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Abstract

We propose an interpolation-based fingerprinting techmigfilizing user feedback which does
not require an exhaustive training phase typically seelmarirtdoor localization solutions. We ar-
gue that the contribution of users’ feedback to any posiigsystem is two-fold. Firstly, users’
feedback greatly help in fine-tuning an under-trained positg system with proper filtering.
Secondly, if users areell-behavedour experimental results show that the participation afFen
users can actually assist in the construction of a positgseistem incrementally from scratch.
We also show that user feedback-based positioning systaptsaduite well when surroundings
change. Our present system is built upon Bluetooth.

Key words: Positioning Systems, Indoor Localization, User FeedbButketooth, Wireless
Networks.

1. Introduction

Location awareness is expected to be an integral part offuthiquitous computing envi-
ronment [1]. In order to enjoy the benefits of pervasive cotimgy the knowledge of location
with some degree of accuracy is obligatory in both outdoay.(6&PS) and indoor scenario. Re-
cently, there has been a growing interest in indoor locatindechniques that rely on in-building
communications infrastructure (e.g., Wi-Fi, Bluetoottt, pmainly because it allows the design
of an easily deployable low-cost positioning system. Mddhese approaches utilize location
fingerprinting techniques [2, 3, 4], where some locatiopetelent signal parameters are col-
lected at a number of locations as location fingerprints ificdfiine training phase”. During
the “online location determination phase”, the signal pater obtained isomparedwith those
training data to estimate the user location.

The procedure of creating the training database of sigmainpeters entails a laborious of-
fline phase because the location system administrator neddke readings at every selected
location of interest. Moreover, if for any unforeseeablasen, the setup changes (e.g., due to
renovation, rearrangement of furniture, etc.), the whaming phase needs to be repeated again
in the changed environment. In this paper, we propose anatieae the end-users can actually
contribute to the construction of a positioning systemeneentally, as well as the fine-tuning of
an under-trained system. As a result, the aforementionadldrcks of the fingerprinting tech-
nigues may be relieved. We definser feedbacks the information about a user’s actual position
as indicated by the user to the system, either explicitlyrplicitly.
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We claim that the contribution of users’ feedback to any tmsing system is two-fold.
Firstly, user feedbacks greatly help in fine-tuning an uritiened positioning system with proper
filtering of the malicious feedbacks. Secondly, if usersieett-behavedour experimental results
show that the participation of end-users can actually assihie construction of a positioning
system incrementally from scratch. UCSD’s ActiveCampuggmt also tries to solve the indoor
localization problem with the help of user feedbacks [5]. ey hutilize the corrections made
by users on their estimated positions similar to us. Howeleir interpretation of the user’s
correction is simply a location and its received signalrgith (RSS) signature pair, similar to a
traditional training sample, which is completelyffdrent from how we interpret user feedback.

We contend that the combination of user feedback togethtarimterpolation methods could
eliminate the need for an exhaustive training phase, asdbd for signal strength survey by
administrators has been the key obstacle for the mass depldyof fingerprint based indoor
positioning system. Our system can be particularly berafior large area deployment where it
is quite demanding on the system administrator’s part tib afisthe possible areas and tirelessly
perform the training phase. A user’s feedback may not alirays reflect higher actual location
either due to the user’s carelessness while giving feediad&liberate ill intentions. Therefore,
we define a Region of Confidence (RoC) with each estimatediposo provide a measure of
likelihood of a user’s position, which is not just useful teetuser when they give feedback; but
also helps to assigeredibility to each individual feedback in order to aid its incorponatiato
our system.

The important issue of adapting the positioning system sty when its surroundings
change (without performing the entire training phase af@gain), has been overlooked in most
fingerprint-based localization research. In our work, weplkasize that, a positioning system
that exploits user feedbacks would guarantee reasonatitapance over a longer period even
if its surroundings change. This is crucial as the enviroms @ a real system could constantly
change, and it will be very dlicult and demanding if system administrators need to mositoh
changes and having to perform the signal strength surveyvall again every time it changes.
Apart from the above novelties, we have also denoted theakigirength signature of a user
feedback in an fécient way and proved it analytically. In the following, wensmnarize our
objectives:

¢ We try to relieve the exhaustive training phase of a tradéldingerprint-based positioning
system through user participation in both explicit and icipivays.

e We show that user feedback can greatly help in fine-tuningratemtrained positioning
system which is already in operation. Moreover, under gedasumptions on user be-
havior and with the help of our interpolation method, we shibat a positioning system
solely based on user feedback could be built from scratch.

e We also show that, with the help of user feedback, changesirioundings could be
detected, allowing the system to adapt to the new envirohimenseamless manner.

We hold the view that, user feedback may be obtained in bgphiciixand implicit ways.
Explicit feedback is the one where user specifically inputsraection to the system’s estimation
of higlher whereabouts. Implicit feedback is indirectly obtairiexn the user by the system
without the user being aware of it. In the following, we ligeveral ways in which user feedback
(explicit or implicit) may be obtained:



¢ In an indoor scenario, a user may sometimes know wheheeés at present, but fshe
may wish to obtain the route to another place within the sauilelihg from there. By
explicitly inputting a more accurate starting point thanatvthe system suggests,/$lee
can obtain a more refined route from the system than the atigiggested route.

e In a commercial system, a user who volunteers to providei@xfedback in an area
he/she is familiar with, may earn credits for using the positignservice in an unfamiliar
area later on.

e User trails as in [6] could be utilized to provide implicitef@gback. In [6], the user trail
is recorded as an ordered sequence of landmarks (e.g.sguuiess (APs), card readers,
etc.) where hishe has visited. To formulate a user feedback from trailsgouid collect
the signal strength samples of a user device between th& wist to two successive
landmarks. Since the start and end positions of the usenaxerk(i.e., the two landmarks’
positions), the intermediate locations could be interfgaldy applying some assumptions
on the user movement (e.g., constant speed). Subsequéet interpolated locations
could be correlated with the signal strength samples deltkand treated as user feedback.

e Various landmarks (e.g., APs, tags, card readers, etdallied at several fixed positions
in the building could act as continuous sources of impliegdback as well.

The rest of the paper is organized as follows. In Section 2diseuss our user feedback

model and explains its various components elaboratelytid®e8 describes our user feedback
based positioning system in detail and presents experaheggults and findings. In Section 4,
we provide a brief description of related works. Finally, depict in Section 5 the conclusions
drawn and future work.

2. User Feedback M odél

As previously mentioned, user feedback is the informatiooua a user’s actual position as

indicated by the user to the system either explicitly or iip)y. In this section, we discuss how
the user feedback is visualized from a positioning systg@uist of view. Whenever a user inputs
feedback to the system, it is interpreted&ss (£, S, w), where

£ = [xy]" = the position indicated by a user,
S = [S$1S; ... Sk]" = the RSS signature of the feedback captured aktiePs,
w = the degree at which a system believes the feedback, i.e.,

the credibility or weightof each individual feedback.

Next, we elaborately discuss all three components of a eseibfack in Section 2.1, 2.2 and 2.3,
respectively.

2.1. Location Indicated by Usef,

A user feedback is obtained when the user indicatefhdrisactual position to the system

(either explicitly or implicitly). This location informadn is generally interpreted by the system
as Cartesian coordinates (i.ex,] ") in an indoor environment. In practice, there might be some
uncertainties involved when a user tries to indicatgeisactual position at the time of providing
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Figure 1: Characteristics of signal strength samples atllio define the signature of user feedback

feedback to the positioning system. In cas@xblicit feedback, these uncertainties might arise
owing to the carelessness on the user’s part while pinpjrttigher location on the map, or
he'she may deliberately provide inaccurate location infofomat In case ofimplicit feedback,
these uncertainties arise when the system’s predictedidocdeviates from the user’s actual
position. We will discuss two dierent user models in Section 3.3 which try to broadly emulate
these two types of user behaviors while providing feedback.

2.2. Signature of a User Feedbad,

We first discuss our choice of a user feedback’s signatuckthem prove that it is anfiécient
one. During the filine training phase of a fingerprint-based positioning systee know that
the system administrator positions him#edirself at a particular location of interest for the RSSs
to be measured at the APs. The RSSs perceived at the APsSwadembtes the signature of that
particular location. We also utilized the RSSs measuretia@a™Ps during a user feedback to
denote its signature in a similar way taking into accounts@uditional details. For example,
in order to denote the signature of a user feedback, we satmpl&ignal strengths perceived at
APs over a 5-second window, and instead of using a singlelsgnopn each AP, theneanof all
the samples over the 5-second window has been used. Fudtetine time when a user clicks
his actual position in the map is treated as the median ofwhratow. Our approach is taken in
view with the following facts:

(i) Whenever a user clicks to input feedback, it is reasonabéssume that lighe has been at
that particular location for a while. Hence, we have chosencticking instant of the user
as the median of the 5-second window, rather than the begjrofithe window.

(i) The probability that an AP fails to collect any samplerfr the mobile node (MN) during a
user feedback is greatly reduced as well. Fig. 1(a) show® sawses when our AP failed
to receive any sample from the MN within certain slots of ardieedback’s time-window.

If the probability that an AP receives a sample from an MNyjghen the probability
that an AP receives at least one sample within the 5-secomdowi can be expressed as,
1 - (1-q)®, wherem is the number of packets sent by the MN within a 1-second slot
and each 1-second slot is assumed to be independent. Foplexding = 0.5 andm = 2,
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the probability of getting a sample at the AP during a usediieek increases fromTb to
0.999 when a 5-second window is considered compared to 1 second

(iif) Capturing more samples should provide more informatabout the signal strength distri-
bution at a particular location, which generally has a tsalg( Fig. 1(b)). The use of just a
single sample would be unlikely to work well.

(iv) The meanof all the collected samples’ signal strengths inside threetivindow is an -
cient unbiased estimate of a user feedback’s signaturea@apo any other linear combi-
nation of the samples’ RSSs. This can be realized with the dfeTheorem 1.

Theorem 1. Suppose gdenotes the signal strength distribution of the samplekectd at the

k" AP during a user feedback. IfiSspecifies the'l sample’s RSS of the n samples observed
inside the time-window at that AP, then the linear combwmatf observations’! ; &Sk is

an unbiased estimate of(§) given),[; aq = 1. It is also the mostfEcient one when g =
Lvie{1,2...,n).

n

Proor. This can be proved with basic estimation theory properfigee proof is shown in Ap-
pendix A.

Corollary 1. If Sy is an gficient unbiased estimate of the signal strength samplesiasige
collected at the R AP inside a time-window, then for a positioning system withRs, S =
[S1S2 ... SK]T is indeed an gicient unbiased estimate of a user feedback’s signature.

Proor. Corollary 1 can be realized by extending Theorem 1 for &KhAPs, together with the
assumption that the APs are independent of each other [7].

2.3. Credibility or Weight of a User Feedback, w

Without the credibility factorw, a user feedback is typically a traditional training sample
of location and RSS signature paif,(S) from a positioning system’s perspective. The tradi-
tional training samples are generally collected by a pmsitig system’s administrative people.
Therefore, all the samples are treated with equal impogta@mn the other hand, the sources of
user feedbacks can bdidirent entities (e.g., system administrators, normal usgraders etc.).
Consequently, there should be certain credibility factsogiated with each feedback given,
i.e., a measure for the system to believe that the user islctat higher claimed position. In
many ways, this approach is similar flmcation verificationtechnique which ensures that the
claimed source location is associated with a high level wdttr Existing location verification
techniques [8, 9, 10, 11] either accepfect a source’s location claim. They generally require
specialized hardware (incorporated with non-RF techriekjdo verify a source’s location claim
more precisely [8, 9] or the accuracy level within which tbedtion claim is verified, is set to be
quite large [10, 11]. However, our positioning system hatage implications which makes the
use of these location verification techniques infeasible:

(i) Our positioning system is built upon RF technology (Bheth) preferably usingfé-the-
shelf hardware in order to provide location service in a-effsictive way. Consequently,
the more precise solution to verify a location claim with tiedp of specialized hardware
is not applicable.

(i) The accepteject policy of the existing location verification technés would restrict the
user feedback to have only one of the two extreme valueswi€{0, 1}. If a strict margin
is set for incorporating the user feedback, then many ugetdback might be filtered
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out. On the contrary, if a large tolerance level is set, maajicious user feedback might
be incorporated which may ultimately cause the actual aoyudfered by the system to
deteriorate.

Therefore, instead of an accgpiject policy of the existing location verification techaéasg, we
come up with a strategy which assigetativeweights to the user feedbacks utilizing their cred-
ibility. Later on, it will be shown that, this approach adtyéhelps in fine-tuning an existing
positioning system to achieve better accuracy. Next, weoetdely describe how the user feed-
backs are assigned relative weights based on their crigiathile being incorporated into the
system. In order to realize this, we first describe the “RegbConfidence (RoC)” concept,
which subsequently helps to derive our weight assignméeitypior each individual feedback.

2.3.1. Region of Confidence

We define a system parameter, RoC, which gives a measure gfstem’s overall accuracy
and precisioh We express RoC as a two-parameter entity, i&.p)( where the parameters
e, andp, denote the accuracy grain size and the expected precitite gystem, respectively.
In localization literature, the term “accuracy” generdlyglicates the grain size of the position
information provided (in some works, the accuracy grair sizreferred as “localization error
distance” as well), while the term “precision” specifies hoften we could attain that accu-
racy [13]. For example, if a positioning system can deteerpositions within 3 meters for
about 90 percent of the measurements, that particularmsygtialifies to be 90% precise in pro-
viding 3-meter accuracy. Intuitively, a higher precisionuld compel the system to provide a
coarser accuracy, and similarly, in order to achieve fineugacy, the system may turn out to be
not so precise. We define RoC in a way that considers bothreagants, in order to facilitate our
feedback-based positioning system. In general, RoC pesvadneasure of likelihood of a user’s
estimated position and also influences the weights thatdvoelassociated with the feedbacks
which we describe later.

In order to create the “Precision vs. Accuracy” graph of Ri@), which we term as “RoC
profile graph”, first we assume that our positioning systeairsady in an initial state with some
training samples. Now, we inspect its performance wiveii-behavedisers’ (whose claimed
locations do not deviate from their actual locations by gdanargin) feedbacks are incorporated
into the system in order to obtain the “RoC profile graph”. dnhde seen that, the shape of
our “RoC profile graph” has a similar trend as those “Preaisis. Accuracy” curves found
in existing localization literature [14, 15]; it shows ththe precisionp, increases with larger
accuracy grain size or localization error distange]ntuitively, the “RoC profile” may not be
fully reflective of the system’s actual state with only a lied number of user feedbacks. As
we gather more and more user feedbacks, we can approximate profile” more accurately
(using the feedbacks as both training and testing samplieshe following section, we depict
how the “RoC profile” has been utilized to derive the trendhef tredibility to be assigned to a
user feedback.

2.3.2. Feedback Weight Assignment Policy
Since user feedbacks may contain dubious information, weldmot treat all feedbacks
with equal importance. Whenever a user claims to be at a phtitocation via feedback, that

INote that, our definition and purpose of RoC is quitBfatent from an earlier work. In [12], RoC was formed
utilizing simple geometry in order to figlaliasing, i.e., to eliminate physically efierent locations which have similar
signatures in signal space.
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Figure 2: lllustration of how we approximate the feedbackgheassigning model from the RoC profile graph, as well
as its variation when dierent number of feedbacks are incorporated

information is associated with a certain degree of creitijbiin order to calculate this credibility
factor, consider a positioning system wheraser feedbacks have been utilized as test samples
to obtain the “RoC profile”. Subsequently, for any poiaty) of Fig. 2(a), it is obvious from the
definition of RoC thatpxn user feedbacks’ estimated positions do not deviate froactisal one

by more thare. In other words, if we think of a circle with the accuracy graize or localization
error distanceg, as radius, thepxn user feedbacks can be thought to be inside it. Now, suppose
if we increase the radiusby a small amounAe (i.e., p also increases in Fig. 2(a)), than new

user feedbacks fall inside the new area. So, the proporfiaser feedbacks falling inside the
area fr(e + Ae)® — ne?] is &1, Consequently, we denote the probability of occurrence usex
feedback inside this unit area as,

4n An

1= e A(:)Z — & 2xnehe’ @)

Subsequently, we define theightor credibility of thei!" user feedback utilizing (1) as follows:

max{/117, Ao, ... ,ﬂn}'

@)

Wi



Note that,w; is just the normalized form af; so thatw; € [0,1). Now, let us investigate the
rationale behind choosing such a weight assignment @it@dnsider two user feedbacksnd

j with RoC g, pi) and @, pj), respectively. Their positions in the “RoC Profile Graphg a
shown in Fig. 2(a) where < g;. Following similar steps which were involved in obtainirig,(
we have,

N Ani and 1 ~ Anj
~ 2nngAe 1™ 2nneAe’

The parametergs andAn’s have certain #ects in the above expressions:

(i) & < ejimplies the accuracy of thé& feedback’s estimated position by the system is higher
than that of thg™" user feedback. Therefore, from the system’s perspectiignatural to
believe thé'" user feedback more than tii€ one.

(if) Consider the number of user feedbacks; andAn; which fall into the two new areas that
have been formed by extending the radsuande; by the same amounheg, respectively.
If An; > An;, then a greater number of user feedbacks which are usedatedte “RoC
Profile Graph”, falls into the" feedback’s new area than that of tfié feedback’s area.
Consequently, it is natural for the system to believeitheser to be morevell-behaved
since the system’s “RoC Profile Graph” had been creatediatjithewell-behavedisers’
feedbacks as mentioned in the previous section. Therafasenly fitting to assign more
weight to the'" user feedback than th& one.

From Fig. 2(a), using the numerical values of the parametets44, Ae = 0.5m, ¢ = 3m <

gj = 7m, andAn; = 5 > An; = 1, we find,4; > 4;. In other words, thé" user feedback is
more believable than thg" user feedback from our positioning system’s perspectivextNve
describe our ultimate simplified weight assignment poliay dach individual feedback taking
into account the aforementioned facts.

By utilizing the RoC profile together with (2), we obtain therid for weights to be associated
with user feedbacks as shown in Fig. 2(b). We observe thatydlight's maximum occurs when
the accuracy grain size or the localization er@rdf the user feedback’s estimated position is
close to our system’s average localization error3m), and decreases as the estimation error
becomes larger. Since it is desirable to have a weightingreetthat is simple and yet capable
of evolving with time as more user feedbacks become availakt define a feedback-weight
assigning model as follows. A maximum weight of 1 shall bégre=d when the localization error
(e) of a user feedback’s position is within one standard darnggs) from the average erroes,),
as shown in Fig. 2(c). This is in accordance with the view thatsystem is fairly accurate and
therefore, we expect the system’s estimated positionst&ito be around this average quantity.
Assigning maximum weight around one standard deviatiorhisf dverage helps to build, and
subsequently, fine-tune the system gracefully. Fegm e to eyax (maximum error), the weight
follows a similar trend as in Fig. 2(b). The horizontal ddttee (i.e.,w = v) of Fig. 2(c)
indicates the filter of our weighting scheme. We associatenstant weighty (which is 3 dB
lower thanwnay), to the user feedbacks when the estimation error is lessgha in the view
that our system’s predictions of these positions are ajre@ite good. The weight assignment
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policy for thei'" user feedback of our model as shown in Fig. 2(c) can be surnethais,

Y € < €min

1+ (1-)(omate") ©min <6 <ew—&
W=41 €av— € < 6 < €y + 6

1+ (o Cav + €5 < & < Emax

0 € = €nax

wheree = /(X — Xes)? + (Vi — Yesd?, [X ¥i]" is thei" user’s claimed location, anddst Yes] ' is
the system’s estimate of that user’s position.

Fig. 2(d) shows the evolvement of our feedback-weight agsigmodel as user feedbacks
are increasingly incorporated. Our initial system onlysists oflandmarkfeedbacks (e.g., the
feedbacks from the 4 APs). Two other stages of our systemharersin Fig. 2(d) where 30 and
60 well-behaveduser feedbacks are subsequently incorporated. The dafirdfivarious user
feedbacks (e.g., landmark, well-behaved etc.) can be fouSéction 3.4. For each stage of the
system, 44 testing samples which are completefedént from the incorporated user feedbacks
are utilized to obtain the error model. As can be seen, thidahleelps to improve the accuracy
of our system, since both the average error and its standaidtabn decreases with increasing
number of user feedbacks.

3. User Feedback based Positioning System

In this section, we elaborately discuss our user feedbaskdaositioning system, and
present our experimental results and findings.
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3.1. User Interface and Experimental Testbed

We start by providing a brief description of our user integfaised to input explicit feedbacks
into our system. Fig. 3 shows the interface for a user to ifgrdbacks that are to be incorporated
into our positioning system. We can observe from the interfdoat, a user is always provided
with the system’s estimation of kifger position (i.e., the shaded circle on the map) togethtir wi
the RoC. Subsequently, the user can choose to inform thersyatout higher actual location by
clicking on the corresponding position within the map, anekping the “Give feedback” button.

We have two experimental testbeds. The first is located érsidamphitheater of our school,
which spans over an area of 54G.nThe second is located within a research laboratory having
an area of 214 f and includes many small cubicles for the research studérsave used four
Aopen MP945 Mini PCs to serve as our access points (APs) hadrie placed near the ceilings.
The locations of these APs in the two testbeds are shown in3-a&nd 4 respectively, marked
as stars. Each MP945 is incorporated with BT-2100 Class &tBtih adapters, which keep on
scanning for Bluetooth packets by issuing inquiries pecalty. All our mini PCs run SuSe 10.1
Linux distribution with the latest BlueZ protocol stack [16

3.2. Usage of User Feedback in Positioning Algorithms

Depending on the positioning algorithm used, there areouarivays how a user feedback
can be utilized. In the following, we briefly describe the tamproaches we have undertaken in
order to make use of the user feedback into our positioniggrahm.

(i) We utilize interpolation technique to create the RSShatgre of dictitioustraining point
where no training sample has been taken. Unlike a typicakfprint-based positioning
system that requires an exhaustive sample collection phsepolation helps to achieve
the same goal with much fewer training samples. In additibis, advantageous in our
case since the user feedback locations may not be uniforntlowentire localization area.
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Interpolation technique can help to fill up the voids in trening database where no user
feedback has been obtained. We have used weighted lineassémn to generate the inter-
polated RSSs exploiting spatial similarity like our praysowork [17]. In order to deduce
a fictitious training pointj, each AP’s RSS is formulated according to (3) (given in Ap-
pendix B), exploiting the signal strength values colleadéthe APs for user feedbacks. If
there areK APs, K different regression equations will be formed in order to dedigirgle
fictitious training point’s fingerprint. However, theftirence from our previous work [17]
is — whereas the weight in (4) corresponds only to the spsitiallarity factor; here, the
user feedback’s credibility factor is also taken into cdesation regarding the weight cal-
culation. The spatial similarity weights are assignedrtglinto account the property which
basically states that the RSSs observed at neighborintidasdend to exhibit similar prop-
erties [7]. In our experiments, we have chosen this spatialagity weight to be inversely
proportional to the distance between a certain fictitiouiatpjoand the actual training point
i(i.e., %) In Appendix B, we provide the details about how interpiolatechnique pre-
dicts the RSS of #ictitioustraining point where real training samples are not collecte
obtained through user feedbacks.

(i) We have used two well-known localization algorithm(j weighted K-Nearest Neighbors
(KNN) and Bayesian) [2, 4] where the user feedbacks’ weightésutilized to denote the
weights of the algorithms.

3.3. User Models

In this section, we describe our two user models which tryalate the two broad categories
of the user behavior while giving feedbacks. These “useaitiaek behavior’ models are utilized
in the experiments to emulate tresl user feedbacks from our collected data.

(i) User Model 1:In case of explicit feedback, the user may be unfamiliar Withsurround-
ings, and subsequently fails to pinpoint/hisr actual position on the map. In case of im-
plicit feedback, the system’s interpretation of the usdation may not be fully accurate.
We model this phenomenon ag,{]" = [ + N(0,?)  ya + N(O, 0-2)]T, wherex, andy;,
denote the actual location coordinates when no uncertaritwolved andN(0, o2) is a
normal distribution with zero mean and varianeé& We assume that this is the most
common model of a user’s feedback and it is also capable o&limydmany diferent user
feedbacks (by varyingy). For example, we know thateell-behavediser is the one whose
claimed location does not deviate from/hisr actual location by a large margin. For exper-
imental purposes, we modelll-behavediser as one where the uncertainty parameter of
the feedback position (i.ec;?) does not exceed the system’s ultimate achievable average
accuracy. Since our positioning system c#li@io3m average accuracy, we assume that the
feedback position of avell-behavediser regarding our system conforms to the equality,
o= V3m.

(i) User Model 2:In case of explicit feedback, there may be some feedbacksawhe user
feels totally unsure about his actual position correspagtth the map. In case of implicit
feedback, the system’s interpretation of the user’s locathay be way fi. We model this
phenomenon asx[y]" = [U(0, Xmax) U(0,Yma]", Wherexmax andymax depict the max-
imum possible location coordinates of the testbed @) denotes a uniform distribution
over the range. The feedbacks given by those who try to sgbadkee positioning system
intentionally, also fall into this category.
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3.4. Classification of User Feedback
Based on our user models of the previous section and the tasglgnment policy for each
individual feedback discussed in Section 2.3.2, we classiér feedbacks into four categories:

(i) Super-user feedbacKhese are the feedbacks provided by system administraidralike,
and they are expected to be included into the system with 1g$lbéf (i.e.,w = 1).

(i) Regular-user feedbackie consider the feedbacks from ordinary users who use the pos
tioning system'’s services to be the mainstay in the fineayini our system. These are the
most common type of feedbacks which are amalgamated witk soicertainties. Oudser
Model 1discussed in the previous section tries to emulate thiscpéat type of feedback.

(i) Landmark feedbackThe APs can be regarded as sources of feedbacks as well tis&yce
also transmit radio signals, and their locations are knomah faxed. We have four such
APs in each of our experimental testbeds as shown in Fig. Fand!, respectively. Note
that, the RSS signature vector of this type of feedback cmeprofK — 1 components
instead ofK, because one of thi€ APs is actually considered as an MN here. We fill
this void with the maximum RSS rating corresponding to oweBboth adapter. Apart
from that, various other devices (e.g., beacons, cardersathgs etc.) installed at several
fixed positions in the building could act as continuous sesiraf landmark feedback too.
Landmark feedback is a form of super-user feedback (justhigasources are static fixed
points) since it is always believed with = 1. Therefore, the inclusion of such static
fixed points as a source of feedback will increase the numibeuper-user feedbacks, and
subsequently, will have positive impact on localizationwaacy.

(iv) Spurious-user feedbacKhe feedbacks given by those users who are oblivious abeint th
surroundings, and also those who aim to sabotage the pusiisystem, are harmful.
Instead of fine-tuning the system to achieve better accutlaeye spurious-user feedbacks
could make the positioning error larger if incorporated.r @eight-assignment policy of
Section 2.3.2 ensures that these types of feedbacks aredittet.

3.5. Results and Findings

The results of Section 3.5.1 are based on the experimertebflaur lecture theater testbed
(Fig. 3) while the results presented in Sections 3.5.3 afdl&ire obtained from our research
laboratory testbed’s data (Fig. 4).

3.5.1. Interpolation aids our user feedback based positipsystem

In order to demonstrate the usefulness of our interpoldtased approach described in Sec-
tion 3.2, we have carried out an experiment that only comsidaper-user feedbacks, where
all feedbacks are assigned the maximum weight @ives 1). As can be seen from Fig. 5(a)
and 5(b), the system that uses interpolation easily oudpad the one that does not.

Since diferent users are expected to carry devices with heterogsrieodware, selecting
RSS as a location fingerprint could easily hamper a user &#dbased positioning system.
RSS is known to vary quite significantly at a particular lomatfor different device hardware
even under the same wireless conditions [17, 18, 19, 20]. reswat, we have chosen a robust
location fingerprint, namehSignal Strength Ofference (SSD)since it is argued to be able to
accommodate devices with heterogeneous hardware sautioike the RSS [17]. We also
verified our system’s robustness when the users input thettlfacks using fierent types of
devices (e.g., Bluetooth Class 1 or 2 devices), which coakilye occur in a real deployment
scenario. Fig. 5(a) and 5(b) show similar performance fdh loases, regardless of whether the
user feedbacks are given using only one type of device or not.
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(a) When KNN localization algorithm is used. (b) When Bayesian localization algorithm is used.

Figure 5: Demonstration of how interpolation helps to improwe positioning system’s accuracy — only super-user
feedbacks are considered here.

3.5.2. Evolvement of user feedback based positioningrayste

In this experiment, we investigate the prospect of creatipgsitioning system utilizing only
regular-users’ feedbacks from scratch. We try to estintatdinear regression cticients for
the equation in (3) (given in Appendix B) which are necesgarygenerating the interpolated
training points from user feedbacks. Here, we emulafieidint types of users by changing
the value ofo of “User Model I which we have defined in Section 3.3. We contend that if
the two linear regression cfieients (i.e.,a andb) computed from regular-user feedbacks can
somehow match the cfiicients computed from super-user feedbacks, then our oitgipn-
based approach should perform equally well even thougtetfeesibacks have uncertainties.
We see from Fig. 6(a) that using feedbacks from users eifgdibwer uncertainty (e.gg = 3)
can almost achieve the samas the case when no uncertainty is involved<0). Furthermore,
it can be noted from Fig. 6(a) that increasing the uncegamtiser feedbacks have thffect of
swaying the estimatealvalues away from the- = 0 case. Similar observations have been made
with the other cofficient,b.

In our interpolation-based approach, we first calculated¢igeession cdécients (i.e.a and
b) for all the APs at an interpolated point making use of the fesedbacks as training samples.
Subsequently, the RSS signatures of the APs at every iréegopoint are calculated, and all
of them are then treated as normal training samples togeilterthe user feedbacks in our
localization algorithm. Table 1 lists the average locdl@aerrors when a significant number
(= 500) of user feedbacks withftierent values of uncertainty parameterare being considered.
We see that the average accuracg{dn) achieved fos- = 3m case is very close to the accuracy
when there is no uncertainty.(3n). This is expected since the calculatedalue foro- = 3m
case after 500 feedbacks is very close todh&lue obtained for- = 0 (see Fig. 6(a)). The
higher uncertainty cases (e.g:,= 6m,o- = 9m, etc.) report coarser accuracy as can be seen
from Table 1, which is also justified according to their carghown in Fig. 6(a). Therefore,
we can approximate the regression ffi@@nts of our interpolated points more accurately for
user feedbacks with lower uncertainty which in turn yiel@dtér localization accuracy. In a
nutshell, we argue that if we decide to build our system wghrifeedbacks from scratch, our
interpolation-based approach may still enable us to aehieasonable accuracy, provided that
the user behavior does not stray too drastically. Note teatasults for this particular experiment
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Figure 6: Simulation results of howftierent user behaviorstact the regression cficienta values and correspondingly,
influence the system’s achievable average accuracy.

are obtained through simulation, unlike the others in thisgy where real experimental data are
used.

Table 1: Relationship between the Uncertainty Parametemd Average Localization Error

Number of Uncertainty Parameter, Average Localization Error

User Feedbacks dUser Model 1” (in meter)
c=0 31
o=3m 337
500 o =6m 398
o=9m 471
o=12m 618

3.5.3. Fine-tuning of an existing positioning system zitilj user feedbacks

In this section, we wish to show that we could fine-tune a pwsitg system in order to
achieve finer accuracy by exploiting our feedback-weigbkigmsng model, irrespective of any
assumption on user behavior. For this experiment, we chbwsaifferent combinations of
user feedbacks where one consists of ambll-behavedegular-user feedbacks while the other
comprises of 70% spurious-user and 30% super-user feeslbadboth cases, we assume that the
positioning system is already running with some feedba¢ks(dmark feedbacks 6 super-user
feedbacks) so that we can approximate the initial “RoC RybfConsequently, we can come up
with the feedback weight-assigning model of Section 2.8fthis initial state of our system.
We consider 137 testing points to evaluate the localizagioors which are completely fiiérent
from the user feedback points. As more user feedbacks beauailable, the weight-assigning
model continuously updates itself in a similar manner agipusly shown in Fig. 2(d), which
helps to fine-tune the system.
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Figure 7: Performance comparison of our feedback-weighgasgl model with other options in the fine-tuning of an
under-trained positioning system.

The two horizontal lines of Fig. 7(a) and 7(b) al@m represent the initial system’s per-
formance with only 10 training points. Our feedback-weigbsigning model shows that the
system’s performance improves when more feedbacks arepm@aied. Without our feedback-
weight assigning model, the system’s performance detgsrwhen spurious-user feedbacks
dominate as can be seen from Fig. 7(b). For 100% spurioustessgbacks scenario (the results
are omitted for brevity), our system’s performance remadtetively unchanged from the initial
system’s performance. This means that our feedback-weiggigning model could shield the
system from the adversdfect of this type of feedbacks. For the well-behaved user, chse
feedback positions may turn out to be very close to the agtasitions which will eventually
make them a bit similar to super-user feedbacks. The irmiusf super-user feedbacks into
the system always helps regardless of whether we are usingnodel or not. Therefore, the
“without feedback-weight assigning model” might have beean to perform almost similar to
(or even slightly better than) our model in Fig. 7(a). Our mitsdefectiveness over the “without
feedback-weight assigning model” can be realized whéemint types of feedbacks are mixed
(e.g., one instance can be seen in Fig. 7(b)).

We also compare the accgpgiect policy of location verification techniques discutse
Section 2.3 to incorporate a user feedback with varying i@oyulevel margins. If the accuracy
level margin is set too large-(6m), a number of spurious-user feedbacks may get througieto t
system, thereby causing it to perform worse. Setting atsiréegin (e.g., 1m) may overcome this
issue as can be seen from Fig. 7(b). However, if the accuesey inargin is set too strict, many
of the well-behaved regular-user feedbacks are rejecteds&juently, the system’s performance
does not improve much over the initial system when this tyfdfeedback dominates as revealed
in Fig. 7(a). On the contrary, our feedback-weight assigmitodel is quite automated (no need
for manual setting of accuracy level margin) and is shownadgsm reasonably well in the
presence of dierent types of feedbacks.

The 100% super-user feedback curves in both Fig. 7(a) anaHd the performance when
the feedbacks are given by super-users only (Wes 1). This performance is comparable
to the traditional fingerprint-based system where all theas are collected exhaustively by
administrators. This provides a performance benchmarthuser feedback based positioning
system.

15



,,,,,,,,
,,,,,,,,,,,,,,,,,,,

Average Error (in meters)
Average Error (in meters)

System without taking into account surroundings change ----x--
System adapting to surroundings change -~ |

System without taking into account surroundings change ----x---
System adapting to surroundings change -~ |

0

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Number of User Feedbacks Number of User Feedbacks

(a) 30% regular-user 70% super-user feedbacks. (b) 70% regular-user 30% super-user feedbacks.
Figure 8: Adaptation of our system when it perceives thastireoundings have changed.

Note that we have only provided Bayesian algorithm’s resulte KNN algorithm’s results
show similar trends, and are not included here.

3.5.4. Hject of change of surroundings on our user feedback basetigruag system

One of the major drawbacks of existing fingerprint-basedtipming systems is that it is
not adaptable to environmental changes, i.e., the trajliage has to be repeated all over again
for the changed surroundings. Our system does nidérsfrom such shortcomings since user
feedbacks are continuously employed to fine-tune it. Famibee, our system’s whole process of
adapting to the changed environment is automated, and dbesquire any outside intervention.
In order to help perceive that there is a change in the sudiognwe exploit landmark feedbacks.
Since the landmark feedbacks from the APs are continuogisystem can approximate the APs’
positions all the time. We infer that there is a change in@urding when the estimated positions
of all the APs deviate quite significantly from their actuakfions. Algorithm 1 (in Page 39)
describes the adaptation process of our positioning sygtemm algorithm 1, we see that, when
the system perceives its surroundings to have changedeitsanto the adaptation mode. In this
mode, all the previously incorporated user feedbacks a@cagted with an exponential outdate-
factor together with their assigned weights. As a resulty nser feedbacks are given more
importance.

In order to emulate a change in the surrounding in our expeeTis) we swapped the positions
of two of our APs as shown in Fig. 4. This serves our purposeedting a changed environ-
ment since the two APSs’ signal strength signatures chanige sjgnificantly. Our initial system
consists of 50 super-user feedbacks fromdtiesetting and we utilize 137 testing points from
thenewsetting to evaluate the localization errors. The two cuofddg. 8(a) and 8(b) depict the
performances of two systems where one system is incorgbveitd our surroundings change
algorithm and the other one is not. As can be seen from theeiguhe system which could
realize the change in surroundings, performs significamlyer in thenewsetting as more user
feedbacks are incorporated into the system. For this exjeeit, we choose two fierent combi-
nations of user feedbacks where in one scenario, the sgperfeedbacks dominate (Fig. 8(a)),
while in the other, the regular-user feedbacks dominatg. @b)). In both scenarios, our sys-
tem could adapt seamlessly with the surroundings change tNat, the super-user dominating
scenario demonstrates lower localization error for theesaumber of user feedbacks compared
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Algorithm 1 Adaptation of our feedback-based positioning system
System State: A positioning engine withsamples or user feedbacks. Let(pex) denote
the system’s expected RoC. It is a tunable parameter foryters administrator within which
he/she expects thK landmarks’ (e.g., APSs’) estimated positions to be verifiédll the K land-
marks’ estimated positions deviate from pex), the system infers surroundings change, and
enters the adaptation mode. The system returns to normad again when all th& landmarks’
estimated positions are within the system’s expected RgCrex). The landmarks’ positions are
estimated continuously by the system from the landmarkifaeks.

1: for everynewbatch ofN feedbacks collectedo
if all K APs’ estimated positions deviate from,, pex) then
3 {adaptation mode
4 h < « {outdate factora small constant
5. dse
6: {normal mod¢
7
8
9

h <« 0 {no outdate factgr
end if
: fori=1tondo

10: w; « exp (~h) x w; {outdating older samples’ weightshfz 0}

11:  end for

122 n<n+N

13:  calculate the interpolated RSS signatures as discussepparilix B

14:  run localization algorithm (e.g., Bayesian or KNN) with pithe feedbacks having; > y
as test samples among thewfeedbackgw; andy are defined in 2.3)2

15:  update feedback-weight assigning model's parametersdhg, €, & andenax) of Sec-
tion 2.3.2.

16: end for

17: goto 1

to the regular-user dominating scenario which is justiéiafilhe presence of spurious-user feed-
backs also does noffact the adaptation process (the results are omitted foitfpyeVhis is due

to our feedback-weight assigning model which is found tolmessful in dealing with them in
the previous section. We have also observed in our expetintleat around 26- 30 user feed-
backs are required for the system to return to its normal nfiogleto leave its adaptation mode).
This state transformation occurs when the landmark feddbstart to give better estimations of
the APs’ positions again.

4. Related Work

The current researchferts for indoor positioning systems can largely be dividet itwo
main categories:

e Those that make use of angle of arrival (AoA), time of arrifaA), and time dfference of
arrival (TDoA) methodologies. This family of localizatieachniques relies on specialized
hardware (e.g., RF tags, ultrasound or infrared receietcs) and extensive deployment
of dedicated infrastructure solely for localization puspg21, 22, 23].
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e Those that utilize the correlation between easily measeirsignal characteristics (e.g.,
RSS) and location. These location fingerprinting soluttoyo build a positioning system
on top of existing infrastructure (e.g., Bluetooth netwa)rl2, 3, 4, 15] in a costfiective
way.

Our work focuses on fingerprint-based positioning systéms the second category above. Due
to space limitation, we only provide an overview about soxistimg approaches under this cat-
egory. Avid readers may consult [13, 24] for more in-dep#tdssions. Location fingerprinting
techniques became popular with RADAR [2], mainly becaustnefunavailability of appropri-
ate radio signal propagation models for indoor environmehtalso opened the door for many
different approaches to be applied for the indoor localizatioblpm. For example, Nibble [3] is
one of the first systems to use a probabilistic approach f@tion estimation. To date, Ekahau’s
Positioning Engine Software [25] claims to be the most aateuiocation system based on proba-
bilistic model; they claim a one-meter average accuracly aihort training period. Battiét al.
applied statistical learning theory [26] and neural nekgd27] to tackle the indoor localization
problem.

The application of user feedback to incrementally build nefiune an indoor positioning
system has not beenfigiently explored in existing literature. Although UCSD's#veCam-
pus project tries to build a positioning system incremédytay incorporating user-based survey
mechanisms [5], their user inputs are treated riteriéntly from an administrator’s fingerprint-
ing data, and are accepted with complete trust. As showieearlFig. 8(b), such a positioning
system in which all user inputs are assigned a feedbackhtvefgv = 1 by default would sfier
in terms of accuracy when spurious user feedbacks are gplent

We discussed some location verification techniques (i@sitipning system verifying the
location claimed by a source node) [8, 9, 10, 11] in Secti@h&nd outlined their viability when
adopting them for our system. These verification technigurespertinent to our work since
our system’s feedback-weight assigning model determinesredibility (i.e., weightw) of a
feedback, which is similar to verifying a user’s claim (irseaf explicit feedback) or the system’s
claim of a user’s location (in case of implicit feedback). ®Weso compare our feedback-weight
assigning model’s performance with the acgegpect policy of location verification techniques
in Fig. 7(a) and 7(b), and discuss the results in Sectiol®3Fom the results, we observe that, it
is hard to set a unique tolerance level (i.e., the marginiwitiich the feedbacks are accepted)
of the accepteject policy in order to make it workfiéciently across various mixtures of user
feedbacks. On the contrary, our model turns out to be rolursta diferent mixtures of user
feedbacks.

5. Conclusion and Future Work

In this paper, we propose a novel idea where users can takénpi@me-tuning an under-

trained positioning system. Our feedback-weight assmmindel which assignelativeweights

to user feedbacks, fine-tunes an under-trained positiosystem, thereby, helps it to achieve
finer accuracy. We also show that, if users aedl-behavedwe can actually construct a po-
sitioning system incrementally from scratch exploiting terpolation-based techniques with
the user feedbacks. We contend that the exhaustive trgdhiage seen in the traditional location
fingerprinting techniques might be relieved through it. diigh the use of landmark feedbacks,
we could successfully infer changes in the environment, saitth our system’s mode to be
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more adaptable. The whole procedure is quite dynamic, adres no intervention from the
positioning system administrator’s part.

In summary, we conclude that our user feedback-based quisigj system is fairly accurate,
cost-dfective, robust and requires no or very little training phasethe following, we list the
limitations of our work, and also mention the future direos that we foresee:

¢ We have implemented our system in two testbeds — one is plas&tt an amphitheater
while the other is within a research laboratory. Our systemigpmed quite well in both
scenarios as can be seen from the results. It should alsortfiedievith other types of
testbeds that introduce more multipatfeets and obstructions in order to be more conclu-
sive.

e Our current positioning system is based on Bluetooth wesetechnology, but it can easily
be extended to accept feedbacks from devices using otHerdlgies as well (e.g., Wi-
Fi).

e We actually performed anfidine training phase like a traditional fingerprinting system
collect the experimental data ourselves. Subsequendgetldata are amalgamated with
uncertainties to emulate the various user models as disgussSection 3.3. The practical
deployment of our system would allow us to obtain feedbaak®s diferent types of users
who may use the positioning service. This could potentiallgw us to model real users’
behaviors more accurately.

e A positioning system exploiting smart ways to obtain implfeedbacks from users (e.qg.,
[6]) may eliminate the need for explicit feedbacks altogethrhis approach might even
have greater potential rather than solely depending orsugeodwill for obtaining feed-
backs. The practical deployment of such a system may feteheisting results in this
regard.

A. Proof of Theorem 1

The linear combinatiol; ; a«Ski is an unbiased estimate B{Sy) because (Y. ; axiSki) =
>t adE(Sk) = E(Sk) XL, ai = E(Sk). Since the estimate is unbiased, then the particular
combination that is mostfécient is the one which minimizes the variance, ¥gt¢ aiSki) =
> ai? var(Sy) = var(Sy) > a,. Consequently, the problem can be reformulated as, mini-
mize Y, aq? subject toy. | aq = 1. Now, using basic optimization theory, it directly follew
that the particular linear combinatiqﬁwzi”:1 Ski, or the sampleanean Sy, is the most ficient
unbiased estimator @&(Sy).

B. Calculation of RSS at I nterpolated Training Points

Suppose, there ame user feedbacks for which the real measurements of RSSs leave b
taken at theK APs. Our goal is to emulate the RSSsKfAPs for J possible interpolated
training points utilizing those real measurements of usedbacks.

As in [17], the linear regression RSS prediction formuladobsn the log-normal shadowing
model takes the following form,

Vi = aXi+ b (3
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whereyj; = the predicted RSS of tHd AP when the MN is ai™" training point,a, = —108, X =
log(dki) andby = P(do)lasm + 103 10g(dp). Utilizing both the spatial similarity and user feedback
credibility factors, the weighted least mean square mipatidn function for our linear regression
model can be written as,

n
Re(ajx, bik) = Z Cii[yki — (@ + bi)]? 4)

i1
wherey,; = real measurement of RSS at tkie AP when the MN is at™" training point,x =
log (ki) = log distance ok AP from thei®" training point,cji = % uj = normalized

weight considering spatial similarity of RSS—% v; = normalized weight foi' feedback

considering its credibility= f’% dj = distance of interpolated poirjtfrom thei®" training
point, aj, b = regression cdfcients of the linear RSS prediction formula of tki& AP for
ke {l2...,K},andj € {1,2,...,J}. Note that, depending on the interpolated pgjint
for which the RSS will be predicted, the associated weighdpaitial similarity factor (i.e.u;)

changes. Hence, an additional subscript is used in (4) totddhe regression cfiiients for an
AP w.r.t. different interpolated points compared to (3).

Denote,
Yk 1 xk ci 0 0 ... O
Yok 1 X 0 Cj2 0o ... 0 bi
Y= .|, Xk=]. . 1.Ci= . . .. . andBJ‘k= K.
: Do : P Ajk
Ynk 1 Xk 0 o 0 ... Cin

Using these matrix notations, now weférentiate (4) w.r.t8j and set it to zero,

0 o \T
i, (V- %81)" €1 (V- i) | = 0

9 T Ty T _
= E[(Jk - Bj Xk )C,—(Mk—XkBjk)] =0

0
= [V CiY - By X C Yk - Y CiXiBi + By XTCiXiBy | = 0
= ZBjkTXkTCij - ZMkTCij =0
= XTCJTXkBjk=XkTCjTyk.

If the matrix(XTCjTXk) is non-singular, the regression ¢eents are given by the formula,
-1
Bik = (XTCjTXk) XkTCjTyk. (5)

For a particular interpolated poirjt the regression cdigcients By of the k" AP’s signals
can be obtained through (5). Consequently, the RSS di'th&P for an interpolated poinjtcan
be emulated as,

RSﬁk = ajk Iog djk + bjk. (6)

Plugging the values o, bjx anddy (the distance of the interpolated poijnfrom kM AP)
into (6), we finally obtain the RSS fingerprint fgrconsidering only AR. To deduce the RSS
20



vector comprising of all th& APs for a particular interpolated poifit we have to follow the
same procedure for dtie {1,2,...,K}. Finally, in order to obtain the RSS vector of tieAPs
for all the J interpolated points over the localization area, we havepeat the whole calculation
of this section for allj € {1,2, ..., J}.
1 "
Note that, when all user feedbacks are believed equally,ave,b;i = % = E"ui_uj
i=1 Y% n i=1 =0

uji. In other words, only spatial similarity weight factor wdube taken into consideration in
calculating the RSS signatures of the interpolated points.
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