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Abstract

We propose an interpolation-based fingerprinting technique utilizing user feedback which does
not require an exhaustive training phase typically seen in the indoor localization solutions. We ar-
gue that the contribution of users’ feedback to any positioning system is two-fold. Firstly, users’
feedback greatly help in fine-tuning an under-trained positioning system with proper filtering.
Secondly, if users arewell-behaved, our experimental results show that the participation of end-
users can actually assist in the construction of a positioning system incrementally from scratch.
We also show that user feedback-based positioning system adapts quite well when surroundings
change. Our present system is built upon Bluetooth.

Key words: Positioning Systems, Indoor Localization, User Feedback,Bluetooth, Wireless
Networks.

1. Introduction

Location awareness is expected to be an integral part of future ubiquitous computing envi-
ronment [1]. In order to enjoy the benefits of pervasive computing, the knowledge of location
with some degree of accuracy is obligatory in both outdoor (e.g., GPS) and indoor scenario. Re-
cently, there has been a growing interest in indoor localization techniques that rely on in-building
communications infrastructure (e.g., Wi-Fi, Bluetooth, etc.) mainly because it allows the design
of an easily deployable low-cost positioning system. Most of these approaches utilize location
fingerprinting techniques [2, 3, 4], where some location-dependent signal parameters are col-
lected at a number of locations as location fingerprints in an“offline training phase”. During
the “online location determination phase”, the signal parameter obtained iscomparedwith those
training data to estimate the user location.

The procedure of creating the training database of signal parameters entails a laborious of-
fline phase because the location system administrator needsto take readings at every selected
location of interest. Moreover, if for any unforeseeable reason, the setup changes (e.g., due to
renovation, rearrangement of furniture, etc.), the whole training phase needs to be repeated again
in the changed environment. In this paper, we propose an ideawhere the end-users can actually
contribute to the construction of a positioning system incrementally, as well as the fine-tuning of
an under-trained system. As a result, the aforementioned drawbacks of the fingerprinting tech-
niques may be relieved. We defineuser feedbackas the information about a user’s actual position
as indicated by the user to the system, either explicitly or implicitly.
Preprint submitted to Pervasive and Mobile Computing April 20, 2010



We claim that the contribution of users’ feedback to any positioning system is two-fold.
Firstly, user feedbacks greatly help in fine-tuning an under-trained positioning system with proper
filtering of the malicious feedbacks. Secondly, if users arewell-behaved, our experimental results
show that the participation of end-users can actually assist in the construction of a positioning
system incrementally from scratch. UCSD’s ActiveCampus project also tries to solve the indoor
localization problem with the help of user feedbacks [5]. They utilize the corrections made
by users on their estimated positions similar to us. However, their interpretation of the user’s
correction is simply a location and its received signal strength (RSS) signature pair, similar to a
traditional training sample, which is completely different from how we interpret user feedback.

We contend that the combination of user feedback together with interpolation methods could
eliminate the need for an exhaustive training phase, as the need for signal strength survey by
administrators has been the key obstacle for the mass deployment of fingerprint based indoor
positioning system. Our system can be particularly beneficial for large area deployment where it
is quite demanding on the system administrator’s part to visit all the possible areas and tirelessly
perform the training phase. A user’s feedback may not alwaystruly reflect his/her actual location
either due to the user’s carelessness while giving feedbackor deliberate ill intentions. Therefore,
we define a Region of Confidence (RoC) with each estimated position to provide a measure of
likelihood of a user’s position, which is not just useful to the user when they give feedback; but
also helps to assigncredibility to each individual feedback in order to aid its incorporation into
our system.

The important issue of adapting the positioning system seamlessly when its surroundings
change (without performing the entire training phase all over again), has been overlooked in most
fingerprint-based localization research. In our work, we emphasize that, a positioning system
that exploits user feedbacks would guarantee reasonable performance over a longer period even
if its surroundings change. This is crucial as the environments in a real system could constantly
change, and it will be very difficult and demanding if system administrators need to monitorsuch
changes and having to perform the signal strength survey allover again every time it changes.
Apart from the above novelties, we have also denoted the signal strength signature of a user
feedback in an efficient way and proved it analytically. In the following, we summarize our
objectives:

• We try to relieve the exhaustive training phase of a traditional fingerprint-based positioning
system through user participation in both explicit and implicit ways.

• We show that user feedback can greatly help in fine-tuning an under-trained positioning
system which is already in operation. Moreover, under certain assumptions on user be-
havior and with the help of our interpolation method, we showthat a positioning system
solely based on user feedback could be built from scratch.

• We also show that, with the help of user feedback, changes in surroundings could be
detected, allowing the system to adapt to the new environment in a seamless manner.

We hold the view that, user feedback may be obtained in both explicit and implicit ways.
Explicit feedback is the one where user specifically inputs acorrection to the system’s estimation
of his/her whereabouts. Implicit feedback is indirectly obtainedfrom the user by the system
without the user being aware of it. In the following, we list aseveral ways in which user feedback
(explicit or implicit) may be obtained:
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• In an indoor scenario, a user may sometimes know where he/she is at present, but he/she
may wish to obtain the route to another place within the same building from there. By
explicitly inputting a more accurate starting point than what the system suggests, he/she
can obtain a more refined route from the system than the original suggested route.

• In a commercial system, a user who volunteers to provide explicit feedback in an area
he/she is familiar with, may earn credits for using the positioning service in an unfamiliar
area later on.

• User trails as in [6] could be utilized to provide implicit feedback. In [6], the user trail
is recorded as an ordered sequence of landmarks (e.g., access points (APs), card readers,
etc.) where he/she has visited. To formulate a user feedback from trails, wecould collect
the signal strength samples of a user device between the user’s visit to two successive
landmarks. Since the start and end positions of the user are known (i.e., the two landmarks’
positions), the intermediate locations could be interpolated by applying some assumptions
on the user movement (e.g., constant speed). Subsequently,these interpolated locations
could be correlated with the signal strength samples collected and treated as user feedback.

• Various landmarks (e.g., APs, tags, card readers, etc.) installed at several fixed positions
in the building could act as continuous sources of implicit feedback as well.

The rest of the paper is organized as follows. In Section 2, wediscuss our user feedback
model and explains its various components elaborately. Section 3 describes our user feedback
based positioning system in detail and presents experimental results and findings. In Section 4,
we provide a brief description of related works. Finally, wedepict in Section 5 the conclusions
drawn and future work.

2. User Feedback Model

As previously mentioned, user feedback is the information about a user’s actual position as
indicated by the user to the system either explicitly or implicitly. In this section, we discuss how
the user feedback is visualized from a positioning system’spoint of view. Whenever a user inputs
feedback to the system, it is interpreted as,F = (L,S,w), where

L = [x y]T = the position indicated by a user,

S = [S̄1 S̄2 . . . S̄K ]T
= the RSS signature of the feedback captured at theK APs,

w = the degree at which a system believes the feedback, i.e.,

thecredibility or weightof each individual feedback.

Next, we elaborately discuss all three components of a user feedback in Section 2.1, 2.2 and 2.3,
respectively.

2.1. Location Indicated by User,L
A user feedback is obtained when the user indicates his/her actual position to the system

(either explicitly or implicitly). This location information is generally interpreted by the system
as Cartesian coordinates (i.e., [x y]T) in an indoor environment. In practice, there might be some
uncertainties involved when a user tries to indicate his/her actual position at the time of providing
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Figure 1: Characteristics of signal strength samples utilized to define the signature of user feedback

feedback to the positioning system. In case ofexplicit feedback, these uncertainties might arise
owing to the carelessness on the user’s part while pinpointing his/her location on the map, or
he/she may deliberately provide inaccurate location information. In case ofimplicit feedback,
these uncertainties arise when the system’s predicted location deviates from the user’s actual
position. We will discuss two different user models in Section 3.3 which try to broadly emulate
these two types of user behaviors while providing feedback.

2.2. Signature of a User Feedback,S
We first discuss our choice of a user feedback’s signature, and then prove that it is an efficient

one. During the offline training phase of a fingerprint-based positioning system, we know that
the system administrator positions himself/herself at a particular location of interest for the RSSs
to be measured at the APs. The RSSs perceived at the APs actually denotes the signature of that
particular location. We also utilized the RSSs measured at the APs during a user feedback to
denote its signature in a similar way taking into account some additional details. For example,
in order to denote the signature of a user feedback, we samplethe signal strengths perceived at
APs over a 5-second window, and instead of using a single sample from each AP, themeanof all
the samples over the 5-second window has been used. Furthermore, the time when a user clicks
his actual position in the map is treated as the median of thatwindow. Our approach is taken in
view with the following facts:

(i) Whenever a user clicks to input feedback, it is reasonableto assume that he/she has been at
that particular location for a while. Hence, we have chosen the clicking instant of the user
as the median of the 5-second window, rather than the beginning of the window.

(ii) The probability that an AP fails to collect any sample from the mobile node (MN) during a
user feedback is greatly reduced as well. Fig. 1(a) shows some cases when our AP failed
to receive any sample from the MN within certain slots of a user feedback’s time-window.
If the probability that an AP receives a sample from an MN isq, then the probability
that an AP receives at least one sample within the 5-second window can be expressed as,
1 − (1− q)5m, wherem is the number of packets sent by the MN within a 1-second slot
and each 1-second slot is assumed to be independent. For example, if q = 0.5 andm = 2,
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the probability of getting a sample at the AP during a user feedback increases from 0.75 to
0.999 when a 5-second window is considered compared to 1 second.

(iii) Capturing more samples should provide more information about the signal strength distri-
bution at a particular location, which generally has a tail (see Fig. 1(b)). The use of just a
single sample would be unlikely to work well.

(iv) The meanof all the collected samples’ signal strengths inside the time-window is an effi-
cient unbiased estimate of a user feedback’s signature compared to any other linear combi-
nation of the samples’ RSSs. This can be realized with the help of Theorem 1.

Theorem 1. Suppose Sk denotes the signal strength distribution of the samples collected at the
kth AP during a user feedback. If Ski specifies the ith sample’s RSS of the n samples observed
inside the time-window at that AP, then the linear combination of observations

∑n
i=1 akiSki is

an unbiased estimate of E(Sk) given
∑n

i=1 aki = 1. It is also the most efficient one when aki =
1
n ,∀i ∈ {1,2, . . . ,n}.

P. This can be proved with basic estimation theory properties. The proof is shown in Ap-
pendix A.

Corollary 1. If S̄k is an efficient unbiased estimate of the signal strength samples’ signature
collected at the kth AP inside a time-window, then for a positioning system with KAPs,S =
[S̄1 S̄2 . . . S̄K ]T is indeed an efficient unbiased estimate of a user feedback’s signature.

P. Corollary 1 can be realized by extending Theorem 1 for all the K APs, together with the
assumption that the APs are independent of each other [7].

2.3. Credibility or Weight of a User Feedback, w

Without the credibility factor,w, a user feedback is typically a traditional training sample
of location and RSS signature pair (L,S) from a positioning system’s perspective. The tradi-
tional training samples are generally collected by a positioning system’s administrative people.
Therefore, all the samples are treated with equal importance. On the other hand, the sources of
user feedbacks can be different entities (e.g., system administrators, normal users, intruders etc.).
Consequently, there should be certain credibility factor associated with each feedback given,
i.e., a measure for the system to believe that the user is actually at his/her claimed position. In
many ways, this approach is similar tolocation verificationtechnique which ensures that the
claimed source location is associated with a high level of trust. Existing location verification
techniques [8, 9, 10, 11] either accept/reject a source’s location claim. They generally require
specialized hardware (incorporated with non-RF technologies) to verify a source’s location claim
more precisely [8, 9] or the accuracy level within which the location claim is verified, is set to be
quite large [10, 11]. However, our positioning system has certain implications which makes the
use of these location verification techniques infeasible:

(i) Our positioning system is built upon RF technology (Bluetooth) preferably using off-the-
shelf hardware in order to provide location service in a cost-effective way. Consequently,
the more precise solution to verify a location claim with thehelp of specialized hardware
is not applicable.

(ii) The accept/reject policy of the existing location verification techniques would restrict the
user feedback to have only one of the two extreme values, i.e., w ∈ {0,1}. If a strict margin
is set for incorporating the user feedback, then many usefulfeedback might be filtered
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out. On the contrary, if a large tolerance level is set, many malicious user feedback might
be incorporated which may ultimately cause the actual accuracy offered by the system to
deteriorate.

Therefore, instead of an accept/reject policy of the existing location verification techniques, we
come up with a strategy which assignsrelativeweights to the user feedbacks utilizing their cred-
ibility. Later on, it will be shown that, this approach actually helps in fine-tuning an existing
positioning system to achieve better accuracy. Next, we elaborately describe how the user feed-
backs are assigned relative weights based on their credibility while being incorporated into the
system. In order to realize this, we first describe the “Region of Confidence (RoC)” concept,
which subsequently helps to derive our weight assignment policy for each individual feedback.

2.3.1. Region of Confidence
We define a system parameter, RoC, which gives a measure of thesystem’s overall accuracy

and precision1. We express RoC as a two-parameter entity, i.e., (e, p), where the parameters
e, andp, denote the accuracy grain size and the expected precision of the system, respectively.
In localization literature, the term “accuracy” generallyindicates the grain size of the position
information provided (in some works, the accuracy grain size is referred as “localization error
distance” as well), while the term “precision” specifies howoften we could attain that accu-
racy [13]. For example, if a positioning system can determine positions within 3 meters for
about 90 percent of the measurements, that particular system qualifies to be 90% precise in pro-
viding 3-meter accuracy. Intuitively, a higher precision would compel the system to provide a
coarser accuracy, and similarly, in order to achieve finer accuracy, the system may turn out to be
not so precise. We define RoC in a way that considers both requirements, in order to facilitate our
feedback-based positioning system. In general, RoC provides a measure of likelihood of a user’s
estimated position and also influences the weights that would be associated with the feedbacks
which we describe later.

In order to create the “Precision vs. Accuracy” graph of Fig.2(a), which we term as “RoC
profile graph”, first we assume that our positioning system isalready in an initial state with some
training samples. Now, we inspect its performance whenwell-behavedusers’ (whose claimed
locations do not deviate from their actual locations by a large margin) feedbacks are incorporated
into the system in order to obtain the “RoC profile graph”. It can be seen that, the shape of
our “RoC profile graph” has a similar trend as those “Precision vs. Accuracy” curves found
in existing localization literature [14, 15]; it shows thatthe precision,p, increases with larger
accuracy grain size or localization error distance,e. Intuitively, the “RoC profile” may not be
fully reflective of the system’s actual state with only a limited number of user feedbacks. As
we gather more and more user feedbacks, we can approximate “RoC profile” more accurately
(using the feedbacks as both training and testing samples).In the following section, we depict
how the “RoC profile” has been utilized to derive the trend of the credibility to be assigned to a
user feedback.

2.3.2. Feedback Weight Assignment Policy
Since user feedbacks may contain dubious information, we should not treat all feedbacks

with equal importance. Whenever a user claims to be at a particular location via feedback, that

1Note that, our definition and purpose of RoC is quite different from an earlier work. In [12], RoC was formed
utilizing simple geometry in order to fightaliasing, i.e., to eliminate physically different locations which have similar
signatures in signal space.
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information is associated with a certain degree of credibility. In order to calculate this credibility
factor, consider a positioning system wheren user feedbacks have been utilized as test samples
to obtain the “RoC profile”. Subsequently, for any point (e, p) of Fig. 2(a), it is obvious from the
definition of RoC that,p×n user feedbacks’ estimated positions do not deviate from itsactual one
by more thane. In other words, if we think of a circle with the accuracy grain size or localization
error distance,e, as radius, thenp×n user feedbacks can be thought to be inside it. Now, suppose
if we increase the radiuseby a small amount∆e (i.e., p also increases in Fig. 2(a)), then∆n new
user feedbacks fall inside the new area. So, the proportion of user feedbacks falling inside the
area [π(e+ ∆e)2 − πe2] is ∆n

n . Consequently, we denote the probability of occurrence of auser
feedback inside this unit area as,

λ =

∆n
n

[π(e+ ∆e)2 − πe2]
≈ ∆n

2πne∆e
. (1)

Subsequently, we define theweightor credibility of the ith user feedback utilizing (1) as follows:

ωi =
λi

max{λ1, λ2, . . . , λn}
. (2)
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Note that,ωi is just the normalized form ofλi so thatωi ∈ [0,1). Now, let us investigate the
rationale behind choosing such a weight assignment criteria. Consider two user feedbacks,i and
j with RoC (ei , pi) and (ej , p j), respectively. Their positions in the “RoC Profile Graph” are
shown in Fig. 2(a) whereei < ej . Following similar steps which were involved in obtaining (1),
we have,

λi ≈
∆ni

2πnei∆e
and λ j ≈

∆n j

2πnej∆e
.

The parameterse’s and∆n’s have certain effects in the above expressions:

(i) ei < ej implies the accuracy of theith feedback’s estimated position by the system is higher
than that of thejth user feedback. Therefore, from the system’s perspective, it is natural to
believe theith user feedback more than thejth one.

(ii) Consider the number of user feedbacks,∆ni and∆n j which fall into the two new areas that
have been formed by extending the radiusei andej by the same amount,∆e, respectively.
If ∆ni > ∆n j , then a greater number of user feedbacks which are used to create the “RoC
Profile Graph”, falls into theith feedback’s new area than that of thejth feedback’s area.
Consequently, it is natural for the system to believe theith user to be morewell-behaved
since the system’s “RoC Profile Graph” had been created utilizing thewell-behavedusers’
feedbacks as mentioned in the previous section. Therefore,it is only fitting to assign more
weight to theith user feedback than thejth one.

From Fig. 2(a), using the numerical values of the parameters, n = 44, ∆e = 0.5m, ei = 3m <
ej = 7m, and∆ni = 5 > ∆n j = 1, we find,λi > λ j . In other words, theith user feedback is
more believable than thejth user feedback from our positioning system’s perspective. Next, we
describe our ultimate simplified weight assignment policy for each individual feedback taking
into account the aforementioned facts.

By utilizing the RoC profile together with (2), we obtain the trend for weights to be associated
with user feedbacks as shown in Fig. 2(b). We observe that, the weight’s maximum occurs when
the accuracy grain size or the localization error (e) of the user feedback’s estimated position is
close to our system’s average localization error (≈ 3m), and decreases as the estimation error
becomes larger. Since it is desirable to have a weighting scheme that is simple and yet capable
of evolving with time as more user feedbacks become available, we define a feedback-weight
assigning model as follows. A maximum weight of 1 shall be assigned when the localization error
(e) of a user feedback’s position is within one standard deviation (es) from the average error (eav),
as shown in Fig. 2(c). This is in accordance with the view thatour system is fairly accurate and
therefore, we expect the system’s estimated positions’ errors to be around this average quantity.
Assigning maximum weight around one standard deviation of this average helps to build, and
subsequently, fine-tune the system gracefully. Fromeav+es to emax (maximum error), the weight
follows a similar trend as in Fig. 2(b). The horizontal dotted line (i.e., w = γ) of Fig. 2(c)
indicates the filter of our weighting scheme. We associate a constant weight,γ (which is 3 dB
lower thanwmax), to the user feedbacks when the estimation error is less than emin, in the view
that our system’s predictions of these positions are already quite good. The weight assignment
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Figure 3: Interface for user feedback input – the experimental testbed is a lecture theater in campus. For each user, the
system’s estimate of his/her position together with the RoC is shown. The users can click on their positions within the
map and press “Give feedback” button to provide feedback.

policy for theith user feedback of our model as shown in Fig. 2(c) can be summarized as,

wi =



















































γ ei ≤ emin

1+ (1− γ)( ei−eav+es
eav−es−emin

) emin < ei < eav − es

1 eav − es ≤ ei ≤ eav + es

1+ ( ei−eav−es
eav+es−emax

) eav + es < ei < emax

0 ei ≥ emax

whereei =
√

(xi − xest)2 + (yi − yest)2, [xi yi ]T is theith user’s claimed location, and [xest yest]T is
the system’s estimate of that user’s position.

Fig. 2(d) shows the evolvement of our feedback-weight assigning model as user feedbacks
are increasingly incorporated. Our initial system only consists oflandmarkfeedbacks (e.g., the
feedbacks from the 4 APs). Two other stages of our system are shown in Fig. 2(d) where 30 and
60 well-behaveduser feedbacks are subsequently incorporated. The definition of various user
feedbacks (e.g., landmark, well-behaved etc.) can be foundin Section 3.4. For each stage of the
system, 44 testing samples which are completely different from the incorporated user feedbacks
are utilized to obtain the error model. As can be seen, this model helps to improve the accuracy
of our system, since both the average error and its standard deviation decreases with increasing
number of user feedbacks.

3. User Feedback based Positioning System

In this section, we elaborately discuss our user feedback based positioning system, and
present our experimental results and findings.
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Figure 4: Our second experimental testbed which is located within a research laboratory.

3.1. User Interface and Experimental Testbed

We start by providing a brief description of our user interface used to input explicit feedbacks
into our system. Fig. 3 shows the interface for a user to inputfeedbacks that are to be incorporated
into our positioning system. We can observe from the interface that, a user is always provided
with the system’s estimation of his/her position (i.e., the shaded circle on the map) together with
the RoC. Subsequently, the user can choose to inform the system about his/her actual location by
clicking on the corresponding position within the map, and pressing the “Give feedback” button.

We have two experimental testbeds. The first is located inside an amphitheater of our school,
which spans over an area of 540 m2. The second is located within a research laboratory having
an area of 214 m2, and includes many small cubicles for the research students. We have used four
Aopen MP945 Mini PCs to serve as our access points (APs), which are placed near the ceilings.
The locations of these APs in the two testbeds are shown in Fig. 3 and 4 respectively, marked
as stars. Each MP945 is incorporated with BT-2100 Class 1 Bluetooth adapters, which keep on
scanning for Bluetooth packets by issuing inquiries periodically. All our mini PCs run SuSe 10.1
Linux distribution with the latest BlueZ protocol stack [16].

3.2. Usage of User Feedback in Positioning Algorithms

Depending on the positioning algorithm used, there are various ways how a user feedback
can be utilized. In the following, we briefly describe the twoapproaches we have undertaken in
order to make use of the user feedback into our positioning algorithm.

(i) We utilize interpolation technique to create the RSS signature of afictitious training point
where no training sample has been taken. Unlike a typical fingerprint-based positioning
system that requires an exhaustive sample collection phase, interpolation helps to achieve
the same goal with much fewer training samples. In addition,it is advantageous in our
case since the user feedback locations may not be uniform over the entire localization area.
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Interpolation technique can help to fill up the voids in the training database where no user
feedback has been obtained. We have used weighted linear regression to generate the inter-
polated RSSs exploiting spatial similarity like our previous work [17]. In order to deduce
a fictitious training pointj, each AP’s RSS is formulated according to (3) (given in Ap-
pendix B), exploiting the signal strength values collectedat the APs for user feedbacks. If
there areK APs,K different regression equations will be formed in order to deducea single
fictitious training point’s fingerprint. However, the difference from our previous work [17]
is – whereas the weight in (4) corresponds only to the spatialsimilarity factor; here, the
user feedback’s credibility factor is also taken into consideration regarding the weight cal-
culation. The spatial similarity weights are assigned taking into account the property which
basically states that the RSSs observed at neighboring locations tend to exhibit similar prop-
erties [7]. In our experiments, we have chosen this spatial similarity weight to be inversely
proportional to the distance between a certain fictitious point j and the actual training point
i (i.e., 1

d ji
). In Appendix B, we provide the details about how interpolation technique pre-

dicts the RSS of afictitious training point where real training samples are not collected or
obtained through user feedbacks.

(ii) We have used two well-known localization algorithms (i.e., weighted K-Nearest Neighbors
(KNN) and Bayesian) [2, 4] where the user feedbacks’ weightsare utilized to denote the
weights of the algorithms.

3.3. User Models

In this section, we describe our two user models which try to emulate the two broad categories
of the user behavior while giving feedbacks. These “user feedback behavior” models are utilized
in the experiments to emulate thereal user feedbacks from our collected data.

(i) User Model 1:In case of explicit feedback, the user may be unfamiliar withthe surround-
ings, and subsequently fails to pinpoint his/her actual position on the map. In case of im-
plicit feedback, the system’s interpretation of the user’slocation may not be fully accurate.
We model this phenomenon as, [x y]T = [xa + N(0, σ2) ya + N(0, σ2)]

T
, wherexa andya

denote the actual location coordinates when no uncertaintyis involved andN(0, σ2) is a
normal distribution with zero mean and varianceσ2. We assume that this is the most
common model of a user’s feedback and it is also capable of modeling many different user
feedbacks (by varyingσ). For example, we know that awell-behaveduser is the one whose
claimed location does not deviate from his/her actual location by a large margin. For exper-
imental purposes, we model awell-behaveduser as one where the uncertainty parameter of
the feedback position (i.e.,σ2) does not exceed the system’s ultimate achievable average
accuracy. Since our positioning system can offer 3m average accuracy, we assume that the
feedback position of awell-behaveduser regarding our system conforms to the equality,
σ =

√
3m.

(ii) User Model 2:In case of explicit feedback, there may be some feedbacks where the user
feels totally unsure about his actual position corresponding to the map. In case of implicit
feedback, the system’s interpretation of the user’s location may be way off. We model this
phenomenon as, [x y]T = [U(0, xmax) U(0, ymax)]T , wherexmax andymax depict the max-
imum possible location coordinates of the testbed andU(·) denotes a uniform distribution
over the range. The feedbacks given by those who try to sabotage the positioning system
intentionally, also fall into this category.
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3.4. Classification of User Feedback
Based on our user models of the previous section and the weight assignment policy for each

individual feedback discussed in Section 2.3.2, we classify user feedbacks into four categories:

(i) Super-user feedback:These are the feedbacks provided by system administrators and alike,
and they are expected to be included into the system with 100%belief (i.e.,w = 1).

(ii) Regular-user feedback:We consider the feedbacks from ordinary users who use the posi-
tioning system’s services to be the mainstay in the fine-tuning of our system. These are the
most common type of feedbacks which are amalgamated with some uncertainties. OurUser
Model 1discussed in the previous section tries to emulate this particular type of feedback.

(iii) Landmark feedback:The APs can be regarded as sources of feedbacks as well, sincethey
also transmit radio signals, and their locations are known and fixed. We have four such
APs in each of our experimental testbeds as shown in Fig. 3 andFig. 4, respectively. Note
that, the RSS signature vector of this type of feedback comprises ofK − 1 components
instead ofK, because one of theK APs is actually considered as an MN here. We fill
this void with the maximum RSS rating corresponding to our Bluetooth adapter. Apart
from that, various other devices (e.g., beacons, card-readers, tags etc.) installed at several
fixed positions in the building could act as continuous sources of landmark feedback too.
Landmark feedback is a form of super-user feedback (just that the sources are static fixed
points) since it is always believed withw = 1. Therefore, the inclusion of such static
fixed points as a source of feedback will increase the number of super-user feedbacks, and
subsequently, will have positive impact on localization accuracy.

(iv) Spurious-user feedback:The feedbacks given by those users who are oblivious about their
surroundings, and also those who aim to sabotage the positioning system, are harmful.
Instead of fine-tuning the system to achieve better accuracy, these spurious-user feedbacks
could make the positioning error larger if incorporated. Our weight-assignment policy of
Section 2.3.2 ensures that these types of feedbacks are filtered out.

3.5. Results and Findings
The results of Section 3.5.1 are based on the experimental data of our lecture theater testbed

(Fig. 3) while the results presented in Sections 3.5.3 and 3.5.4 are obtained from our research
laboratory testbed’s data (Fig. 4).

3.5.1. Interpolation aids our user feedback based positioning system
In order to demonstrate the usefulness of our interpolationbased approach described in Sec-

tion 3.2, we have carried out an experiment that only considers super-user feedbacks, where
all feedbacks are assigned the maximum weight (i.e.,w = 1). As can be seen from Fig. 5(a)
and 5(b), the system that uses interpolation easily outperforms the one that does not.

Since different users are expected to carry devices with heterogeneous hardware, selecting
RSS as a location fingerprint could easily hamper a user feedback based positioning system.
RSS is known to vary quite significantly at a particular location for different device hardware
even under the same wireless conditions [17, 18, 19, 20]. As aresult, we have chosen a robust
location fingerprint, namely,Signal Strength Difference (SSD), since it is argued to be able to
accommodate devices with heterogeneous hardware solutions unlike the RSS [17]. We also
verified our system’s robustness when the users input their feedbacks using different types of
devices (e.g., Bluetooth Class 1 or 2 devices), which could easily occur in a real deployment
scenario. Fig. 5(a) and 5(b) show similar performance for both cases, regardless of whether the
user feedbacks are given using only one type of device or not.
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Figure 5: Demonstration of how interpolation helps to improveour positioning system’s accuracy – only super-user
feedbacks are considered here.

3.5.2. Evolvement of user feedback based positioning system
In this experiment, we investigate the prospect of creatinga positioning system utilizing only

regular-users’ feedbacks from scratch. We try to estimate the linear regression coefficients for
the equation in (3) (given in Appendix B) which are necessaryfor generating the interpolated
training points from user feedbacks. Here, we emulate different types of users by changing
the value ofσ of “User Model 1” which we have defined in Section 3.3. We contend that if
the two linear regression coefficients (i.e.,a andb) computed from regular-user feedbacks can
somehow match the coefficients computed from super-user feedbacks, then our interpolation-
based approach should perform equally well even though these feedbacks have uncertainties.
We see from Fig. 6(a) that using feedbacks from users exhibiting lower uncertainty (e.g.,σ = 3)
can almost achieve the samea as the case when no uncertainty is involved (σ = 0). Furthermore,
it can be noted from Fig. 6(a) that increasing the uncertainty in user feedbacks have the effect of
swaying the estimateda values away from theσ = 0 case. Similar observations have been made
with the other coefficient,b.

In our interpolation-based approach, we first calculate theregression coefficients (i.e.,a and
b) for all the APs at an interpolated point making use of the user feedbacks as training samples.
Subsequently, the RSS signatures of the APs at every interpolated point are calculated, and all
of them are then treated as normal training samples togetherwith the user feedbacks in our
localization algorithm. Table 1 lists the average localization errors when a significant number
(= 500) of user feedbacks with different values of uncertainty parameter,σ, are being considered.
We see that the average accuracy (3.37m) achieved forσ = 3m case is very close to the accuracy
when there is no uncertainty (3.1m). This is expected since the calculateda value forσ = 3m
case after 500 feedbacks is very close to thea value obtained forσ = 0 (see Fig. 6(a)). The
higher uncertainty cases (e.g.,σ = 6m, σ = 9m, etc.) report coarser accuracy as can be seen
from Table 1, which is also justified according to their curves shown in Fig. 6(a). Therefore,
we can approximate the regression coefficients of our interpolated points more accurately for
user feedbacks with lower uncertainty which in turn yields better localization accuracy. In a
nutshell, we argue that if we decide to build our system with user feedbacks from scratch, our
interpolation-based approach may still enable us to achieve reasonable accuracy, provided that
the user behavior does not stray too drastically. Note that the results for this particular experiment
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Figure 6: Simulation results of how different user behaviors affect the regression coefficienta values and correspondingly,
influence the system’s achievable average accuracy.

are obtained through simulation, unlike the others in this paper where real experimental data are
used.

Table 1: Relationship between the Uncertainty Parameter,σ, and Average Localization Error

Number of Uncertainty Parameter,σ Average Localization Error

User Feedbacks of“User Model 1” (in meter)

σ = 0 3.1

σ = 3m 3.37

500 σ = 6m 3.98

σ = 9m 4.71

σ = 12m 6.18

3.5.3. Fine-tuning of an existing positioning system utilizing user feedbacks
In this section, we wish to show that we could fine-tune a positioning system in order to

achieve finer accuracy by exploiting our feedback-weight assigning model, irrespective of any
assumption on user behavior. For this experiment, we choosetwo different combinations of
user feedbacks where one consists of onlywell-behavedregular-user feedbacks while the other
comprises of 70% spurious-user and 30% super-user feedbacks. In both cases, we assume that the
positioning system is already running with some feedbacks (4 landmark feedbacks+ 6 super-user
feedbacks) so that we can approximate the initial “RoC Profile”. Consequently, we can come up
with the feedback weight-assigning model of Section 2.3.2 from this initial state of our system.
We consider 137 testing points to evaluate the localizationerrors which are completely different
from the user feedback points. As more user feedbacks becomeavailable, the weight-assigning
model continuously updates itself in a similar manner as previously shown in Fig. 2(d), which
helps to fine-tune the system.
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Figure 7: Performance comparison of our feedback-weight assigning model with other options in the fine-tuning of an
under-trained positioning system.

The two horizontal lines of Fig. 7(a) and 7(b) at 4.16m represent the initial system’s per-
formance with only 10 training points. Our feedback-weightassigning model shows that the
system’s performance improves when more feedbacks are incorporated. Without our feedback-
weight assigning model, the system’s performance deteriorates when spurious-user feedbacks
dominate as can be seen from Fig. 7(b). For 100% spurious-user feedbacks scenario (the results
are omitted for brevity), our system’s performance remainsrelatively unchanged from the initial
system’s performance. This means that our feedback-weightassigning model could shield the
system from the adverse effect of this type of feedbacks. For the well-behaved user case, the
feedback positions may turn out to be very close to the actualpositions which will eventually
make them a bit similar to super-user feedbacks. The inclusion of super-user feedbacks into
the system always helps regardless of whether we are using our model or not. Therefore, the
“without feedback-weight assigning model” might have beenseen to perform almost similar to
(or even slightly better than) our model in Fig. 7(a). Our model’s effectiveness over the “without
feedback-weight assigning model” can be realized when different types of feedbacks are mixed
(e.g., one instance can be seen in Fig. 7(b)).

We also compare the accept/reject policy of location verification techniques discussed in
Section 2.3 to incorporate a user feedback with varying accuracy level margins. If the accuracy
level margin is set too large (≈ 6m), a number of spurious-user feedbacks may get through to the
system, thereby causing it to perform worse. Setting a strict margin (e.g., 1m) may overcome this
issue as can be seen from Fig. 7(b). However, if the accuracy level margin is set too strict, many
of the well-behaved regular-user feedbacks are rejected. Consequently, the system’s performance
does not improve much over the initial system when this type of feedback dominates as revealed
in Fig. 7(a). On the contrary, our feedback-weight assigning model is quite automated (no need
for manual setting of accuracy level margin) and is shown to perform reasonably well in the
presence of different types of feedbacks.

The 100% super-user feedback curves in both Fig. 7(a) and 7(b) show the performance when
the feedbacks are given by super-users only (i.e.,w = 1). This performance is comparable
to the traditional fingerprint-based system where all the samples are collected exhaustively by
administrators. This provides a performance benchmark forthe user feedback based positioning
system.
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Figure 8: Adaptation of our system when it perceives that thesurroundings have changed.

Note that we have only provided Bayesian algorithm’s results; the KNN algorithm’s results
show similar trends, and are not included here.

3.5.4. Effect of change of surroundings on our user feedback based positioning system
One of the major drawbacks of existing fingerprint-based positioning systems is that it is

not adaptable to environmental changes, i.e., the trainingphase has to be repeated all over again
for the changed surroundings. Our system does not suffer from such shortcomings since user
feedbacks are continuously employed to fine-tune it. Furthermore, our system’s whole process of
adapting to the changed environment is automated, and does not require any outside intervention.
In order to help perceive that there is a change in the surrounding, we exploit landmark feedbacks.
Since the landmark feedbacks from the APs are continuous, the system can approximate the APs’
positions all the time. We infer that there is a change in surrounding when the estimated positions
of all the APs deviate quite significantly from their actual positions. Algorithm 1 (in Page 39)
describes the adaptation process of our positioning system. From algorithm 1, we see that, when
the system perceives its surroundings to have changed, it enters into the adaptation mode. In this
mode, all the previously incorporated user feedbacks are associated with an exponential outdate-
factor together with their assigned weights. As a result, new user feedbacks are given more
importance.

In order to emulate a change in the surrounding in our experiments, we swapped the positions
of two of our APs as shown in Fig. 4. This serves our purpose of creating a changed environ-
ment since the two APs’ signal strength signatures change quite significantly. Our initial system
consists of 50 super-user feedbacks from theold setting and we utilize 137 testing points from
thenewsetting to evaluate the localization errors. The two curvesof Fig. 8(a) and 8(b) depict the
performances of two systems where one system is incorporated with our surroundings change
algorithm and the other one is not. As can be seen from the figures, the system which could
realize the change in surroundings, performs significantlybetter in thenewsetting as more user
feedbacks are incorporated into the system. For this experiment, we choose two different combi-
nations of user feedbacks where in one scenario, the super-user feedbacks dominate (Fig. 8(a)),
while in the other, the regular-user feedbacks dominate (Fig. 8(b)). In both scenarios, our sys-
tem could adapt seamlessly with the surroundings change. Note that, the super-user dominating
scenario demonstrates lower localization error for the same number of user feedbacks compared
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Algorithm 1 Adaptation of our feedback-based positioning system
System State: A positioning engine withn samples or user feedbacks. Let (eex, pex) denote
the system’s expected RoC. It is a tunable parameter for the system administrator within which
he/she expects theK landmarks’ (e.g., APs’) estimated positions to be verified.If all the K land-
marks’ estimated positions deviate from (eex, pex), the system infers surroundings change, and
enters the adaptation mode. The system returns to normal mode again when all theK landmarks’
estimated positions are within the system’s expected RoC (eex, pex). The landmarks’ positions are
estimated continuously by the system from the landmark feedbacks.

1: for everynewbatch ofN feedbacks collecteddo
2: if all K APs’ estimated positions deviate from (eex, pex) then
3: {adaptation mode}
4: h← α {outdate factor:α small constant}
5: else
6: {normal mode}
7: h← 0 {no outdate factor}
8: end if
9: for i = 1 ton do

10: wi ← exp (−h) × wi {outdating older samples’ weights ifh , 0}
11: end for
12: n← n+ N
13: calculate the interpolated RSS signatures as discussed in Appendix B
14: run localization algorithm (e.g., Bayesian or KNN) with only the feedbacks havingwi ≥ γ

as test samples among thenewfeedbacks{wi andγ are defined in 2.3.2}
15: update feedback-weight assigning model’s parameters (i.e., emin,eav,es andemax) of Sec-

tion 2.3.2.
16: end for
17: goto 1

to the regular-user dominating scenario which is justifiable. The presence of spurious-user feed-
backs also does not affect the adaptation process (the results are omitted for brevity). This is due
to our feedback-weight assigning model which is found to be successful in dealing with them in
the previous section. We have also observed in our experiments that around 20∼ 30 user feed-
backs are required for the system to return to its normal mode(i.e., to leave its adaptation mode).
This state transformation occurs when the landmark feedbacks start to give better estimations of
the APs’ positions again.

4. Related Work

The current research efforts for indoor positioning systems can largely be divided into two
main categories:

• Those that make use of angle of arrival (AoA), time of arrival(ToA), and time difference of
arrival (TDoA) methodologies. This family of localizationtechniques relies on specialized
hardware (e.g., RF tags, ultrasound or infrared receivers,etc.) and extensive deployment
of dedicated infrastructure solely for localization purpose [21, 22, 23].
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• Those that utilize the correlation between easily measurable signal characteristics (e.g.,
RSS) and location. These location fingerprinting solutionstry to build a positioning system
on top of existing infrastructure (e.g., Bluetooth networks) [2, 3, 4, 15] in a cost-effective
way.

Our work focuses on fingerprint-based positioning systems,i.e., the second category above. Due
to space limitation, we only provide an overview about some existing approaches under this cat-
egory. Avid readers may consult [13, 24] for more in-depth discussions. Location fingerprinting
techniques became popular with RADAR [2], mainly because ofthe unavailability of appropri-
ate radio signal propagation models for indoor environments. It also opened the door for many
different approaches to be applied for the indoor localization problem. For example, Nibble [3] is
one of the first systems to use a probabilistic approach for location estimation. To date, Ekahau’s
Positioning Engine Software [25] claims to be the most accurate location system based on proba-
bilistic model; they claim a one-meter average accuracy with a short training period. Battitiet al.
applied statistical learning theory [26] and neural networks [27] to tackle the indoor localization
problem.

The application of user feedback to incrementally build or fine-tune an indoor positioning
system has not been sufficiently explored in existing literature. Although UCSD’s ActiveCam-
pus project tries to build a positioning system incrementally by incorporating user-based survey
mechanisms [5], their user inputs are treated no differently from an administrator’s fingerprint-
ing data, and are accepted with complete trust. As shown earlier in Fig. 8(b), such a positioning
system in which all user inputs are assigned a feedback-weight of w = 1 by default would suffer
in terms of accuracy when spurious user feedbacks are aplenty.

We discussed some location verification techniques (i.e., positioning system verifying the
location claimed by a source node) [8, 9, 10, 11] in Section 2.3, and outlined their viability when
adopting them for our system. These verification techniquesare pertinent to our work since
our system’s feedback-weight assigning model determines the credibility (i.e., weightw) of a
feedback, which is similar to verifying a user’s claim (in case of explicit feedback) or the system’s
claim of a user’s location (in case of implicit feedback). Wealso compare our feedback-weight
assigning model’s performance with the accept/reject policy of location verification techniques
in Fig. 7(a) and 7(b), and discuss the results in Section 3.5.3. From the results, we observe that, it
is hard to set a unique tolerance level (i.e., the margin within which the feedbacks are accepted)
of the accept/reject policy in order to make it work efficiently across various mixtures of user
feedbacks. On the contrary, our model turns out to be robust across different mixtures of user
feedbacks.

5. Conclusion and Future Work

In this paper, we propose a novel idea where users can take part in fine-tuning an under-
trained positioning system. Our feedback-weight assigning model which assignsrelativeweights
to user feedbacks, fine-tunes an under-trained positioningsystem, thereby, helps it to achieve
finer accuracy. We also show that, if users arewell-behaved, we can actually construct a po-
sitioning system incrementally from scratch exploiting our interpolation-based techniques with
the user feedbacks. We contend that the exhaustive trainingphase seen in the traditional location
fingerprinting techniques might be relieved through it. Through the use of landmark feedbacks,
we could successfully infer changes in the environment, andswitch our system’s mode to be
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more adaptable. The whole procedure is quite dynamic, and requires no intervention from the
positioning system administrator’s part.

In summary, we conclude that our user feedback-based positioning system is fairly accurate,
cost-effective, robust and requires no or very little training phase. In the following, we list the
limitations of our work, and also mention the future directions that we foresee:

• We have implemented our system in two testbeds – one is placedinside an amphitheater
while the other is within a research laboratory. Our system performed quite well in both
scenarios as can be seen from the results. It should also be verified with other types of
testbeds that introduce more multipath effects and obstructions in order to be more conclu-
sive.

• Our current positioning system is based on Bluetooth wireless technology, but it can easily
be extended to accept feedbacks from devices using other technologies as well (e.g., Wi-
Fi).

• We actually performed an offline training phase like a traditional fingerprinting systemto
collect the experimental data ourselves. Subsequently, these data are amalgamated with
uncertainties to emulate the various user models as discussed in Section 3.3. The practical
deployment of our system would allow us to obtain feedbacks from different types of users
who may use the positioning service. This could potentiallyallow us to model real users’
behaviors more accurately.

• A positioning system exploiting smart ways to obtain implicit feedbacks from users (e.g.,
[6]) may eliminate the need for explicit feedbacks altogether. This approach might even
have greater potential rather than solely depending on users’ goodwill for obtaining feed-
backs. The practical deployment of such a system may fetch interesting results in this
regard.

A. Proof of Theorem 1

The linear combination
∑n

i=1 akiSki is an unbiased estimate ofE(Sk) because,E(
∑n

i=1 akiSki) =
∑n

i=1 akiE(Ski) = E(Sk)
∑n

i=1 aki = E(Sk). Since the estimate is unbiased, then the particular
combination that is most efficient is the one which minimizes the variance, var(

∑n
i=1 akiSki) =

∑n
i=1 aki

2 var(Ski) = var(Sk)
∑n

i=1 aki
2. Consequently, the problem can be reformulated as, mini-

mize
∑n

i=1 aki
2 subject to

∑n
i=1 aki = 1. Now, using basic optimization theory, it directly follows

that the particular linear combination1n
∑n

i=1 Ski, or the samplemean, S̄k, is the most efficient
unbiased estimator ofE(Sk).

B. Calculation of RSS at Interpolated Training Points

Suppose, there aren user feedbacks for which the real measurements of RSSs have been
taken at theK APs. Our goal is to emulate the RSSs ofK APs for J possible interpolated
training points utilizing those real measurements of user feedbacks.

As in [17], the linear regression RSS prediction formula based on the log-normal shadowing
model takes the following form,

ŷki = akxki + bk, (3)
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whereŷki = the predicted RSS of thekth AP when the MN is atith training point,ak = −10β, xki =

log(dki) andbk = Pr(d0)|dBm+10β log(d0). Utilizing both the spatial similarity and user feedback
credibility factors, the weighted least mean square minimization function for our linear regression
model can be written as,

R2(a jk,b jk) =
n
∑

i=1

c ji [yki − (a jkxki + b jk)]2 (4)

whereyki = real measurement of RSS at thekth AP when the MN is atith training point,xki =

log (dki) = log distance ofkth AP from theith training point,c ji =
u ji×vi

∑n
i=1 u ji×vi

, u ji = normalized

weight considering spatial similarity of RSS= 1/d ji
∑n

i=1 1/d ji
, vi = normalized weight forith feedback

considering its credibility= wi
∑n

i=1 wi
, d ji = distance of interpolated pointj from the ith training

point, a jk,b jk = regression coefficients of the linear RSS prediction formula of thekth AP for
j, k ∈ {1,2, . . . ,K}, and j ∈ {1,2, . . . , J}. Note that, depending on the interpolated pointj,
for which the RSS will be predicted, the associated weight ofspatial similarity factor (i.e.,u ji )
changes. Hence, an additional subscript is used in (4) to denote the regression coefficients for an
AP w.r.t. different interpolated points compared to (3).
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

c j1 0 0 . . . 0
0 c j2 0 . . . 0
...

...
...
. . .

...

0 0 0 . . . c jn



































andB jk =

[

b jk

a jk

]

.

Using these matrix notations, now we differentiate (4) w.r.t.B jk and set it to zero,

∂

∂B jk

[

(

Yk − XkB jk

)TC j

(

Yk − XkB jk

)

]

= 0

⇒ ∂

∂B jk

[(

Yk
T − B jk

TXk
T
)

C j

(

Yk − XkB jk

)]

= 0

⇒ ∂

∂B jk

[

Yk
TC jYk − B jk

TXk
TC jYk − Yk

TC jXkB jk + B jk
TXTC jXkB jk

]

= 0

⇒ 2B jk
TXk

TC jXk − 2Yk
TC jXk = 0

⇒ XTC j
TXkB jk = Xk

TC j
TYk.

If the matrix
(

XTC j
TXk

)

is non-singular, the regression coefficients are given by the formula,

B jk =
(

XTC j
TXk

)−1Xk
TC j

TYk. (5)

For a particular interpolated pointj, the regression coefficientsB jk of the kth AP’s signals
can be obtained through (5). Consequently, the RSS of thekth AP for an interpolated pointj can
be emulated as,

RSSjk = a jk logd jk + b jk. (6)

Plugging the values ofa jk, b jk and d jk (the distance of the interpolated pointj from kth AP)
into (6), we finally obtain the RSS fingerprint forj considering only APk. To deduce the RSS

20



vector comprising of all theK APs for a particular interpolated pointj, we have to follow the
same procedure for allk ∈ {1,2, . . . ,K}. Finally, in order to obtain the RSS vector of theK APs
for all theJ interpolated points over the localization area, we have to repeat the whole calculation
of this section for allj ∈ {1,2, . . . , J}.

Note that, when all user feedbacks are believed equally, we have,c ji =
u ji× 1

n
∑n

i=1 u ji× 1
n
=

u ji
∑n

i=1 u ji
=

u ji . In other words, only spatial similarity weight factor would be taken into consideration in
calculating the RSS signatures of the interpolated points.
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