to act 
autonomously and most parts of the sensor-grid computing system remain responsive even in the 
presence of communication failures due to radio jamming, router failures etc. between some 
components. 
 
 
4.  Research Issues 
 
Sensor networks is a relatively recent field and there are many research issues pertaining to sensor 
networks such as energy management, coverage, localization, medium access control, routing and 
transport, security, as well as distributed information processing algorithms for target tracking, 
information fusion, inference, optimization and data aggregation. 
 
Grid computing has been in existence longer, but nevertheless, still has a number of research 
challenges such as fair and efficient resource (i.e. CPU, network, storage) allocation to achieve quality 
of service (QoS) and high resource utilization, workflow management, the development of grid and 
web services for ease of discovery and access of services on the grid, and security.  Resource 
allocation itself involves a number of aspects such as scheduling at the grid and cluster or node-levels, 
Service Level Agreements (SLAs) and market-based mechanisms such as pricing. 
 
Apart from the afore-mentioned research issues in sensor networks and grid computing, sensor-grid 
computing and the SensorGrid architecture give rise to additional research challenges, especially 
when it is used in mission-critical situations.  These research challenges are: web services and service 
discovery which work across both sensor networks and the grid, interconnection and networking, 
coordinated QoS mechanisms, robust and scalable distributed and hierarchical algorithms, efficient 
querying and self-organization and adaptation.  Each of these areas will be discussed in greater detail 
in the following sub-sections. 
 
4.1  Web services on grid and sensor networks 
 
The grid is rapidly advancing towards a utility computing paradigm and is increasingly based on web 
services standards. The Service-Oriented Architecture (SOA) approach has become a cornerstone in 
many recent grid efforts.  It makes sense to adopt an SOA-approach as it enables the discovery, access 
and sharing of the services, data, computational and communication resources in the grid by many 
different users. 
 
On the SensorGrid architecture, the grid computing components are implemented as grid services 
using the Globus Toolkit 3 (GT3) (Globus 2006) shown in Fig. x.6, which conforms to the Open Grid 
Services Infrastructure (OGSI) standard.  
                                                 
3 The NDP agents in the grid are implemented as grid services which are described in Section 4.1. 
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Fig. x.6 - GT3 core architecture 

 
A grid service is basically a form of web service that can be invoked remotely for Internet-based 
applications with loosely coupled clients and servers, but with improved characteristics suitable for 
grid-based applications. In particular, a grid service is a stateful web service, which remembers the 
state of operations invoked by grid clients. This is usually the case when the grid client has a chain of 
operations, where the result of one operation needs to be sent to the next operation.  
 
Another major improvement of grid services is the capability of being transient, as compared to 
normal persistent web services. Web services are referred to as persistent because their lifetime is 
bound to the web services container. After one client has finished using a web service, all the 
information stored in the web service can be accessed by subsequent clients. In fact, while one client 
is using the web service, another client can access the same service and potentially mix up the first 
client's operations. Grid services solve such problems by allowing programs to use a factory or 
instance approach to web services. When a client needs to create a new instance, it will communicate 
with a factory. These instances are transient since they have a limited lifetime which is not bound to 
the lifetime of the container of the grid services. In other words, one can create and destroy instances 
at will whenever they are needed, instead of having one persistent service permanently available in the 
case of normal web services. The actual lifecycle of an instance can vary depending on the nature of 
the application.  
 
In GT3, at the server-side, the main architecture components include: 
(a) Web services engine. This is provided by the Apache AXIS framework and is used to deal with 
normal web services behaviours, SOAP message processing, JAX-RPC (Java API for XML-based 
Remote Procedure Call) handlers and Web Services configuration. 
(b) Globus Container framework, which provides a software container to manage the stateful web 
service through a unique instance handle, instance repository and life-cycle management, including 
service activation/passivation and soft-state management.  
 
As shown in Fig. x.7, the GT3 container provides a pivot handler to the AXIS framework to pass the 
request messages to the Globus container. This container architecture is used to manage the stateful 
nature of web services and their life cycles.  
 



CK Tham, “Sensor-Grid Computing and SensorGrid architecture for Event Detection, Classification and Decision-Making”,  
book chapter in “Sensor Network and Configuration: Fundamentals, Techniques, Platforms, and Experiments”, ed. NP Mahalik, 
Springer-Verlag, Germany, June/July 2006 

 Page 13 of 16 

 
Fig. x.7 - Grid server-side framework in GT3 

 
Referring to Fig. x.7, once the service factory creates a grid service instance, the framework creates a 
unique grid service handle (GSH) for that instance, and that instance is registered with the container 
repository. This repository holds all of the stateful service instances and is contacted by the other 
framework components and handlers to perform services such as: (a) identifying services and invoke 
methods, (b) getting/setting service properties (i.e. GSH and Grid Service Reference or GSR), (c) 
activating/passivating service, and (d) resolving grid service handles to reference and persist the 
service. 
 
At the client-side, Globus uses the normal JAX-RPC client-side programming model and AXIS 
client-side framework grid service clients. Essentially, the client AXIS engine communicates to the 
server via SOAP messages.  In addition to the normal JAX-RPC programming model, Globus 
provides a number of helper classes at the client side to hide the details of the OGSI client-side 
programming model. Fig. x.8 shows the client-side software framework used by Globus.  
 
 

 
Fig. x.8 - Grid client-side framework in GT3 

 
On the SensorGrid architecture, such as the configuration shown in Fig. x.2(b), the grid client forms 
the feature vector using the processed sensor readings from the Stargate embedded device. The 
Stargate acts as a gateway between the sensor network and the grid client and preprocesses the raw 
sensor readings from the sensor nodes. After that, the grid client invokes the grid service and provides 
it with the feature vector formed from the sensor network readings.  The computationally intensive 
operations mentioned in Sections 1 and 3 are then performed on the grid.  
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Likewise, in sensor networks, it makes sense to share the sensor-actuator infrastructure among a 
number of different applications and users so that the environment is not swamped with an excessive 
number of sensor nodes, especially since these nodes are likely to interfere with one another when 
they communicate over the shared wireless medium and decrease the effectiveness of each node, and 
actuators may also take conflicting actions.  
 
There has been some recent work on adopting an SOA and web services approach to sensors and 
sensor networks.  The OpenGeospatial Consortium’s Sensor Model Language (SensorML) standard 
(OGC 2006) provides the XML schema for defining the geometric, dynamic and observational 
characteristics of sensors.  We are currently developing a web services interface between the Stargate 
and grid client which will enable sensor network services to be discovered and accessed by grid 
applications as well as by user applications running on user client devices. 
 
4.2  Interconnection and networking 
 
The communications and networking conditions in sensor networks and grid computing are worlds 
apart. In sensor networks, the emphasis is on low power wireless communications which has limited 
bandwidth and time-varying channel characteristics, while in grid computing, high-speed optical 
network interconnects are common. Thus, communications protocols for sensor-grids will have to be 
designed take into account this wide disparity. 
 
ZigBee has emerged as one of the first standards-based low power wireless communications 
technologies for sensor networks, e.g. Crossbow MICAz motes.  Furthermore, a machine-to-machine 
(M2M) interface between ZigBee and GPRS has recently been announced, thus enabling sensor 
networks to be connected to the cellular network infrastructure. One other promising development is 
low-rate Ultra-Wide Band (UWB) wireless technology which has several characteristics suitable for 
sensor networks, i.e. extremely low power consumption, reasonable communication range, and 
integration with UWB-based localization and positioning technology. 
 
4.3  Coordinated QoS in large distributed system 
 
The timeliness and correctness of computations have been studied extensively in the real-time systems 
community, while performance guarantees in terms of delay, loss, jitter and throughput in 
communication networks have been studied extensively by the networking research community.  We 
shall refer to these as application-level and network-level QoS, respectively. 
 
A number of QoS control mechanisms such as scheduling, admission control, buffer management and 
traffic regulation or shaping have been developed to achieve application-level and network-level QoS. 
However, all these QoS mechanisms usually relate to a particular attribute such as delay or loss, or 
operate at a particular router or server in the system.  In order to bring about the desired system-level 
outcome such as meeting an end-to-end computational and communication delay requirement, these 
QoS mechanisms need to be coordinated instead of operating independently. We have developed a 
combined grid and network simulator (Sulistio et al 2005) to study these issues. 
 
There are several methods to achieve coordinated QoS.  For example, coordinated QoS can be viewed 
as a multi-agent Markov Decision Process (MDP) problem which can be solved using online 
stochastic optimal control techniques.  Tham and Liu (2005) have shown that this technique can 
achieve end-to-end QoS in a multi-domain Differentiated Services network with multiple resource 
managers in a cost effective manner. 
 
4.4  Robust and scalable distributed and hierarchical algorithms 
 
In Section 3, we described the design and implementation of distributed information fusion and 
distributed autonomous decision-making algorithms on the SensorGrid architecture. Generally, it is 
more difficult to guarantee the optimality, correctness and convergence properties of distributed 
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algorithms compared to their centralized counterparts, although the distributed versions are usually 
more attractive from an implementation point of view. 
 
Apart from distributed information fusion and decision-making, other current research efforts on 
distributed and hierarchical algorithms which are relevant to sensor-grid computing are distributed 
hierarchical target-tracking (Yeow et al 2005), distributed control and distributed optimization 
(Rabbat and Nowak 2004). 
 
4.5  Efficient querying and data consistency 
 
Another key area in sensor-grid computing is efficient querying of real-time information in sensor 
networks from grid applications and querying of grid databases by sensor network programs.  It is 
expected that databases will be distributed and replicated at a number of places in the sensor-grid 
architecture to facilitate efficient storage and retrieval. Hence, the usual challenges of ensuring data 
consistency in distributed caches and databases would be present, with the added complexity of 
having to deal with a large amount of possibly redundant or erroneous real-time data from sensor 
networks. 
 
4.6  Self-organization, adaptation and self-optimization 
 
The sensor-grid computing paradigm involves close interaction with the physical world which is 
highly dynamic and event-driven.  In addition, components in the SensorGrid architecture such as the 
sensor nodes are prone to failures arising from energy depletion, radio jamming and physical 
destruction due to bad weather conditions or tampering by people or animals.   
 
Self-organizing and adaptive techniques are required to cope with these kind of failures as well as to 
respond to different unpredictable events, e.g. the computation and communication requirements at a 
certain part of the SensorGrid architecture may increase dramatically if an event such as a fire or an 
explosion happens in that region and the user demands higher resolution sensing.  Since the dynamics 
of phenomena in the physical world are rarely known in advance, self-optimization techniques are 
also needed to better manage system resources and improve application-level and platform-level QoS.  
Techniques from the field of autonomic computing address some of these issues and can be applied in 
the SensorGrid architecture. 
 
 
5.  Conclusion 
 
In this chapter, we have provided an in-depth view of the potential and challenges in sensor-grid 
computing and described how it can be implemented on different configurations of the SensorGrid 
architecture.  In the near future, as sensor systems, sentient computing and ambient intelligence 
applications become more widespread, we expect that the need for sensor-grid computing will grow 
as it offers an effective and scalable method for utilizing and processing widespread sensor data in 
order to provide value in a number of domain areas. 
 
Last but not least, the success of the sensor-grid computing approach will depend on the ability of the 
sensor network and grid computing research communities to work together to tackle the research 
issues highlighted above, and to ensure compatibility in the techniques, algorithms and protocols that 
will be developed in these areas. 
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