
i

Mixture of Experts based Model Integration
for Traffic State Prediction

Rajarshi Chattopadhyay and Chen-Khong Tham
Department of Electrical and Computer Engineering

National University of Singapore
E-mail: ceerc@nus.edu.sg, eletck@nus.edu.sg

Abstract—Traffic forecasting is an important part of many
future intelligent transportation systems and can be particularly
useful for planning and navigation applications. The task is
challenging because of the complex spatial patterns of road
networks and dynamic temporal nature of traffic conditions.
Recently, deep learning architectures with specially designed
graph convolution layers to extract spatial patterns and recurrent
or temporal convolution layers to extract temporal patterns
have achieved good results for this task. In this paper, we
propose a Mixture of Experts (MoE) based model integration
framework to enhance the performance of these state-of-the-
art traffic prediction models. In addition, we propose a novel
entropy based loss function to improve the training of the MoE
ensemble. Our experiments show that the performance of the
Spatio-Temporal Graph Convolution Network (STGCN), a state
of the art model, can be significantly improved.

Index Terms—Intelligent Transportation; Vehicular and Trans-
portation Data Analytics; Traffic Forecasting; Graph Convolu-
tional Networks; Mixture of Experts

I. INTRODUCTION

A lot of current research has been focused on Intelligent
Transportation Systems (ITS). Smart navigation applications
have the potential to reduce the end-to-end travel time of
vehicles. Traffic state prediction on road networks is a crucial
component of these applications. It can help traffic authorities
to plan custom signalling schemes (considering future traffic
states) to control traffic flows and reduce congestion [1]. In
addition, it can reduce the commute time of individual vehicles
as navigation applications can now plan time optimal routes
based on both the current and future predicted traffic states [2].
A more accurate traffic state prediction algorithm is clearly
beneficial for both these scenarios.

Typically, the traffic state of a road network is characterised
by measuring the fundamental variables of traffic flow, e.g.
average speed, volume, and density at each road segment at
any time. Furthermore, based on the prediction interval, the
traffic state prediction problem is generally classified into two
categories: short-term (5 to 30 minutes) and long term (over 30
minutes). While traditional statistical and time series methods
like linear regression, Support Vector Machines (SVM) and
Autoregressive Integrated Moving Average (ARIMA) perform
well for short-term prediction, they are unable to capture the
complex long term spatio-temporal patterns in traffic data.

Recently the use of Deep Learning (DL) has become more
popular in this domain. The specific DL methods being applied
keep evolving with the advancements made in DL in other
areas. One of the first works applying DL to traffic state

prediction is described in [3]. The authors use a Stacked
Autoencoder (SAE) followed by a logistic regression layer.
It was shown to outperform traditional methods like SVM,
random-walk forecast and shallow neural networks. After this
initial success more specialized models like Convolutional
Neural Networks (CNN) and Long Short Term Memory
(LSTM) networks were applied. It was well known from their
usage in other application domains that CNN and LSTMs are
good for extracting spatial and temporal patterns from data,
respectively. The work in [4] concatenates features extracted
by CNN and LSTM layers and feeds them into a linear
regression layer to make the final predictions. The proposed
model was shown to outperform the previous state-of-the-art,
viz. SAE.

The standard CNN is designed for euclidean data, e.g.
images. However, historical traffic flow data on road networks
is more of a graph signal. Spatial [5] and spectral graph
convolution networks [6], [7] were especially designed to
process graph signals. The use of graph convolution resulted in
the development of new kinds of models where spatial features
are extracted by graph convolution and these features are then
fed into the recurrent layers for temporal feature extraction.
Diffusion Convolution Recurrent Neural Network (DCRNN)
[8] was one of the first works applying graph convolution
to traffic data. It treated the the graph convolution as a
diffusion process and further considers the road network as a
directed graph. Spatio-Temporal Graph Convolution Network
(STGCN) [9] further replaces the recurrent layer with temporal
convolutions to take full advantage of parallel hardware to train
deep networks. Both DCRNN and STGCN were shown to
have superior performance compared to previously considered
model architectures. In the meantime, the concept of self-
attention was becoming widely used in the area of natural
language processing. The work in [10], extends the STGCN
model by adding a global attention layer. This model is
referred to as ASTGCN. It was shown to outperform STGCN.
More recently, self-attention based transformer neural network
[11] has been applied to traffic forecasting. The main idea is to
replace the graph convolution layer with several multi-headed
attention layers. The idea of self-attention had been previously
applied to graphs using Graph Attention Networks (GAT) [12].
However, GAT only uses self-attention to compute the edge
weights between neighbouring nodes. It still retains the basic
idea of graph convolution. The self-attention based spatio-
temporal transformer network [13] was shown to perform
slightly better than the STGCN model.

ii

Ever since its introduction, the Mixture of Experts (MoE)
[14] model integration framework has been applied to many
classification and regression problems. It consistently gives
improved performance compared to individual models. How-
ever, to the best of our knowledge, application of the MoE
framework has not been explored in the area of traffic forecast-
ing. In this paper, we propose a MoE based model integration
framework to enhance the performance of the existing state-
of-the-art models. We also propose a novel loss function for
training these ensembles. We attained significant performance
improvement in our experiments. The rest of the paper is
organized as follows. In Section II we define the problem and
describe our solution methodology. Section III describes our
experiments and a discussion of the results. Finally, Section IV
concludes the paper and mentions future research directions.

II. METHODOLOGY

A. Road Network as a Graph

The road network can be defined as an undirected graph
G = (V,E,A), where V is a finite set of |V | = N nodes; E is
a set of edges, indicating the connectivity between the nodes;
A ∈ RN×N denotes the adjacency matrix of graph G . Each
node on the traffic network G detects F measurements with
the same sampling frequency, that is, each node generates a
feature vector of length F at each time step.

B. Traffic State Prediction on Road Networks

The goal of traffic forecasting is to use the previously
observed traffic state to forecast a fixed length of future traffic
state in a traffic network. In this work, the traffic state is the
average speed on road segments. Suppose that the entire traffic
network under consideration has N road segments. Then, the
traffic state at a particular time step can be denoted by a N-
dimensional vector vt , whose elements consists of the average
speed on the individual road segments. If the average speed is
recorded over the past T time steps, including the current step,
then we get a sequence of vectors vt−T+1, vt−T+2, .., vt . The
goal is to predict the most likely length P vector sequence in
the future given the past T observations (1).

vt+1,vt+2, ..,vt+P =

arg max
vt+1,vt+2,..,vt+P

P(vt+1,vt+2, ..,vt+P|vt−T+1,vt−T+2, ..,vt) (1)

C. Spatio-Temporal Graph Convolution Network

The STGCN model uses spectral graph convolution and
1-D causal convolutions to model the spatial and temporal
dependencies in traffic data, respectively.

1) Spectral Graph Convolution: The standard convolution
kernels are well suited to be applied to regular euclidean
grids like images. However, they cannot be directly applied to
graph structured data like road networks. The idea of spectral
graph convolutions was first introduced in [6]. The authors
suggested the use of graph Fourier transform to capture the
spatial dependencies in data. The spectral graph convolution
of a graph signal x with kernel Φ is defined as in (2). Here, U is

Fig. 1. STGCN model structure with speed inputs [9].

the matrix of eigenvectors of the normalized graph Laplacian
L and Λ is the diagonal matrix of its eigenvalues.

Φ∗G x = Φ(L)x =UΦ(Λ)UT x (2)

The calculation of U is computationally expensive. There-
fore, a Chebyshev polynomial based approximation was pro-
posed [7]. Using this approximation, spectral graph convo-
lution can be approximated as in (3). Here, θk are free
parameters, L̃ is the graph Laplacian scaled w.r.t. the maximum
eigenvalue and Tk(L̃) are Chebyshev polynomials of order k
and Q denotes the order of approximation.

Φ∗G x ≈
Q−1

∑
k=0

θkTk(L̃)x (3)

The graph convolution approximation can be generalised to
multi-channel inputs and outputs as in (4). Here, Θi, j ∈ RQ are
free parameters and Ci and Co are the number of channels in
the input and output, respectively.

y j =
Ci

∑
i=1

Θi, j(L)xi,1 ≤ j ≤Co (4)

2) Temporal Convolutions: The temporal convolution ker-
nel used in STGCN are 1-D causal convolutions filters of
width Lt . Temporal convolution with kernel ρ can be mathe-
matically represented as in (5). Here Y denotes the input to
the temporal convolution operation. The output dimension is
(T −Lt +1)×Co.

Γ∗ρ Y = ρ ∗Y (5)

3) Spatial-temporal Convolution Block: The convolution
operations defined in (4) and (5) are used in the form of
specialised blocks within STGCN. Each block contains a spa-
tial convolution operation sandwiched between two temporal
convolution blocks as shown in Figure 1. Mathematically, a
spatio-temporal convolution block can be represented as in (6).
Here, vl denotes the output of layer l and ReLU() denotes the
rectified linear operation.

vl+1 = Γ
l
1 ∗τ ReLU(Θl ∗G (Γl

0 ∗τ vl)) (6)

4) Output Layer: The last layer of the STGCN architecture
consists of a temporal convolution kernel as defined in (5)
and is followed by a fully connected layer. The temporal

iii

convolution flattens the features to a single time step and
then the fully connected layer combines the multi-channel
information (if any) into a single dimension.

Figure 1 shows the overall architecture of the STGCN
model. It consists of two spatio-temporal convolution blocks
followed by an output layer.

D. Mixture of Experts Framework

1) Model Structure: MoE is an ensemble learning ap-
proach, initially developed in the field of neural networks. It
was established based on the divide-and-conquer principle in
which the problem space is divided between several neural
network experts, supervised by a gating network. Figure 2
shows the general MoE model architecture. In our context, X
denotes the input average speed matrix for the road network
with the number of rows equal to the lookback window size
and the number of columns equal to the number of road
segments. It can be written as in (7). The individual experts
are prediction models and each one makes a prediction for
a given input. We use yi to denote the output of expert i. In
addition, the gating network outputs a set of values for a given
input, one for each expert, i.e. if there are 3 experts, the gating
networks output layer will have 3 nodes. These are denoted
by gi. The overall output of the MoE model, denoted by Y , is
computed as in (8). Here, K denotes the number of experts.

X = [vt−T+1,vt−T+2, ..,vt]
T (7)

Y =
K

∑
i=1

gi.yi (8)

The exact model structure will depend upon the choice of
experts and the gating network. Our objective in this work is to
improve the performance of STGCN by constructing ensemble
models using the MoE framework. Our gating network is a
three layer deep neural network with 512 nodes in each hidden
layer. Henceforth, we will refer to the MoE based STGCN
ensemble as the “MoE model”. More specifically, we want to
study the performance of the MoE model for different number
of MoE experts and also design suitable loss functions for their
effective training.

Fig. 2. Model Integration using the Mixture of Experts paradigm.

2) Loss Functions: One option is to minimize the squared
error loss between the target values and Y as in (9).

E =
1
2

|T S|

∑
j=1

|T j −Y j|2 (9)

Here, T j and Y j are the ground-truth and prediction values,
respectively, corresponding to training sample j. |T S| is the
total number of training samples. If we use this error function,
the weights of each expert are updated based on the overall
ensemble error, rather than the errors of each expert. This
strong coupling in the process of updating the weights of
the experts encourages cooperation among the experts over
the whole problem space and will cause almost all of the
experts to be employed for each data sample. This would not
be consistent with the desired localisation of the experts in
different regions of the input space.

Another option is to use the loss function stated in (10).

E =
1
2

|T S|

∑
j=1

K

∑
i=1

g j
i .|T

j
i − y j

i |
2 (10)

Here, y j
i is the prediction of the ith expert corresponding

to training sample j. Furthermore, g j
i is the output of the

gating network corresponding to expert i and training sample
j. This loss function leads the different experts to specialize in
different regions of the input space. The regions are decided
by the gating network as the weights of a particular expert is
updated only when g j

i is high. We have chosen to use this loss
function.

3) Adding Entropy to the Loss Function: While training the
MoE model using the loss function in (10), we observed that
one expert tends to dominate for all the training samples. The
output layer of the gating network is typically a softmax layer.
The gating network output corresponding to the dominating
expert was observed to be close to 1 and for the other experts
it was close to 0. Later, we will describe this behavior in
detail when presenting our experimental results. The main
motivation behind using MoE based ensemble framework is
to have different experts specialize in different regions of the
input space. This is not achieved if one expert dominates the
prediction outcome for all training samples. One way to ensure
that a single expert does not dominate is by adding the negative
entropy of the gating network output distribution to the loss
function in (10). The entropy of a distribution is the measure
of its randomness. Enforcing a higher entropy on the gating
network output distribution causes the gating network output
to be less skewed. The entropy of the output distribution for
a particular training sample j can be written as in (11). Here,
GN denotes the gating network.

H(GN, j) =−
K

∑
i=1

g j
i . log(g j

i) (11)

Therefore, the total entropy for all the training samples can
be computed as in (12).

H =
|T S|

∑
j=1

H(GN, j) (12)

The overall loss function after adding the total entropy can

iv

TABLE I
COMPARISON OF PER EPOCH TRAINING TIME (SECONDS) ON GPU PLATFORM VS IPU PLATFORM

Model GPU platform IPU platform Number of Parameters
DNN 1.1869 0.2712 414,308
CNN 1.1830 0.2764 464,056
LSTM 1.2613 0.3837 415,588

STGCN 5.1001 1.6223 393,220
MoE (2 STGCN Experts) 9.1480 2.6174 2,725,066
MoE (3 STGCN Experts) 13.1744 3.6623 3,118,799
MoE (4 STGCN Experts) 17.2285 6.2179 3,512,532

TABLE II
PERFORMANCE COMPARISON FOR THE PEMSD7(M) DATASET

Model MAE MAPE (%) RMSE
(15/30/45 min) (15/30/45 min) (15/30/45 min)

DNN 3.597/3.771/3.961 9.283/9.851/10.516 6.084/6.321/6.629
CNN 3.591/4.087/4.698 9.038/10.138/11.655 5.962/6.607/7.536

LSTM 3.534/3.660/3.854 8.846/9.101/9.602 6.003/6.203/6.556
STGCN 2.256/3.037/3.578 5.263/7.334/8.692 4.049/5.714/6.778

MoE (2 STGCN Experts) 2.036/2.756/3.316 4.590/6.504/8.018 3.811/5.398/6.526
MoE (3 STGCN Experts) 2.018/2.713/3.266 4.544/6.451/7.850 3.788/5.332/6.466
MoE (4 STGCN Experts) 2.016/2.715/3.251 4.559/6.461/7.959 3.804/5.372/6.467

TABLE III
STANDARD DEVIATION OF RESULTS FOR THE PEMSD7(M) DATASET (10 EXPERIMENTS)

Model MAE MAPE (%) RMSE
(15/30/45 min) (15/30/45 min) (15/30/45 min)

STGCN 0.0001/0.0018/0.0115 0.0012/0.0651/0.0075 0.0002/0.0505/0.0159
MoE (2 STGCN Experts) 0.0003/0.0020/0.0068 0.0005/0.0034/0.0177 0.0001/0.0032/0.0157
MoE (3 STGCN Experts) 0.0001/0.0009/0.0049 0.0010/0.0265/0.0068 0.0006/0.0020/0.0059
MoE (4 STGCN Experts) 0.0001/0.0006/0.0024 0.0019/0.0085/0.0214 0.0003/0.0019/0.0085

be written as (13). Here, α is a hyperparameter that determines
the weight of the entropy term.

Een = E −α.H (13)

While adding −α.H to the loss function discourages the
dominance of one expert over the entire input space, it also
discourages different experts from specializing in different
regions of the input space. Assume that we are training an
MoE model with two experts. Ideally, we should have expert
1 specialize on some input subspace R1 and expert 2 on input
subspace R2. More precisely, this is equivalent to g j

1 ≈ 1,g j
2 ≈

0 ∀ j ∈ R1 and g j
1 ≈ 0,g j

2 ≈ 1 ∀ j ∈ R2. However, note that
maximizing the entropy term in (12) works against attaining
this objective as in both cases we will have H(GN, j)≈ 0. We
can also write H = ∑ j∈R1

H(GN, j) + ∑ j∈R2
H(GN, j). This

implies H ≈ 0. It is easy to see that H is maximized when
g j

i ≈
1
K ∀i, j. To address these issues, we modify the entropy

term as shown in (14):

H =−
K

∑
i=1

(∑
|T S|
j=1 g j

i

|T S|

)
. log

(∑
|T S|
j=1 g j

i

|T S|

)
(14)

To maximize this expression, a particular expert will dom-
inate over some subspace of the input space while being
dormant in others, provided each expert has dominance over
some subspace, which is the desired behavior.

III. EXPERIMENTS

A. Dataset

In our experiments, we used the PeMSD7(M) dataset [9]
to validate the performance of the MoE model. PeMSD7 was
collected from the Caltrans Performance Measurement System
(PeMS) by over 39,000 sensor stations, deployed across the
major metropolitan areas of the California state highway
system and contains weekday traffic data. The PeMSD7(M)
dataset is further selected from PeMSD7 by randomly select-
ing a smaller district with 228 road segments.

v

B. Data Preprocessing

The standard time interval in the PeMSD7(M) dataset is set
to 5 minutes. Thus, every node of the road graph contains
288 data points per day. The linear interpolation method is
used to fill missing values. The entire dataset is then split into
training, validation and test sets with the split ratio set to 0.7 :
0.15 : 0.15. In addition, the data is z-score normalized based
on the mean and variance of the training set. The STGCN
model needs the adjacency matrix of the road network. The
adjacency matrix of the road graph is computed based on the
distances between stations in the traffic network. The weighted
adjacency matrix W can be computed as in (15).

wi j =

{
exp(− d2

i j
σ2) ; i ̸= j and exp(− d2

i j
σ2)≥ ε

0 ;otherwise
(15)

Here di j is the physical distance between stations i and j.
σ2 and ε are thresholds to control the distribution and sparsity
of matrix W , and are assigned values 10 and 0.5, respectively.

Fig. 3. Performance of experts for random sample 1 (baseline loss function).

C. Experimental Settings

The lookback window size was set to 60 minutes, i.e. 12
observed data points (T = 12) are used to forecast traffic
conditions in the next 15, 30, and 45 minutes (P = 3,6,9). We
have used the Mean Absolute Error (MAE), Mean Absolute
Percentage Errors (MAPE), and Root Mean Squared Error
(RMSE) metrics to compare and evaluate the performance
of the MoE model. The RMSProp optimizer was used for
training the models. We evaluated the performance of a single
STGCN model vs using 2,3 and 4 STGCN experts in the MoE
model. In addition, we evaluated the performance of deep
neural network (DNN), CNN and LSTM models.

D. Implementation Details and Training Procedure

The single STGCN model was implemented using the code
provided in Github by the authors of the original STGCN pa-
per [9]. In order to implement the MoE model, we modified the

Fig. 4. Performance of experts for random sample 2 (baseline loss function).

Fig. 5. Performance of experts for random sample 3 (baseline loss function).

original STGCN code in significant ways. Firstly, we rewrote
the code in Keras. The spatial and temporal convolution layers
of STGCN were re-written by sub-classing the Keras Layer
class. This allowed us to define STGCN as a Keras model.
Written as a Keras model, it becomes convenient to add a
gating network and combine several STGCN models in the
MoE framework. In addition, some changes were required to
ensure compatibility with Tensorflow 2.5.0.

Secondly, we developed custom Keras callbacks to analyse
the performance of each individual expert and the gating
network during training. This enabled us to observe the
dominance of certain experts and helped motivate the entropy
enhanced loss function proposed in (13). We also implemented
this as a Keras custom loss function. Last but not least, several
cascaded layers were defined in the original STGCN code, e.g.
the spatio-temporal convolution block and the output layer.
Cascaded layers help in simplifying the code. However, they
have compatibility problems with the model save functionality

vi

Fig. 6. Performance of experts for random sample 4 (baseline loss function).

of Keras and we made the required changes to resolve this
issue.

The DNN, CNN, LSTM and MoE models were trained for
120 epochs with a batch size of 50. The loss function in
(13) with modified H (14) was used to train the MoE models
while the other models were trained using the standard mean
squared error loss. The initial learning rate was set to 0.001
and staircase decay was used with a step-size of 20 epochs
and a decay rate of 0.6.

E. Hardware Platforms

We trained and executed the models described above on
two hardware platforms. Firstly, we trained our models on
Google Colab with Graphics Processing Unit (GPU) hardware
acceleration (Intel Xeon CPU @ 2.20 GHz and NVIDIA Tesla
V100 SXM2 16 GB GPU). In addition, we trained our models
on Graphcore Intelligence Processing Units (IPUs) [15] on
IPU-POD16 server blades on Graphcloud. The IPU-POD16
server blades have 16 GC200 IPU processors, and the host
CPU server has two AMD EPYC 7742 CPUs with 512 GB
of RAM.

The per epoch training time comparison is shown in Table
I. In our experiments, the IPU-based platform was 3 to 4 times
faster than the GPU-based platform for the models shown.

F. Results

The results are summarized in Table II. It can be seen that
for the PeMSD7(M) dataset, the MoE models outperforms all
the individual models. The MoE model with 3 STGCN experts
gives the best performance in most cases. We trained each
model 10 times and Table II and Table III show the average
results and standard deviation, respectively. The low values
of standard deviation indicates the stability of the training
method.

Next, we examine the benefits of using the entropy enhanced
error function when training our model. We selected four
training samples randomly from the training set and observed

Fig. 7. Performance of experts for random sample 1 (entropy loss function).

Fig. 8. Performance of experts for random sample 2 (entropy loss function).

the gating network outputs and the squared error losses of the
individual experts for the MoE model with 4 STGCN experts.
The plots in Figures 3 to 6 show the results when the MoE
model was trained using the loss function in (10). Here ek loss
and g ek denote the value of the loss function using the MAPE
metric and gating network output corresponding to expert k
and the particular training sample. We see in Figures 3 to 6 that
the gating network output corresponding to expert 1 always
dominates, i.e. it is close to 1, whereas the gating network
output corresponding to all the other experts is close to 0.
The corresponding values of the individual loss functions also
show that experts 2 to 4 are not trained and the gating network
assigns all the weight to expert 1. The overall performance of
this model is close to that of the individual STGCN model.

The plots in Figures 7 to 10 show the results when the
MoE model with four experts was trained using the entropy

vii

Fig. 9. Performance of experts for random sample 3 (entropy loss function).

Fig. 10. Performance of experts for random sample 4 (entropy loss function).

enhanced loss function in (13) with H defined in (14). It
can be seen that one expert no longer dominates, and unlike
before, all the experts have the opportunity to be trained
and take responsibility for different training samples. Notice
in Figures 9 and 10 that expert 3 is the dominating expert
and the individual losses of experts 1, 2 and 4 are slightly
higher than expert 3. This shows that while experts 1, 2 and
4 have been trained, they do not specialize for this training
sample, whereas expert 3 does. The specialization of different
experts for different training samples is what gives the MoE
model their superior performance. It can be seen that all the
individual experts have fairly close performance in Figures 7
and 8. Therefore, the gating network chooses different experts
at different times for these training samples and its output
fluctuates. Lastly, when the number of experts is increased,

each expert effectively gets a smaller number of training
samples and the overall prediction accuracy declines.

IV. CONCLUSION AND FUTURE WORK

In this paper, a MoE based ensemble modelling method is
proposed to enhance the performance of the STGCN traffic
state prediction model. We overcame the difficulty of training
an MoE based STGCN by proposing a novel entropy based
loss function. Our experiments show a significant improvement
in performance over the standalone STGCN. In future work,
we plan to verify the effectiveness of the proposed framework
using other datasets and consider other state-of-the-art models,
as well as explore other structures for the gating network used
in the MoE model. In addition, we plan to validate the inverse
relationship between future traffic state prediction accuracy
and the end-to-end travel time of vehicles.

V. ACKNOWLEDGMENTS

The authors acknowledge Graphcore for providing technical
advice and IPU computational resources on Graphcloud.

REFERENCES

[1] A. Ahmed, S. A. A. Naqvi, D. Watling, and D. Ngoduy, “Real-time
dynamic traffic control based on traffic-state estimation,” Transportation
Research Record, vol. 2673, no. 5, pp. 584–595, 2019.

[2] T. Liebig, N. Piatkowski, C. Bockermann, and K. Morik, “Dynamic
route planning with real-time traffic predictions,” Information Systems,
vol. 64, pp. 258–265, 2017.

[3] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow
prediction with big data: a deep learning approach,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, 2014.

[4] Y. Wu and H. Tan, “Short-term traffic flow forecasting with
spatial-temporal correlation in a hybrid deep learning framework,”
arXiv:1612.01022, 2016.

[5] M. Edwards and X. Xie, “Graph based convolutional neural network,”
arXiv:1609.08965, 2016.

[6] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and
locally connected networks on graphs,” in International Conference on
Learning Representations (ICLR2014), CBLS, April 2014, 2014.

[7] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” Advances in
Neural Information Processing Systems, vol. 29, pp. 3844–3852, 2016.

[8] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in International Con-
ference on Learning Representations (ICLR ’18), 2018.

[9] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional net-
works: A deep learning framework for traffic forecasting,” in Proceed-
ings of the 27th International Joint Conference on Artificial Intelligence
(IJCAI), 2018.

[10] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, 2019, pp. 922–929.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 2017, pp. 5998–6008.

[12] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph Attention Networks,” International Conference on
Learning Representations, 2018, accepted as poster. [Online]. Available:
https://openreview.net/forum?id=rJXMpikCZ

[13] M. Xu, W. Dai, C. Liu, X. Gao, W. Lin, G.-J. Qi, and H. Xiong,
“Spatial-temporal transformer networks for traffic flow forecasting,”
arXiv:2001.02908, 2020.

[14] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture of
experts,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 23, no. 8, pp. 1177–1193, 2012.

[15] “Graphcore Intelligence Processing Unit (IPU).” [Online]. Available:
https://www.graphcore.ai/

