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Abstract— Unlike the terrestrial wireless networks that uti-
lize the radio channel, underwater networks use the acoustic
channel, which poses research challenges in the medium access
control (MAC) protocol design due to its low bandwidth and
high propagation delay characteristics. Since most of the MAC
protocols for wireless terrestrial networks have been designed
with negligible propagation delay in mind, they generally perform
poorly when applied directly in underwater acoustic networks,
especially for the case of handshaking-based protocols. In this
paper, we propose a MACA-based MAC protocol with packet
train to multiple neighbors (MACA-MN). It improves the channel
utilization by forming a train of packets destined for multiple
neighbors during each round of handshake, which greatly reduces
the relative proportion of time wasted due to the propagation
delays of control packets. This approach also reduces the hidden
terminal problem. Our simulations show that the MACA-MN is
able to achieve much higher throughput than the MACA protocol.

I. I NTRODUCTION

Although underwater communication has been around for
several decades, it mainly utilizes point-to-point communica-
tion, which limits the growth of its applications. Due to the
needs of new emerging applications such as oceanographic
data collection, pollution monitoring, offshore exploration, and
disaster prevention, etc. [1], underwater sensor networkshave
been extensively studied in recent years, especially in thearea
of underwater medium access control (MAC). This is because
in any wireless network, MAC design is an integral part for
achieving the desired network performance.

Unlike the terrestrial wireless networks that utilize the
radio channel, underwater networks use the acoustic channel,
which poses new research challenges when dealing with the
MAC design. The underwater acoustic channel is characterized
by low bandwidth and high propagation delay. The acoustic
channel’s bandwidth is both frequency and communication
range dependent [2], [3]. Specifically, a long-range systemthat
operates over tens of kilometers may have a bandwidth of only
a few kilohertz, while a short-range system operating over tens
of meters may have a hundred kilohertz of bandwidth [1].
On the other hand, the low speed of sound in underwater
causes its propagation delay to be around 0.67 s/km; this
is very high compared to the terrestrial wireless networks,
which often assume negligible propagation delay. Due to the
above-mentioned uniqueness of underwater networks, the wide
variety of MAC protocols previously proposed for wireless
terrestrial networks do not perform well in underwater. The

underwater MAC protocols must account for the low band-
width and high propagation delay characteristics.

In [4], we proposed two MAC protocols, namely, Aloha-CA
and Aloha-AN. These two protocols utilize the information ob-
tained from overheard packets to calculate the busy durations
of other nodes, which would be useful for scheduling DATA
packet transmissions. For Aloha-CA, when a node has a packet
to transmit, it must first check the busy durations of other
nodes whether its transmission would cause any collision. If
a collision can occur, it will defer its transmission for some
random time. In the case of Aloha-AN, when a node has a
packet to transmit, it also performs a collision check in a sim-
ilar way as Aloha-CA. If no collision is foreseen, it will notify
the other nodes about its pending data transmission using a
small notification packet. After a “lag time”, the node will
recheck the busy durations again before transmitting the DATA
packet. Aloha-AN is shown to achieve higher and more stable
throughput than Aloha-CA, because each node can maintain
the other nodes’ status more accurately. Nevertheless, Aloha-
AN’s performance decreases significantly when implemented
in multi-hop networks. In a multi-hop network, Aloha-AN can
no longer maintain the other nodes’ status accurately due tothe
presence of hidden terminals, which result in high collisions.

In terrestrial wireless networks, handshaking-based proto-
cols are common. In such protocols, a node schedules its
transmissions according to the control packets (e.g., request-to-
send (RTS)/clear-to-send (CTS)) it hears. These control pack-
ets also notify other neighbors about the ongoing transmission,
including the hidden nodes, and could reduce collisions sig-
nificantly. Recently, some handshaking-based MAC protocols
have been proposed for underwater networks as well. For
example, Guoet al. introduce the propagation-delay-tolerant
collision avoidance protocol (PCAP) in [5]. It requires clock
synchronization between the neighboring nodes, just like those
in [6]. In order to improve channel utilization, it allows a
sender to perform other actions during the long wait between
the RTS and CTS frames. Although its maximum throughput is
20%, which is higher than what the conventional handshaking
protocol can achieve in underwater, this is merely comparable
to Aloha’s throughput. Molins and Stojanovic propose in [7]
a slotted random access MAC protocol, which, yet again,
requires clock synchronization. It is also handshaking-based,
but an RTS or CTS frame can only be transmitted at the
beginning of each time slot. Although the protocol achieves



guaranteed collision avoidance for its data packets, the long
slot length requirement and the handshaking mechanism itself
affect the throughput.

In this work, we propose an asynchronous random access
MAC protocol, namely, MACA-MN (MACA with packet train
for Multiple Neighbors). The protocol utilizes a handshaking-
based approach in order to help avoid collisions and alle-
viate the hidden terminal problem in multi-hop underwater
networks. In addition, the MACA-MN can overcome the
low throughput problem suffered by typical handshaking-
based protocols (such as MACA), by transmitting a train of
packets during each round of handshake. Although the idea of
packet train has been used in several MAC proposals such
as in [7] and [8], our work goes one step further as the
packet train is actually formed for multiple neighboring nodes
simultaneously. In addition, Unlike the work proposed in [5]
and [7], our MACA-MN does not require any synchronization.

The remainder of this paper is organized as follows. In
Section II, we explain our proposed protocol in detail. Next,
Section III describes the simulations that were carried outto
compare the performance of the proposed scheme with several
others, and provides further discussions. Finally, we giveour
conclusions in Section IV.

II. T HE PROPOSEDPROTOCOL: MACA-MN

A. How the Protocol Works

In this section, we explain how the MACA-MN protocol
works. Table I shows the notations that are used, while
Fig. 1 illustrates how the handshake is carried out. Similar
to the widely known MACA protocol, we employ a three-
way handshake (RTS/CTS/DATA). A node that wishes to
transmit its data packets will first initiate a handshake to its
intended neighbor(s) by broadcasting an RTS packet. However,
in contrast to the MACA protocol, our RTS packet can simulta-
neously request for DATA transmission to multiple neighbors.
Specifically, the RTS packet contains the receiver’s node ID,
the number of DATA packets the sender wishes to transmit to
each of its neighbors, as well as the inter-node propagation
delay from the sender to its intended receivers. In static
networks, each node may obtain the inter-node propagation
delay in the initialization phase during which synchronization
can be assumed. For example, each node can broadcast small
packets with its node ID and timestamp, which can then be
used by other nodes to calculate the inter-node propagation
delay by comparing the timestamp with a node’s local clock.
For mobile networks, if the individual nodes are aware of
their location coordinates, they can exchange such information,
which can then be used to calculate the inter-node propagation
delay.

When an intended receiver hears the RTS packet, it will
respond with a CTS packet, provided that it is currently not
involved in a handshake with another node, and is also not
required to remain silent. Note that there is an important
modification on how the neighbors should respond with their
CTS packets compared with the original MACA protocol,
because our MACA-MN needs to handle more than one CTS

TABLE I

NOTATIONS USED FOREXPLAINING THE MACA-MN PROTOCOL.

Notation Description

n Total number of receivers in the current handshake
tbusy Time at which sender finishes receiving last CTS packet
tsilent,x Time until which Nodex must remain silent
trx,x(j) Time at which DATA’s 1st bit would arrive at receiverx(j);

DATA packets are sent tox(1), x(2), . . . , x(n) in sequence
tout,x Time at which Nodex releases itself from current handshake
cx Total number of DATA packets to be sent to Nodex

Dx Inter-node propagation delay between Nodex & sender
Dmax Maximum inter-node propagation delay
Dx, y Inter-node propagation delay between Nodex & Node y

Mtrain Minimum packet threshold to trigger RTS transmission
Tmax Maximum time threshold to trigger RTS transmission
TDATA Transmission time of each fixed-length DATA packet

packet from multiple neighbors. The rule of thumb here is that
it will transmit the CTS packet immediately upon receiving the
RTS packet, subject to the condition that the CTS packet will
not result in a collision with another node’s CTS packet at
the sender, which may happen when two or more nodes have
similar distances from the sender. A collision of CTS packets
is costly for the MACA-MN, because it will leave those
requested DATA transmission time slots idle, thus leading
to low throughput. Fortunately, such collisions can be easily
avoided using the inter-node propagation delay information
provided by the sender. The solution to this problem is, after
a node calculates and learns that if transmitting a CTS packet
immediately will cause collision with an earlier CTS packet
sent by another node, it will defer sending its CTS packet
to the next earliest possible time instead. This concept is
illustrated in Fig. 1. As can be seen, if both neighboring
nodes #2 and #3 respond with their CTS packets immediately
upon hearing the RTS packet, their CTS packets will collide.
When such a situation arises, the conflict can be resolved by
granting priority to the node that has shorter propagation delay
from the sender, and to the node with the smaller node ID
when the propagation delays are equal. Here, neighboring
node #3 defers transmitting its CTS packet, and ensures that
its CTS packet will only arrive at the sender after neighboring
node #2’s CTS packet has been completely received. Having
resolved the time to transmit its CTS packet, each neighboring
node will also compute the busy duration at the sender that
will be caused by all the CTS packets sent from the sender’s
neighbors. The end of this busy duration is denoted bytbusy

(see Fig. 1), which is the time at which the receiver finishes
receiving the CTS packet sent from its most distant neighbor.

If a neighboring nodey is not one of the intended receivers
as indicated in the RTS packet, after computingtbusy, it
determinestsilent,y using (1). The node then avoids transmitting
control packets untiltsilent,y is over, in order to allow the sender
to finish receiving the CTS packets from multiple neighbors.

tsilent,y = tbusy− Dy (1)
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Fig. 1. The three-way handshake in MACA-MN.

On the other hand, if Nodex(j) is thejth intended receiver
node, it usestbusy to calculatetrx,x(j) and tout,x(j), which are
the expected arrival time of the DATA packet intended for
itself, and the time to release itself from the current handshake,
respectively, using the following equations:

trx,x(j) = tbusy+ Dx(j) +

j−1∑

i=1

cx(i) · TDATA (2)

tout,x(j) = tbusy+

n∑

i=1

cx(i) · TDATA + Dmax (3)

Once trx,x(j) is obtained, the intended receiver can go to
sleep and wake up just to receive the DATA packets intended
for itself. Note thattout,x(j) must be large enough to allow
all receivers to finish receiving their DATA packets in the
current handshaking loop; any new transmission from this
node beyond the timeout will not interfere with any other
receiver in this handshaking loop.

Each intended receiver, Nodex(j), shall attach itstout,x(j)

to its CTS packet, in order to notify its timeout to the two-
hop neighbors (hidden terminals) of the sender. At timetbusy,
the sender starts its DATA transmission to those receivers that
have responded with their CTS packets, starting from the node
with the least inter-node propagation delay, Nodex(1). In
cases where the sender has requested to send DATA packets to
some neighbors, but it has not heard their CTS replies (either
because of packet corruption, or because those neighbors have
decided not to respond to the sender’s RTS), the sender still
keeps the order of DATA transmission by leaving the DATA
slots for those unheard neighbors idle, as shown in Fig. 1.
Here, it is assumed that the CTS from Neighbor #1 fails to
reach the sender. Thus, the sender, which is assumed to have
requested to transmit one DATA packet to Neighbor #1, will
leave the first DATA slot idle. By doing so, the computation
in (2) is still valid even if there is any missing CTS. Another
important point to note here is that, a node always gives
higher priority to those packets that it is relaying, over its
own newly generated packets. This is because the relay packets

have already consumed channel resources to reach this far, and
it would be wasteful if they are discarded. This strategy tends
to achieve higher network throughput.

When a non-participating nodey overhears a CTS packet
sent by nodex, it updates its silent period,tsilent,y, using the
parametertout,x found within the received CTS packet:

tsilent,y = tout,x − Dx,y. (4)

This silent period ensures that nodey will not transmit any
packet that would collide with the data reception at nodex.

After a node releases itself from the current handshake, it is
required to back off before initiating another handshake. The
randomly chosen backoff interval allows the node to overhear
other nodes’ statuses, which could help avoid collisions.

B. When to Trigger RTS Attempts

In MACA-MN, a node uses two independent parameters to
trigger its RTS attempts, namely,T max and M train. If a node
has not initiated the RTS packet for a time durationT max from
the time it last finished transmitting a DATA packet, the node
starts attempting to transmit an RTS packet. However, if a
node has accumulated at leastM train DATA packets, it will
also trigger its RTS attempts. In the high load case, if there
are more thanM train DATA packets awaiting for transmission,
the sender is allowed to transmit onlyM train packets in each
handshake. The purpose of limiting the packet train size to
M train is to help the network maintain fairness and shorter
delay. Note that even after the triggering condition for making
RTS attempts has been met, the node still has to ensure that
it is not currently involved in any other handshake, and that
it is not supposed to remain silent at this time. Otherwise, it
will defer its RTS transmission to the first instant it can start
doing so.

C. Backoff Algorithm

When a node needs to be backed off, it randomly chooses
a slot from a constant window size, and then multiplies this
value with the maximum propagation delay. Here, we use a
constant window size instead of the popular binary exponential



backoff (BEB) algorithm. In BEB, the window size normally
starts with a small value (e.g., 1), which only enlarges when
the expected CTS packet is not returned. Thus, the window
size usually tends to be large when the network load is high,
during which there are a lot of contentions. In the case of our
MACA-MN, a node tends to initiate a handshake with multiple
neighbors simultaneously when the network load is high. Thus,
the probability of not receiving CTS from at least one neighbor
is quite rare, and the window size would not increase if BEB
were used. This could lead to low throughput. Therefore, we
have chosen to use a constant window size here.

III. S IMULATIONS AND RESULTS

A. Simulation Model

Our simulation model consists of 36 static sensor nodes
arranged in a grid topology, with a grid spacing of 700 m.
However, instead of precisely placing each node at a grid
intersection point, we introduce some degree of randomnessby
allowing each node to deviate from the grid intersection point
by a maximum of 10% of its grid spacing, in both the vertical
and horizontal directions. The transmission range is such that
each node will have exactly eight neighboring nodes. Note
that we have adopted the wraparound strategy, to eliminate
boundary effects. For routing, we focus on the effects of two-
hop routes on throughput and packet collision performance.
For each packet that is generated by a node, we randomly pick
its target destination as any of the node’s 16 two-hop neighbors
with equal probability. None of its single-hop neighbors can
be picked as a target destination. Also, we apply static routing,
and distribute the routes evenly. All nodes are equipped with
half-duplex and omnidirectional modems which operate at a
fixed data rate and a communication range of 2400 bps and
1225 m, respectively.

In the simulations, we assume that the traffic load is divided
evenly among all the nodes according to the Poisson distribu-
tion. The acoustic propagation speed used in this performance
study is 1500 m/s. The channel is also assumed to be error-
free, so that all packet losses are purely due to the MAC
protocol’s performance. We also do not implement ACK for
any of the schemes studied in the simulations, thus there is no
retransmission for lost packets. All control packets (i.e., CTS,
RTS) have the same size of 100 bits, while all DATA packets
are 2400-bit long. The buffer size for both new packets and
relayed packets are set to 100 each, and the constant window
size for backoff is set to 32. We choose to benchmark our
protocol with two other previously proposed schemes, namely,
Aloha-AN [4] and MACA [9]. For both of these benchmarking
protocols, we set the control packet length (i.e., NTF packet
for Aloha-AN, and RTS/CTS packets for MACA) to 64 bits,
and the maximum window size of BEB in MACA is 64,
while keeping all other parameters the same. Note that all
the protocols in our simulation study are random access MAC
protocols that do not require any time synchronization.

B. Simulation Results
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Fig. 2. The effect of differentMtrain whenTmax = 10 s.

1) Factors Affecting MACA-MN’s Performance: As men-
tioned previously, there are two parameters used to trigger
the handshake attempts, namely,T max andM train. The varying
of the parameterT max does not significantly change the
maximum throughput (simulation results not shown due to
limited space), becauseT max is only responsible for triggering
handshakes when the network is operating at low load. As
the load shifts to the high load region, theM train parameter
plays the dominant role in triggering the RTS attempts, and
eventually determines the maximum throughput. Thus, the
M train parameter should be carefully chosen, by considering
the following factors: the maximum propagation delay, and the
buffer size available inside each node.

Although it seems that we might be able to improve the
throughput by increasing the size of theM train parameter, this
may not always be true, as shown in Fig. 2, due to two
reasons. Firstly, recall that a sender should prioritize relay
packets over its own new packets in order to achieve good
throughput. Suppose theM train parameter is unbounded, the
throughput performance would actually degrade because a
node will then always attempt to transmit both new and relay
packets in each handshake, without prioritizing the latter. Thus,
a smallerM train parameter would allow a node to transmit
more relay packets than new packets when the network load
is high. In addition to the priority issue, a largeM train would
also make it more difficult to maintain the network’s fairness.
Secondly, theM train parameter must be adjusted according
to a node’s available buffer size. A suitable value ofM train

for a particular buffer size depends on the total number of
immediate neighbors that a node has. For a higher number of
neighbors, theM train parameter should be smaller, so that each
node would participate in multiple handshakes while actingas
a receiver, prior to taking the role of a sender. As a guideline,
we propose that the total transmission time ofM train packets
must be larger than the maximum propagation delay, while the
value of M train should be limited to the available buffer size
divided by the total number of immediate neighbors.

2) Performance Comparison Against Aloha-AN and MACA:
As can be seen in Fig. 3, MACA-MN always outperforms
both Aloha-AN and MACA significantly, while being able to
maintain a stable throughput at high load. Among the three
schemes, MACA performs the worst in terms of maximum
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throughput. Although Aloha-AN can achieve higher maximum
throughput when compared to MACA, its throughput actually
decreases as the load increases, due to the presence of hidden
terminals in multi-hop networks. For a better understanding of
the MACA-MN’s good throughput performance, let us look at
the Transmission-ratio (Tx-ratio) and Collision-ratio [4] shown
in Fig. 4. When compared to MACA, MACA-MN has a higher
number (i.e., Tx-ratio> 1) of DATA transmissions, due to its
use of packet train for multiple neighbors. By transmitting
multiple packets in each handshake, the long propagation
delay has less detrimental effect on the network as fewer
handshakes need to be activated. We can also notice that the
number of collisions in MACA-MN is higher than that of
MACA (Collision-ratio > 1). This is due to the fact that the
hidden terminal problem in MACA-MN cannot be completely
resolved. When a collision occurs while transmitting a train
of DATA packets in MACA-MN, the number of packets
corrupted tends to be higher than that of MACA (1 packet) in
each handshake, thus leading to higher number of collisions.
Nevertheless, the MACA-MN’s good channel utilization still
outweighs its losses due to the hidden terminal problem, which
explains its good throughput. In addition to the throughput
enhancement, Fig. 5 shows that MACA-MN can also help
alleviate the large delay encountered in MACA.

When compared to Aloha-AN, MACA-MN transmits less
DATA packets, and achieves fewer collisions. This indicates
that MACA-MN encounters less hidden and exposed terminal
problems compared to Aloha-AN. Being better at restraining
itself from transmitting DATA packets that would otherwise
result in collision, the MACA-MN is more energy efficient
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than Aloha-AN. In terms of packet delay, Aloha-AN has the
lowest delay among all three schemes, because it only utilizes
a one-way notification mechanism. However, its throughput
suffers seriously because its one-way notification mechanism
does nothing to alleviate the hidden terminal problem.

IV. CONCLUSION

In this paper, we propose an asynchronous random ac-
cess handshaking-based protocol for multi-hop underwater
networks, namely MACA-MN. Besides adopting the widely
known three-way handshake, it features the simultaneous
transmission of a train of packets to multiple neighbors,
which significantly alleviates the detrimental effect of long
propagation delay on network throughput. The MACA-MN is
shown to achieve high and stable throughput. This throughput
enhancement can be attributed to two main reasons: the chan-
nel’s utilization improvement resulting from the use of long
packet train, and the reduction of the hidden-terminal problem
in multi-hop networks. In order to achieve a high maximum
throughput, theM train parameter must be carefully chosen, by
considering the total number of immediate neighbors of each
node, and the node’s buffer size.
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