8th IEEE International Conference on NETWORKS 2000
5 - 8 September 2000
Singapore

With Guest of Honour
Dr. Brian Chen
Chief Technology Officer
Infocomm Development Authority of Singapore

Organised By
In Co-Operation With

Proudly Sponsored By
Session 1.1 Mobile and Wireless Networks

Chair: Prof Lawrence Wong, Director, NUS Computer Centre

1.1.1 Performance of TCP over Lossy Upstream and Downstream Links with Link-level Retransmissions
Farooq Anjum
Telecordia Technologies Inc., USA

1.1.2 Call Admission Control in Cellular Multiservice Networks using Virtual Partitioning with Priority
Shun-Ping Chung
National Taiwan University of Science and Technology, Taiwan

1.1.3 GPRS - Features and Packet Random Access Channel (RACH) Performance Analysis
Amoakoh Gyasi-Agyei
Helsinki University of Technology, Finland

1.1.4 Integrating Mobility Prediction and Resource Pre-allocation into a Home-Proxy Based Wireless Internet Framework
Jonathan Chua, Bjorn Landfeldt, Aruna Seneviratne
University of New South Wales, Australia

1.1.5 Providing Quality of Service in Mobile Environments with MIR (Mobile IP Reservation Protocol)
Gwendal Le Grand, Jalal Ben-Othman, Eric Horlait
University of Paris (LIP6), France

1.1.6 A Hybrid MAC Protocol for Multimedia Traffic in Wireless Networks
Mainak Chatterjee, Sajal K. Das
University of Texas at Arlington, USA

Session 1.2 Congestion Control

Chair: Dr Chen-Khong Tham, Dept of Electrical & Computer Engineering, NUS

1.2.1 Multipath Optimization Flow Control (Invited Paper)
Steven Low
University of Melbourne, Australia

1.2.2 A New Rate Coordination Protocol for TCP and ABR Congestion Control
Karim Dymame, Mounir Kara
University of Leeds, Great Britain

1.2.3 A Proposal for Binary Congestion Control with Rate-based Sources and Stateless Routers
Antonio Almeida, Carlos Belo
Instituto Superior Tecnico, Portugal

1.2.4 Bottleneck Branch Marking for Noise Consolidation in Multicast Networks
Jordi Rus, Kevin Tsai, Mahadevan Iyer
University of California, Irvine, USA

1.2.5 Simulation Comparison of RED and REM
Sanjeeva Ahurdula, Steven Low
University of Melbourne, Australia

1.2.6 The MARINER Trial Platform: A Model of a Load Control System for Intelligent Networks
Navin Wathan, Thomas Curran
Dublin City University, Ireland

Session 2.1 Internet Services and Applications

Chair: A/Prof AL Ananda, Director, Centre for Internet Research, NUS

2.1.1 Web Caching: Locality of References Revisited
Annie Foong, Yu-Hen Hu, Dennis Heisey
University of Wisconsin, USA

2.1.2 A Throughput Deadlock-Free TCP for High-Speed Internet
Rocky Chang
Hong Kong Polytechnic University, Hong Kong

2.1.3 Scalable Video Delivery for Unicast Handheld-based Clients
Raymond Chow, Chen Khong Tham
National University of Singapore, Singapore

2.1.4 TCP-like Flow Control Algorithm for Real-time Applications
Seung-Ga Na, Jonguk Ahn
DongGuk University, Korea

2.1.5 Experiencing Megaco Protocol for Controlling Non-Decomposable VoIP Gateways
Albiero Conte, Laurent-Philippe Anquetil, Thomas Levy
ALCATEL Corporate Research Center, France

Session 2.2 Network Management and Monitoring

Chair: Dr Jie Buawoe, Kent Ridge Digital Laboratories (KREDL)

2.2.1 QoS-based Connection Set-up in ATM Networks
Sin-Lam Tan, Chen-Khong Tham, Lek-Heng Ngoh
Kent Ridge Digital Labs, Singapore; National University of Singapore; SingAREN

2.2.2 Management Solutions for WDM Networking
Jorge Tellez
Ecole Nationale Superieure des Telecommunications, France

2.2.3 Middleware Design Issues for Application Management in Heterogeneous Networks
Yuke Tian, Susan Frank, Vassilis Tsoumas, Hussein Badr
State University of New York at Stony Brook, USA

2.2.4 Estimating Available Capacity of a Network Connection
Suman Banerjee, Ashok Agrawala
University of Maryland, USA

2.2.5 The Case for a Passive/Active Network Monitoring Scheme in the Wireless Internet
Bjorn Landfeldt, Pipat Sookavatana, Aruna Seneviratne
University of New South Wales, Australia

Session 3.1 Routing

Chair: A/Prof Francis Lee, School of Computer Engineering, NTU

3.1.1 Hierarchical QoS Routing in ATM Networks Based on MDP Cont Function
Ben-Jye Chua, Bia-Hung Huang
National Chung Cheng University, Taiwan

3.1.2 Efficient Broadcast using Link-State Routing Information in Packet Radio Networks
Sok-Sien Chou, Henry Chee-Jwai Lee
DSO National Laboratories, Singapore

3.1.3 An On-Demand QoS Routing Protocol for Mobile Ad Hoc Networks
Chun-Hung Lin
National Chung Cheng University, Taiwan

3.1.4 Multi-Constrained Distributed QoS Routing Algorithm
Jun Song, Hung Keng Pung, Lijy Sanyut Jacob
National University of Singapore, Singapore

3.1.5 A Fast Sub-Optimal Routing Algorithm for Large Size Data Network
Kevin Tsai, Wulan Dai
University of California, Irvine, USA

3.1.6 Distributed Quality of Service Multicast Routing with Multiple Metrics for Receiver Initiated J oins
Miguel Bo, Peter Linington
University of Kent at Canterbury, Great Britain

Session 3.2 Multimedia

Chair: A/Prof KR Subramanian, School of Electrical & Electronic Engineering, NTU

3.2.1 "Scheduled-Multicast" with Application in Multimedia Networks
Antonios Symvonis, Haoma El-Gindy, Chi Nguyen
University of Sydney, Australia

3.2.2 Design Issues on Video-On-Demand Resource Management
Hongtao Yu, Chor Ping Low
Nanyang Technological University, Singapore

3.2.3 Architectural Considerations for Playback of Quality Adaptive Video over the Internet
Reza Rejaie, Mark Handley, Deborah Estrin
AT&T Labs - Research, USA

3.2.4 A Method to Improve the Robustness of MPEG Video Applications over Wireless Networks
Radhakrishna Pillai
Kent Ridge Digital Labs, Singapore

3.2.5 Document Caching Policies on High-Speed Distributed Networks for Personalized Multimedia Services
Bharadwaj Virevathii

Session 3.3 Networking Services and Applications

Chair: A/Prof KR Subramanian, School of Electrical & Electronic Engineering, NTU

3.3.1 Hierarchical QoS Routing in ATM Networks Based on MDP Cont Function
Ben-Jye Chua, Bia-Hung Huang
National Chung Cheng University, Taiwan

3.3.2 Efficient Broadcast using Link-State Routing Information in Packet Radio Networks
Sok-Sien Chou, Henry Chee-Jwai Lee
DSO National Laboratories, Singapore

3.3.3 An On-Demand QoS Routing Protocol for Mobile Ad Hoc Networks
Chun-Hung Lin
National Chung Cheng University, Taiwan

3.3.4 Multi-Constrained Distributed QoS Routing Algorithm
Jun Song, Hung Keng Pung, Lijy Sanyut Jacob
National University of Singapore, Singapore

3.3.5 A Fast Sub-Optimal Routing Algorithm for Large Size Data Network
Kevin Tsai, Wulan Dai
University of California, Irvine, USA

3.3.6 Distributed Quality of Service Multicast Routing with Multiple Metrics for Receiver Initiated J oins
Miguel Bo, Peter Linington
University of Kent at Canterbury, Great Britain

Track I (EA Auditorium)

Track II (EA 02-11)

Lunch and View Posters

Tea Break

Poster Presentation

Banquet at Shangri-La Rasa Sentosa
<table>
<thead>
<tr>
<th>Track I (EA Auditorium)</th>
<th>Track II (EA 02-11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SESSION 4.1 BISON-ATM</td>
<td>SESSION 4.2 NETWORK SECURITY</td>
</tr>
<tr>
<td>Chair: Da Li, Hong Kong, ShingAREN</td>
<td>Chair: A/Prof Kwok-Tin Lam, School of Computing, NUS</td>
</tr>
<tr>
<td>4.1.1 Traffic Measurement Based Admission Control Using Rate</td>
<td>4.2.1 Utilization of Multiple Block Cipher Hashing in Authentication and Digital Signatures</td>
</tr>
<tr>
<td>Fajr Zhai, Masumori Hamana, Mikio Takahara</td>
<td>Kamel Ruhouma</td>
</tr>
<tr>
<td>Yamanashi University, Japan</td>
<td>University of Salzburg, Austria</td>
</tr>
<tr>
<td>4.1.2 BGP Based Shortcut Virtual Channels for Transit IP Traffic over ATM Networks</td>
<td>4.2.2 A Novel Java-based Authentication System for Secured Transactions on the Internet</td>
</tr>
<tr>
<td>Changhoun Kim, Hee Soo Choi, Tae Soo Jeong</td>
<td>Li Huang Ng, Daniel TH Tan</td>
</tr>
<tr>
<td>Electronics and Telecommunications Research Institute (ETRI), Korea</td>
<td>Nanyang Technological University, Singapore</td>
</tr>
<tr>
<td>4.1.3 Flexible IP Encapsulation for IP over ATM with ATM Shortcuts</td>
<td>4.2.3 Policy-based Access Control Framework for Large Networks</td>
</tr>
<tr>
<td>Shengqiang Jiang, Quanhong Ding, Mai Jin</td>
<td>Husin Duan, Jianping Xu, Xing Li</td>
</tr>
<tr>
<td>Centre for Wireless Communications, National University of Singapore, Singapore</td>
<td>Tsinghua University, P. R. China</td>
</tr>
<tr>
<td>4.1.4 Near Optimal Flow Labelling in ATM/IP-LSR Networks</td>
<td>4.2.4 An Improved Key Distribution Protocol with Perfect Reparability</td>
</tr>
<tr>
<td>Using Multi-Segment Flows</td>
<td>He Li</td>
</tr>
<tr>
<td>Aaron Harwood</td>
<td>Shanghai Jiao Tong University, P. R. China</td>
</tr>
<tr>
<td>Griffith University, Australia</td>
<td></td>
</tr>
<tr>
<td>4.1.5 A Hybrid ATM Connection Admission Control Scheme based on On-Line Measurements and User Traffic Descriptors</td>
<td>4.2.5 Security Policy System: Status and Perspective</td>
</tr>
<tr>
<td>Daryouh Habibi, Guoqiang Mao</td>
<td>Madalina Bullata, Daniele Mazzocchi, Antonio Lari</td>
</tr>
<tr>
<td>Edith Cowan University, Australia</td>
<td>Politecnico di Torino, Italy</td>
</tr>
</tbody>
</table>

TEA BREAK

<table>
<thead>
<tr>
<th>SESSION 5.1 QUALITY OF SERVICE</th>
<th>SESSION 5.2 MULTICAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair: A/Prof Hong-Keng Pang, School of Computing, NUS</td>
<td>Chair: A/Prof Gee-Suee Poo, School of Computing, NUS</td>
</tr>
<tr>
<td>5.1.1 Deficits for Bursty Latency-Critical Flows: DRR++</td>
<td>5.2.1 A General Theory of Constrained Max-Min Rate Allocation for Multicast Networks</td>
</tr>
<tr>
<td>Mike MacGregor, Weiguan Shi</td>
<td>Jordi Ros, Kevin Tsai</td>
</tr>
<tr>
<td>University of Alberta, Canada</td>
<td>University of California Irvine, USA</td>
</tr>
<tr>
<td>5.1.2 Effective Fairness Queuing Algorithms</td>
<td>5.2.2 NOR Retransmission in Multicast Error Recovery</td>
</tr>
<tr>
<td>Chonguang Wang</td>
<td>Yong Shen, Francis Lee</td>
</tr>
<tr>
<td>Beijing University of Posts and Telecommunications, P. R. China</td>
<td>Nanyang Technological University, Singapore</td>
</tr>
<tr>
<td>5.1.3 Pricings Based QoS Control Framework</td>
<td>5.2.3 Resource Reservation and Packet Scheduling for Prioritized Delay-Bounded Multicast</td>
</tr>
<tr>
<td>Jie Song, Francis Lee</td>
<td>Longsiong Lim, Mingshou LIA</td>
</tr>
<tr>
<td>Nanyang Technological University, Singapore</td>
<td>MMC Networks USA, Motorola Inc.</td>
</tr>
<tr>
<td>5.1.4 Heterogeneous On-Off Sources in the Bufferless Fluid Flow Model</td>
<td>5.2.4 Active Multicastings</td>
</tr>
<tr>
<td>Guoqiang Mao, Daryouh Habibi</td>
<td>Eric Fleury, Hend Koubba</td>
</tr>
<tr>
<td>Edith Cowan University, Australia</td>
<td>LORIA, INRIA, France</td>
</tr>
<tr>
<td>5.1.5 An Efficient ATM Traffic Scheduler for Supporting Multimedia Services with Improved Packet Level QoS</td>
<td>5.2.5 Scalable and Reliable Multicast ACK Tree Construction with the Token Ring Protocol Service</td>
</tr>
<tr>
<td>Hong-Bin Chou, Fe-Ming Tan, Zechong Tsai</td>
<td>Christian Maehljer</td>
</tr>
<tr>
<td>Chunghwa Telecommunication Laboratories, Taiwan</td>
<td>University of Stuttgart, Germany</td>
</tr>
<tr>
<td>5.1.6 The Role of Packet Dropping Mechanisms in QoS Differentiation</td>
<td>5.2.6 A Hierarchical Ack-Based Protocol for Reliable Multicast in Mobile Networks</td>
</tr>
<tr>
<td>Goncalo Quadros, Antonio Alves, Edmundo Monteiro, Fernando Boavida</td>
<td>Byung-Won On</td>
</tr>
<tr>
<td>Universidade de Coimbra, Portugal</td>
<td>Korea University, Korea</td>
</tr>
<tr>
<td>LUNCH</td>
<td>SESSION 6.2 SATELLITE NETWORKS</td>
</tr>
<tr>
<td>SESSION 6.1 OPTICAL NETWORKS</td>
<td>Chair: A/Prof KR Subramaniam, School of Electrical & Electronic Engineering, NTU</td>
</tr>
<tr>
<td>Chair: A/Prof Lu Chao, School of Electrical & Electronic Engineering, NTU</td>
<td>6.2.1 QoS-based Handover Management in Multi-Hop LEO-Satellite ATM Networks</td>
</tr>
<tr>
<td>6.1.1 Optical Packet Switches: A Comparison of Designs</td>
<td>Hoang Nam Nguyen</td>
</tr>
<tr>
<td>Meow Chin Chia, Ivan Andromic, Hunter David</td>
<td>Vienna University of Technology, Austria</td>
</tr>
<tr>
<td>University of Strathclyde, Great Britain</td>
<td>6.2.2 QoS-based Routing Methods for Multi-Hop LEO Satellite Networks</td>
</tr>
<tr>
<td>6.1.2 Effect of IP Traffic on Optical QoS in DWDM Networks</td>
<td>Admela Jakun</td>
</tr>
<tr>
<td>Jinhua Tang, Liren Zhang</td>
<td>Vienna University of Technology, Austria</td>
</tr>
<tr>
<td>Nanyang Technological University, Singapore</td>
<td>6.2.3 Performance Evaluation of A Broadcast Protocol For Satellite Communications</td>
</tr>
<tr>
<td>6.1.3 Wavelength Assignment for Dynamic Traffic in WDM Networks</td>
<td>He Junhui, K. R. Subramaniam, Liren Zhang, Haow Ping</td>
</tr>
<tr>
<td>Shizhong Xu, Lencon Li, Sheng Wang</td>
<td>Nanyang Technological University, Singapore</td>
</tr>
<tr>
<td>Nanyang University of Science and Technology of China, P. R. China</td>
<td>6.2.4 Reliable IP Multicast Service over Satellite Links</td>
</tr>
<tr>
<td>6.1.4 Scheduling in Optical WDM Networks using Hidhm Markov Chain-based Traffic Predictors</td>
<td>Cheng Kei Tau</td>
</tr>
<tr>
<td>Manjun Mishra, Krishana Sivalingam, Erik Johnson</td>
<td>News Digital Systems (UK) Limited, Great Britain</td>
</tr>
<tr>
<td>Intel Corporation, USA</td>
<td>6.2.5 Security Policy System: Status and Perspective</td>
</tr>
<tr>
<td>6.1.5 Virtual Source Based Multicast Routing in WDM Optical Networks</td>
<td>Madalina Bullata, Daniele Mazzocchi, Antonio Lari</td>
</tr>
<tr>
<td>Sreeram Nilaalhani, Sathesri Kanduras, Mohan Guerauva, Siva Ram Murthy Cheriyammai</td>
<td>Politecnico di Torino, Italy</td>
</tr>
<tr>
<td>Indian Institute of Technology, Madras, India</td>
<td>6.2.6 A Hierarchical Ack-Based Protocol for Reliable Multicast in Mobile Networks</td>
</tr>
<tr>
<td>SESSION 7.1 DIFFERENTIATED SERVICES AND LABEL SWITCHING</td>
<td>Chair: Dr Ian Li-Jia Ting, Dept of Electrical & Computer Engineering, NUS</td>
</tr>
<tr>
<td>Chair: Bill Chang, Director, IBM Emerging Technology Centre, Singapore</td>
<td>7.1.2 Modelling Multi-Channel Slotted Ring Networks with Tunable Transmitters and Fixed Receivers</td>
</tr>
<tr>
<td>7.1.1 VoIP Performance on Differentiated Services Enabled Network</td>
<td>Jun-Yao Wang, Wen-Sheng Huang, Wen-Fong Wang, Ce-Kuen Shieh</td>
</tr>
<tr>
<td>Jogesh K. Muppala, Terdsak Bancherdvanich, Anurag Tyagi</td>
<td>National Cheng-Kung University, Taiwan</td>
</tr>
<tr>
<td>Hong Kong University of Science and Technology, Hong Kong</td>
<td>7.1.3 Design and Analysis of Efficient Remote Buffering Strategies for LAN based Architectures</td>
</tr>
<tr>
<td>Hong Kong University of Science and Technology, Hong Kong</td>
<td>Bhuradav Verravalli, Lijang Dong</td>
</tr>
<tr>
<td>7.1.2 An Application Based Differentiated Service Model</td>
<td>National University of Singapore, Singapore</td>
</tr>
<tr>
<td>Fugui Wang, Prasant Mohapatra, Sarit Mukherjee</td>
<td>7.1.4 Reliable IP Multicast Service over Satellite Links</td>
</tr>
<tr>
<td>University of Alberta, Canada</td>
<td>Cheng Kei Tau</td>
</tr>
<tr>
<td>7.1.3 Design of the Packet Forwarding Architecture of the ATM-based MPLS Edge Node</td>
<td>News Digital Systems (UK) Limited, Great Britain</td>
</tr>
<tr>
<td>Jianhui You, Electronics and Telecoms Res. Inst (ETRI), Korea</td>
<td>7.1.5 Performance Analysis of Storage Area Networks Using High-speed LAN Interconnects</td>
</tr>
<tr>
<td>7.1.4 Bringing Service Differentiation to the End System</td>
<td>Xavier Molero</td>
</tr>
<tr>
<td>Domenico Cotroneo, Simon Pietro Romano, Giorgio Ventre, Massimo Ficco</td>
<td>Universitat Politecnica de Valencia, Spain</td>
</tr>
<tr>
<td>Electronics and Telecommunications Research Institute (ETRI), Korea</td>
<td>7.1.5 Design and Implementation of MPLS Network Simulator Supporting LDP and CR-LDP</td>
</tr>
<tr>
<td>Nanyang Technological University, Singapore</td>
<td>Gaeil An, Woojik Chun</td>
</tr>
<tr>
<td>TEA BREAK</td>
<td>SESSION 7.2 NETWORK ARCHITECTURES AND PROTOCOLS</td>
</tr>
<tr>
<td>SESSION 6.2 SATELLITE NETWORKS</td>
<td>Chair: A/Prof KR Subramaniam, School of Electrical & Electronic Engineering, NTU</td>
</tr>
<tr>
<td>Chair: A/Prof Le Chau, School of Electrical & Electronic Engineering, NTU</td>
<td>6.2.1 QoS-based Handover Management in Multi-Hop LEO-Satellite ATM Networks</td>
</tr>
<tr>
<td>6.2.2 QoS-based Routing Methods for Multi-Hop LEO Satellite Networks</td>
<td>Hoang Nam Nguyen</td>
</tr>
<tr>
<td>6.2.3 Performance Evaluation of A Broadcast Protocol For Satellite Communications</td>
<td>Admela Jakun</td>
</tr>
<tr>
<td>6.2.4 Reliable IP Multicast Service over Satellite Networks</td>
<td>Vienna University of Technology, Austria</td>
</tr>
<tr>
<td>6.2.5 Scalable and Reliable Multicast ACK Tree Construction with the Token Ring Protocol Service</td>
<td>Vienna University of Technology, Austria</td>
</tr>
<tr>
<td>6.2.6 A Hierarchical Ack-Based Protocol for Reliable Multicast in Mobile Networks</td>
<td>Christian Mailhier</td>
</tr>
<tr>
<td>6.2.7 Security Policy System: Status and Perspective</td>
<td>University of Stuttgart, Germany</td>
</tr>
<tr>
<td>SESSION 7.2 NETWORK ARCHITECTURES AND PROTOCOLS</td>
<td>Chair: A/Prof Lu Chao, School of Electrical & Electronic Engineering, NTU</td>
</tr>
<tr>
<td>Chair: Dr Ian Li-Jia Ting, Dept of Electrical & Computer Engineering, NUS</td>
<td>7.2.2 Modelling Multi-Channel Slotted Ring Networks with Tunable Transmitters and Fixed Receivers</td>
</tr>
<tr>
<td>7.2.3 Design and Analysis of Efficient Remote Buffering Strategies for LAN based Architectures</td>
<td>Jun-Yao Wang, Wen-Sheng Huang, Wen-Fong Wang, Ce-Kuen Shieh</td>
</tr>
<tr>
<td>7.2.4 Reliable IP Multicast Service over Satellite Networks</td>
<td>National Cheng-Kung University, Taiwan</td>
</tr>
<tr>
<td>7.2.5 Scalable and Reliable Multicast ACK Tree Construction with the Token Ring Protocol Service</td>
<td>Bhuradav Verravalli, Lijang Dong</td>
</tr>
<tr>
<td>7.2.6 A Hierarchical Ack-Based Protocol for Reliable Multicast in Mobile Networks</td>
<td>National University of Singapore, Singapore</td>
</tr>
</tbody>
</table>
Synopsis

Multi-Protocol Label Switching (MPLS) is an emerging technology that promises to change the way service providers run and manage their network. From its beginning as simply a faster way of forwarding packets, MPLS has turned out to be an enabling technology that allows for easy provision of new network services such as differentiated services, VPN and traffic engineering. This tutorial will start with a review of basic MPLS concepts and mechanisms. We then move on to examine the label distribution protocols, including LDP/CRLDP and RSVP. We will then cover some interesting applications enabled by MPLS: traffic engineering, virtual private networking and differentiated services. We will conclude with short discussion of current state of MPLS standardisation within IETF and some new work items.

Biographies

AJITH NARAYANAN

AJITH NARAYANAN (ajithn@sg.ibm.com) led an MPLS R&D effort at IBM's Emerging Technology Centre in Singapore. His past work includes the design and development of network protocol stacks as well as networked application. While at ITI, he was involved in major national initiatives such as National High Speed TestBed (now SingaREN) and SingaporeONE. He also served in various technical committees in the industry. He received his B.Eng degree from Nanyang Technological University and a M.Sc degree from University of Essex.

Synopsis

The increasing volume and evolving types of Internet applications have been demanding enhanced services, both in terms of performance and quality of service (QoS), from the Internet infrastructure. The current best-effort service model of the Internet and the web servers are not suitable for fast growing applications such as, continuous media, e-commerce, and several other business services. To provide better services to these important and expanding classes of applications, it is necessary for the Internet infrastructure to provide service differentiation. The Internet infrastructure includes not only the network components but also the web servers (includes proxy servers, application servers, etc.). This tutorial targets QoS issues at both the network level as well as server level.

The differentiated service (DiffServ) model proposed by the Internet Engineering Task Force (IETF) has received wider acceptance in the research community and is being actively considered for possible implementation in the next generation Internet. Unlike integrated services, DiffServ does not require end-to-end resource reservation or any state maintenance at the core routers of the Internet domains. Rather than the per-flow basis model, DiffServ routes packets based on the concept of per-hop behavior (PHB) model, in which packets are marked at the edge routers and are routed by the core routers based on the markings. The markings relate to the QoS requirements. Both the markings and the PHB are handled on an aggregated basis. In addition to providing service differentiation in the Internet, DiffServ architecture is a scalable, feasible, and economical. We will do a detailed study of the various issues involved in DiffServ, its basic support requirements, characteristics, and several other research and implementation aspects. Two different approaches for DiffServ expedited forwarding and assured forwarding - will be analyzed. We will also discuss other approaches for providing DiffServ, such as relative differentiation and QoSguaranteed DiffServ. In addition, we will discuss the role of TCP in supporting differentiated services. The goals of DiffServ architecture may not be met if it is implemented only at the network level. To provide end-to-end QoS, Internet server must also be capable of providing differentiated services. Unfortunately, the research on the server-level service differentiation has not kept on par with the network-level service differentiation. The current generation Internet servers provide service on a first-come-first serve basis, which is inadequate for QoS-aware applications. We will propose and discuss in detail about service differentiating Internet servers (SDIS). Resource management is the key issue in providing efficient service differentiation at the server level. Thus, we will analyze scheduling, admission control, and other implementation details of SDIS.

The capacity planning of Internet servers are based on the average workload characteristics. However, Internet workload is very indeterministic; the maximum bandwidth or computation requirements may exceed the corresponding average value by several orders of magnitude. Thus overload control is a critical issues in managing the server loads. We will explore the issues involved in the implementation of efficient overload control techniques. In this tutorial we will present the state of the art issues on the proposed topic as well as introduce new and novel avenues for research and development.

Future work on important issues like multicasting and security will also be discussed.

Audience

This tutorial is aimed both at researchers and practitioners. It will also immensely help students pursuing research in Internet and other networking issues. The discussions can be useful for both beginners and intermediate level audiences. The prior knowledge required for this tutorial is a basic understanding of computers networks.

Biography

Prasvant Mohapatra received his Ph.D. in computer engineering from the Pennsylvania State University in 1993. He was an assistant professor and then an associate professor in the Department of Electrical and Computer Engineering at Iowa State University from 1993 to 1999. Since then he has been an associate professor in the Department of Computer Science and Engineering at Michigan State University. During the summers of 1998 and 1999, he worked in the Panasonic Information Networking and Technologies Laboratory (PINTL) and at the Server Architecture Laboratory of Intel Corporation, respectively.

Dr. Mohapatra has published extensively in various international journals and conferences, and has two patents pending in the internetworking area. He has been an invited speaker at several universities and other organizations. He has taught several advanced courses in computer networks, architecture, performance evaluation, and multimedia systems. Dr. Mohapatra has graduated three Ph.D. students and about fifteen Masters students, and is current guiding about five Ph.D. and four Masters students. His research work has been funded and collaborated by National Science Foundation, EMC Corporation, Panasonic Technologies, Rockwell International, and Intel Corporation.

Dr. Mohapatra is a senior member of the IEEE and a member of the ACM. He is currently on the editorial board of the IEEE Transactions on Computers. He has been on the program committees of several international conferences. In 2000, he is the Program Chair of the workshop on Performance and Architecture of Web Servers (PAWS) to be held in conjunction with the SIGMETRICS conference.
Tutorial 3: Satellite Communications

Instructor: Dr. Cheng Heng Seng, Singapore Advanced Research and Education Network (SingAREN)
Date: Tuesday, 5 September 2000
Venue: EA-02-15
Time: 0900-1300

The following topics are covered:

1) Introduction to satellite communications
2) Introduction to satellite antennas
3) Modulation schemes
4) Forward error correction (FEC) for satellite links
5) Satellite access methods
6) Very small aperture terminals (VSATs)
7) Planning a Satellite System
8) Direct video broadcasting (DVB) over satellite links
9) Mobile satellite communications
10) Integration of networking and satellite communications
11) Business opportunities in satellite communications
12) Future Trends in Satellite Communications

Biography

Dr. Cheng Heng Seng received a PhD degree in Engineering from University of Aberdeen in the United Kingdom for his research in satellite communications, specifically in the enhancement of asynchronous transfer mode (ATM) over satellite links. Dr. Cheng's research was sponsored by the Defence Evaluation and Research Agency (DERA) and he also received an Overseas Research Student (ORS) award from the Committee of Vice-Chancellors and Principals in the UK. After graduation, Dr. Cheng spent another six months at University of Aberdeen as a post-doctoral research fellow to carry out research and development for DERA.

Since May 1999, Dr. Cheng has been with the Singapore Advanced Research and Education Network (SingAREN) where he continues to work in the area of satellite communications. At SingAREN, he designed a satellite ATM network which can be used for the provision of internet protocol (IP) services and has successfully carried out trials of transmitting ATM cells across a high-speed satellite link. He has also performed satellite trials to investigate the performance of various coding schemes (e.g. rate ½ convolutional coding, rate ¾ convolutional coding, Reed-Solomon coding). He is also developing techniques to enhance the performance of ATM over satellite links.

Currently, Dr. Cheng’s main area of work is the design and construction of a time division multiple access – demand assigned multiple access (TDMA-DAMA) based satellite network which is more efficient in the use of satellite bandwidth and which will be used for connecting SingAREN’s network with the research and education centres in countries whose terrestrial telecommunication infrastructure is inadequate. Dr. Cheng has also advised the Infocomm Development Authority (IDA) on projects involving satellite communications.

Prior to his postgraduate study, Dr. Cheng has worked as a service engineer and development engineer in Singapore Electronics and Engineering Limited (SEEL) where he developed software for testing digital systems and a video system.

Tutorial 4: Convergence in Communications: Industry, Technology and Service Perspectives

Instructor: Dr. Wang Weiguo, CTO, Alcatel (Singapore) Pte Ltd
Date: Wednesday, 6 September 2000
Venue: EA 02-15
Time: 0900-1230

Synopsis:

Exponential growth of IP based network technology and business is making tremendous impact to the communications industry, the network technologies and services. There is a trend for convergence in all of these aspects. This tutorial aims to share with the audience the current development and discuss on future trends in these aspects.

1. Driving forces of telecommunications industry
 - De-regulation
 - Technology

2. Industry trends
 - More plays
 - Incumbent (national) operators
 - Competitive operators (new comers)
 - ISPs
 - Regionalization
 - Mergers

3. Technology Convergence
 - Data over Voice
 - Toll by-pass, Signaling gateway,
 - ISP whole-sale, Broadband wholesale

4. Service Convergence
 - Brief Intro to IN
 - Internet Call waiting
 - Intelligent call centres
 - Unified messaging
 - Multi-terminal portals
 - Location based services

5. Trends
 - Industry
 - Technology
 - Services

Biography

Dr. Wang is the Chief Technology Officer at Alcatel Singapore. His primary role is to provide network solutions in emerging opportunities in the converged voice and data communication market. Dr Wang obtained his MA and PhD in Computer Science at Boston University, USA in 1985 and 1991 respectively. He spent more than 8 years in Kent Ridge Digital Labs, Singapore's national IT R&D lab. The majority of his R&D career was in the areas of broadband networking, multimedia services and open architectures and programmable networks. He was instrumental in building up the Singapore National High-speed ATM test network in 1995, and involved in the conceptualization and realization of the Singapore ONE network.
Tutorial 5: Application Service Providers - A New Trend in Internet-Based Business

Instructor: Dr. Borko Furht, Florida Atlantic University, USA
Date: Wednesday, 6 September 2000
Venue: EA 02-15
Time: 1330 – 1700

Description and Objective
The objective of this tutorial is to provide an in-depth survey of technologies, systems, and Internet architectures for Application Service Providers. The first wave of Internet-based business included Internet Service Providers (ISPs) that linked business and consumers via the Internet. We are presently at the verge of the second, much larger wave – Application Service Providers (ASPs), which lease software applications to businesses and consumers via the Internet. In this tutorial we will introduce components of the ASP model and discuss new multi-tier Internet architectures for ASPs. We will present key technologies that enabled the ASP model, including advances in networking technologies, Internet deliverable software, and improvements in distributed systems management software. We will then discuss types of ASP applications, from personal and collaborative to E-commerce, vertical, and analytical applications and present the ASP software is created. We will complete the tutorial introducing leading ASP companies and their products and services.

Target Audience
This tutorial is intended for system designers, engineers, and programmers who are interested in receiving an overview of the state-of-the-art in Application Service Providers. This course assumes little familiarity with Internet systems and technologies. This tutorial can also be beneficial for managers and engineers involved in Internet-based business and applications.

Tutorial Material
1. Class notes including copies of all transparencies
2. Key articles on ASPs

Speaker’s Biography
Borko Furht is a professor of computer science and engineering at Florida Atlantic University (FAU) in Boca Raton, Florida. He is the founder and director of the Multimedia Laboratory at FAU, funded by National Science Foundation. Before joining FAU, he was a vice president of research and a senior director of development at Modcomp, a computer company of Daimler Benz, Germany, a professor at University of Miami in Coral Gables, Florida, and senior scientist at the Institute “Boris Kidric”-Vinca in Belgrade, Yugoslavia. Professor Furht received BSEE (Dipl.Eng.), M.Sc. and Ph.D. degrees in electrical and computer engineering from the University of Belgrade. His current research is in multimedia systems, Internet computing and applications, video coding and video databases. He is the author of numerous books and articles in the areas of multimedia, computer architecture, real-time computing, and operating systems. He is a founder and editor-in-chief of the Journal of Multimedia Tools and Applications (Kluwer Academic Publishers). Recently, he was editor-in-chief of the following handbooks – Handbook of Internet Computing (2000), Handbook of Multimdia Computing (1999), and Handbook of Internet and Multimedia Systems and Applications (1999), published by CRC Press. He has received technical and publishing awards, and has consulted for many high-tech companies including IBM, Hewlett-Packard, Xerox, General Electric, JPL, NASA, Honeywell, and RCA. He has also served as a consultant to various colleges and universities. He has given many invited talks, keynote lectures, seminars, and tutorials. He is a senior member of the IEEE and member of the ACM.

Tutorial Outline
- From Internet Service Providers to Application Service Providers
- ASP Model
- Types of ASP Applications
- Key ASP Market Trends
- Key Technologies that Enabled ASP Model
- Driving Trends in ASP
- ASP Implementations
- ASP Internet Architectures
- Application Server Technologies
- ASP Companies and Their Products and Services

Tutorial 6: Mobile Ad Hoc Networks

Instructor: Prof. C.K. Toh, Director, Mobile Multimedia & HiSpeed Network Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology
Date: Wednesday, 6 September 2000
Venue: EA 02-11
Time: 0900-1700

Synopsis
Wireless communications, wireless access and wireless networking are essential elements to support mobile computing. Just as the saying ‘the network is the computer’, wireless networking is mobile computing. Performing work on a laptop is not truly mobile computing since there is no provision for information ‘push’ and ‘pull’ capability. The ability to be networked anytime and anywhere results in no boundaries in the way we communicate and work. Devices nowadays are getting more intelligent and autonomous - they are gradually being ‘detached’ from the wired networks, i.e., the bond between mobile devices and wireless base stations are detached. A new paradigm comprising of autonomous mobile ‘network-capable’ devices known as ad hoc mobile networking has evolved. This tutorial provides insights into the technical know-how of ad hoc wireless networking, the various current ad hoc unicast and multicast routing protocols. Applications and future technical challenges will also be discussed in this tutorial. In this talk, I will present the vision and technical details behind these two emerging industry standards. I will describe how these technologies complement each other and yes, how they have the potential of ‘revolutionizing’ wireless communications, networking and computing.

Outline
1. Introduction to Wireless Networks
2. Fundamentals of Ad Hoc Wireless Networks
3. Routing Protocols for Ad Hoc Wireless Networks
4. Supporting Multicasting in Ad Hoc Wireless Networks
5. Potential Applications
6. Future Challenges

Biography:
C-K. Toh received his electrical engineering and computer science degrees from the University of Manchester Institute of Science & Technology and the University of Cambridge, England. Dr. Toh was awarded a US patent in the field of mobile ad hoc networks, and is Director of the Ad Hoc Wireless Networking & Computing Consortium. He is Editor for IEEE Journal on Selected Areas in Communications and IEEE Network. He is a Senior Member of IEEE, Fellow of Cambridge Philosophical Society and Chartered Electrica Engineer. He is listed in MARQUIS Who's Who in the World.
1. Learning-Automata-Based MAC Protocols for Photonic LANs
 Georgios Papadimitriou; Andreas Pomportsis
 Aristotle University, Greece

2. A Core-Stateless Buffer Management Mechanism for Differentiated Services
 Internet
 Y. Thomas Hou; Dapeng Wu; Zhi-Li Zhang
 Fujitsu Labs of America; Polytechnic University; University of
 Minnesota, USA

3. Modeling VBR Traffic With Autoregressive Gaussian Processes
 Jung-Shian Li
 National Cheng-Kung University, Republic of China

4. The Study of Applying the ODP/UML for the VPN Service Management
 Information Modeling
 Xuesong Qiu
 Beijing University of Posts and Telecommunications, P.R. China

5. UBR++: Improving TCP Performance over ATM-UBR using a New Packet
 Discard Scheme
 Aly El-Abd
 Arab Academy for Science & Technology, Egypt

6. Providing Minimum Bandwidth Guarantees to TCP Traffic in ATM
 Networks
 Xin Zhang; Chee Heng Tan
 Nanyang Technological University, Singapore

7. Modeling and Simulation of STTP, a Proactive Transport Protocol
 Rik Wade; Mourad Kara; Peter Dew
 University of Leeds, Great Britain

8. Weight-Based Fair Intelligent Bandwidth Allocation for Rate Adaptive
 Video Traffic
 Xiaomei Yu; Doan B. Hoang; David D. Feng
 University of Sydney, Australia

9. A Novel Priority Weight-based Explicit Rate Allocation Scheme for ATM
 ABR Services
 Dong Xu; Yew Hock Ang
 Nanyang Technological University, Singapore

10. QoS Fairness for Layered Video Transmission over the Internet
 Zhiyong Chen; Liwen Zhang
 Nanyang Technological University, Singapore

11. A Reliable Multicast Protocol for Mobile Networks
 Chun-Hung Lin
 National Chung Cheng University, Republic of China

Conference Location

Technical Session Track 1:
Blk EA-Engineering Auditorium

Technical Session Track 2:
Blk EA-02-11
Secretariat Room: Blk EA-01-06
Practice Room:
Blk EA-02-15 on 7 & 8 Sep 2000

All above venues are located in:
Faculty of Engineering, Blk EA
(Beside University Hall)
9 Engineering Drive 1
Singapore 117576

(please see conference facility map on last page)

Tutorial Notes

Notes for tutorials may be purchased at S$20.00
per copy, with the exception to the notes on
"Mobile Ad Hoc Networks", as notes for this
tutorial is not for sale.

Conference Proceedings

Additional proceedings can be purchased at S$100.00 per copy

Transportation Arrangements

Between NUS and Grand Plaza Parkroyal & Spa Hotel
Thur, 7 Sep 2000
0815 hours: From Hotel to NUS.
1800 hours: From NUS to Hotel.
Fri, 8 Sep 2000
0815 hours: From Hotel to NUS.
1745 hours: From NUS to Hotel.

Public Transport

Nearest MRT Station:
Clementi
From Clementi MRT/Bus Station:
Take bus no. 96.
Buses to NUS:
No. 33, 96, 151, 188
Preliminary Announcement

The 9th IEEE International Conference on Networks’2001
(IEEE ICON 2001)
October 9-12, 2001
Bangkok, Thailand

Schedule

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Submission</td>
<td>April 3, 2001</td>
</tr>
<tr>
<td>Notification of Acceptance</td>
<td>June 15, 2001</td>
</tr>
<tr>
<td>Camera-ready Manuscript Submission</td>
<td>July 31, 2001</td>
</tr>
</tbody>
</table>

Submission/Correspondence Address

The IEEE-ICON2001 Secretariat
Attn. Ms Sunee Kurutach
Faculty of Engineering
Mahanakorn University of Technology
51 Cheum-Sampan Rd., Nong Chok, Bangkok, Thailand 10530
Tel. +662-9883655 ext 220, Fax. +662-9883687
Email. icon2001@mut.ac.th