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Abstract— In cellular networks, an important call-level
Quality-of-Service (QoS) issue is how to limit the probability
of forced termination during handoffs. One solution is to predict
the trajectory of mobile terminals so as to perform bandwidth
reservation in advance. With the vision that future mobile
devices are likely equipped with reasonably accurate positioning
capability, we propose a novel mobility prediction technique
that incorporates both mobile positioning information and road
topology knowledge. We then develop an adaptive bandwidth
reservation scheme that dynamically adjusts the reservation at
each base station according to both incoming and outgoing hand-
off predictions generated using our mobility prediction technique.
We evaluate the performance of the scheme via simulations, along
with six other schemes for comparison purposes. Results agree
with intuition that schemes which incorporate more knowledge
are able to achieve better reservation efficiency. Our scheme is
shown to achieve the best efficiency among all realizable schemes
simulated.

I. I NTRODUCTION

When a mobile terminal (MT) attempts to hand off from
one cell to another, it may encounter forced termination
due to bandwidth shortage at the target cell. From a user’s
point of view, the forced termination of an ongoing call is
more objectionable than the blocking of a new call request.
Therefore, handoff-requests are generally prioritized over new
call requests. In the classic handoff prioritization problem,
each base station (BS) prioritizes handoff-requests by setting
aside some bandwidth that could only be utilized by incoming
handoffs. Since any such reservation would inevitably increase
the blocking probability of new calls (PCB), and reduce
the system’s utilization, it is extremely important that these
reservations are made as sparingly as possible while meeting
the desired forced termination probability (PFT).

Early work in handoff prioritization proposes the static
reservation of bandwidth at each BS as a solution [1], in
which a fixed portion of the radio capacity is permanently
reserved for handoffs. However, such a static approach is
unable to handle variable traffic load and mobility [2]. In
order to meet the desiredPFT without over-reserving precious
radio bandwidth, the amount of reservation at each BS should
be dynamically adjusted according to the requirements of
anticipated handoffs.

The best tradeoff betweenPCB andPFT can only be achieved
if every MT’s path as well as its arrival and departure times

in each cell are known in advance. However, such an ideal
scenario is very unlikely to occur. The next best option is
to predict the mobility of MTs, and perform reservations
based on these predictions. Many predictive schemes have
been proposed in the literature. For example, Liuet al. [3]
uses pattern matching techniques and a self-adaptive extended
Kalman filter for next-cell prediction based on cell sequence
observations, signal strength measurements, and cell geometry
assumptions. In [4], Levineet al. propose the concept of a
shadow cluster – a set of BSs to which a MT is likely to
attach in the near future. The scheme estimates the probability
of each MT being in any cell within the cluster for future
time intervals, based on individual MT’s dynamics and call
holding patterns in the form of probability density functions
(pdfs). Other examples of predictive reservation schemes can
be found in [2], [5]–[8]. In the process of meeting the same
PFT, a more efficient scheme will be able to accomplish the
task with a lowerPCB than a less efficient one. The efficiency
of a scheme depends on whether the reservations are made at
the right place and time, i.e., it is closely associated with the
prediction accuracy. Since reservation efficiency has a direct
impact on operators’ revenues, there are strong incentives to
design more accurate prediction schemes.

In the United States, the FCC mandates that cellular-service
providers must be able to pinpoint a wireless emergency call’s
location to within 125 m. This spurs research in mobile-
tracking techniques. One promising approach is the integra-
tion of a global positioning system (GPS) receiver in each
MT. According to [9], assisted GPS positioning methods are
expected to yield an accuracy of under 20 m during 67% of
the time. During 2003-2009, a new batch of GPS satellites will
be launched in the US that could potentially yield an accuracy
within 1 m for civilian users [10]. The European Space
Agency has also planned to launch their own global navigation
satellite system known as GALILEO, which is also expected to
deliver real-time positioning accuracy down to the meter range
(95% of the time within 10 m) [11]. As more breakthroughs
in positioning techniques take place, fuelled by the strong
interest in location-based services from the industry, future
MTs are likely equipped with reasonably accurate location-
tracking capability. The time is thus ripe for active research
into how such inherent capability may be harnessed for QoS



provisioning in cellular networks. Specifically, we are inter-
ested in designing mobility prediction techniques that utilize
real-time positioning information. This could potentially give
rise to better accuracy and greater adaptability to time-varying
conditions than previous methods.

While there has been previous work in the literature that
attempts to perform mobility prediction based on positioning
information [3], [5], [6], none of them has addressed the
fact that the cell boundary is fuzzy and irregularly shaped
due to terrain characteristics and obstacles that interfere with
radio wave propagation. Instead, either hexagonal or circular
cell boundaries have been assumed for simplicity. Another
observation is that none of the previous work has integrated the
road topology information into its prediction algorithm. Since
MTs that are carried in vehicles are the ones that demonstrate
high mobility, the integration of road information into the
algorithm could potentially yield better accuracy, which is
crucial for more timely and efficient reservations. With real-
time location information of MTs, it is now possible to take
advantage of knowledge about road layouts.

In [8], we propose a dynamic bandwidth reservation scheme
that utilizes mobility predictions based on real-time mobile
positioning information. It is the first such scheme that is
capable of handling irregular cell boundaries. The scheme uses
linear extrapolation from a MT’s recent positions to predict its
handoff cell and time, whereby the cell boundary is approxi-
mated as a series of points around the BS that are computed
using previous handoff locations. In this paper, we introduce
a novel predictive reservation scheme that utilizes knowledge
of road topology, in addition to positioning information. It
could potentially achieve more accurate predictions at the cost
of increased complexity, but the resulting gain in reservation
efficiency may justify this cost.

The remainder of this paper is organized as follows. In
Section II, we present the proposed road topology based
prediction scheme, while Section III describes the algorithm
that utilizes these predictions for adjusting the reservation
at each BS. Section IV describes the simulations that have
been carried out to compare the performance of the proposed
scheme with several other schemes. Finally, we give our
conclusions in Section V.

II. ROAD TOPOLOGYBASED MOBILITY PREDICTION

In our proposed technique, we require the serving BS to
receive regular updates about each active MT’s position every
∆T , say 1 sec. This will consume a small amount of uplink
wireless bandwidth (several bytes per update for each MT),
which might be negligible for future broadband services. The
output of each prediction has the form of a 4-tuple: [target
cell, prediction weight, lower prediction limit, upper prediction
limit]. The target cell is the MT’s predicted handoff cell.
The prediction weightis a real number between 0 and 1 that
indicates how likely the prediction is correct. Thelower pre-
diction limit (LPL) gives a lower statistical bound for the actual
remaining time from handoff,tremain, with probability ζL , i.e.,
P [tremain≥LPL] = ζL . Theupper prediction limit(UPL) gives

an upper statistical bound fortremain with probability ζU, i.e.,
P [tremain≤UPL] = ζU. Note that each MT may have more than
a single 4-tuple; a 4-tuple is specified for each possible path
from its current position that may lead to a handoff within a
time Tthreshold.

In the following, we first describe the database that is
maintained at each BS to store essential information required
for making the predictions. The prediction algorithm will then
be described.

A. Prediction Database

The prediction tasks are assigned to individual BSs, which
are expected to have sufficient computational and storage
resources. In order to incorporate the road information into
mobility predictions, each BS needs to keep a database of the
roads within its coverage area. We shall treat the road between
two neighboring junctions as a road segment, and identify each
segment using a junction pair(j1, j2), where a junction can be
interpreted as an intersection of roads (e.g., T-junction). The
approximate coordinates of each junction are to be stored in
the database. Since a road segment may contain bends, it can
be broken down further into piecewise-linear line segments.
The coordinates defining these line segments within each road
segment are also recorded. All the above coordinates could be
easily extracted from existing digital maps previously designed
for GPS-based navigational devices. Infrequent updates to
these maps are foreseen because new roads are not constructed
very often, while existing road layouts are seldom modified.

The database also stores some important information about
each road segment. Since two-way roads would probably
have different characteristics for each direction, the database
shall store information corresponding to opposite directions
separately. The following summarizes the information that is
stored in the database:
• Identity of neighboring segments at each junction.
• Probability that a MT traveling along a segment would

select each neighboring segment. Note that this transition
probability could be easily computed from the previously
observed paths of other MTs.

• Statistical data of time taken to transit each segment.
• Statistical data about possible handoffs along each seg-

ment, such as probability of handoff, time in segment
before handoff, and handoff positions.

With the exception of the first item listed above, the other
database entries will be updated periodically everyTdatabase

since they are dependent on current traffic conditions.
In reality, the transition probabilities between road segments

would probably vary with time and traffic conditions. For
stochastic processes whose statistics vary slowly with time,
it is often appropriate to treat the problem as a succession of
stationary problems. We shall model the transition between
road segments as a second-order Markov process, and we
assume that it is stationary between database update instances
so as to simplify the computations. Based on this model,
the conditional distribution of a MT choosing a neighboring
segment given all its past segments is assumed to be dependent
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Fig. 1. Utilizing road topology information for mobility prediction.

only on the current segment and the immediate prior segment.
Using the road topology shown in Fig. 1 as an illustration,
consider two MTs (MT1 and MT2) that are currently trav-
eling from junction B towards junction E. MT1 came from
segment CB previously, while MT2 came from segment AB.
Based on the assumed model, the conditional probability of
MT1 going to segment EF will be computed differently from
that of MT2. The conditional probability of MT1 going to
segment EF is

P [sk+1=EF|sk=BE, sk−1=CB], (1)

while that of MT2 is

P [sk+1=EF|sk=BE, sk−1=AB], (2)

wheresk is the current segment that the MT transits. Note that
our stationarity assumption implies that the above conditional
probabilities are independent of the value ofk.

At the beginning of a new call, the previous segment of a
MT is unknown, because it was not tracked previously. There-
fore, we also need to store first-order conditional distribution
in each segment, which are estimated from a subset of the
data that are used to estimate the second-order conditional
distribution. For instance, if we do not have any information
about the previous segment of MT1 and MT2 in Fig. 1, their
conditional probabilities of going to segment EF are both taken
to be

P [sk+1=EF|sk=BE]. (3)

We shall describe a road segment as a “handoff-probable
segment” (HPS) if MTs have previously requested handoffs
while traveling through it. For each HPS, we obtain the
handoff probability as the ratio of MTs that made handoff-
requests while on the segment. Also, for those MTs which
made handoff-requests, we record their target handoff cell,
and collect information about the time spent by them in the
HPS before handoffs, as well as their handoff positions.

Using the model described above, we could determine
via the chain rule the conditional probabilities of reaching
and handing off at each of the HPSs from segments that
are several hops away. We could also predict the remaining

TABLE I

NOTATIONS USED FOR ILLUSTRATING DATABASE MAINTENANCE.

Notation Meaning

Tthresmax Maximum Tthresholdallowed.
S Set of road segments within BS’s coverage area.
sab Directional segment from junctionja to jb.
N (ja) Set of neighboring junctions of junctionja.
Ncells Set of neighboring cells of the cell of interest.
SHPS Set of handoff-probable segments (HPSs) inS.
SRSV Set of segments in which MTs may be

considered for reservations.
P [sk+1|sk] 1st order conditional transition probability, i.e.,

P [transit tosk+1|currentlysk].
P [sk+1|sk,sk−1] 2nd order conditional transition probability, i.e.,

P [transit tosk+1|currentlysk, previouslysk−1].
CHO(sab) Most probable target handoff cell if handoff

occurs alongsab, whereCHO[sab] ∈ Ncells.
PHO[sab] P [handoff alongsab|MT is currently onsab].
ftransit,ab(t) pdf of time taken to transitsab.
gHO,ab(t) pdf of time spent insab before handoff.
hHO,ab(d) pdf of distance fromjb where handoff occurs.
X Hop limit of routes that are considered.
RX(sab) Set of possible routes withinX hops fromsab.

A route ϕ ∈ RX(sab) is a sequence of
segments, starting withsab: {sabsbc . . . syz}.

sinitial(ϕ) Initial segment of routeϕ.
slast(ϕ) Last segment of routeϕ.
ϕ′ Routeϕ without its initial and last segments,

i.e., {ϕ} = {sinitial(ϕ)} ∪ {ϕ′} ∪ {slast(ϕ)}.
mHO,ab|ϕ(t) pdf of time taken to transitϕ′ and part of last

segmentslast(ϕ) before handoff.
M−1

HO,ab|ϕ(q) qth quantile of time taken to transitϕ′ and part

of last segmentslast(ϕ) before handoff.
RX,HPS(sab) A subset of routes fromRX(sab), each of which

terminates with a HPS, and, excluding the
remaining time in current segmentsab, has a
median time to handoff that is withinTthresmax.

PHO[ϕ|sk] 1st order conditional prob. that MTs insk would
useϕ and hand off atslast(ϕ), ϕ∈RX,HPS(sk).

PHO[ϕ|sk,sk−1] 2nd order conditional prob. that MTs insk would
useϕ and hand off atslast(ϕ), ϕ∈RX,HPS(sk).

time before handoff for each of these possible paths, using
previously collected statistical information from each segment
along the path. Before we describe the prediction algorithm
in Section II-B, we shall first explain how the prediction
database is maintained. Table I shows the notations used.
Since many of the database entries are dependent on current
traffic conditions, a database update will be performed every
Tdatabaseto ensure that the entries are current. Fig. 2 shows the
procedure performed during each update.

We assume that in between the database updates, the BS
shall collect all the relevant data required for the subsequent
update. The procedure begins by emptying bothSHPS andSRSV

(Lines 1 and 2) so that they can be regenerated based on the
newly collected data. From Lines 3 to 13, we sequentially
examine every road segment within the BS’s coverage area,



1 SHPS← ∅
2 SRSV ← ∅
3 for eachsab ∈ S
4 evaluateP [sk+1=sbx|sk=sab]

∀jx ∈ N (jb)− {ja}
5 evaluateP [sk+1=sbx|sk=sab, sk−1=sya]

∀jx ∈ N (jb)− {ja},∀jy ∈ N (ja)− {jb}
6 evaluateftransit,ab(t)

7 evaluatePHO[sab]

8 if PHO[sab] > 0

9 then SHPS← SHPS∪ {sab}
10 SRSV ← SRSV∪ {sab}
11 evaluateCHO(sab)

12 evaluategHO,ab(t)

13 evaluatehHO,ab(d)

14 for eachsab ∈ S
15 RX,HPS(sab) ← ∅
16 for eachϕ ∈ RX(sab)

17 if slast(ϕ) ∈ SHPS
18 then evaluatemHO,ab|ϕ(t) andM−1

HO,ab|ϕ(0.5)

19 if M−1

HO,ab|ϕ(0.5) ≤ Tthresmax

20 then RX,HPS(sab) ←RX,HPS(sab) ∪ {ϕ}
21 SRSV ← SRSV∪ {sab}
22 evaluatePHO[ϕ|sk=sab]

23 evaluatePHO[ϕ|sk=sab, sk−1=sya]

∀jy ∈ N (ja)− {jb}
24 evaluateM−1

HO,ab|ϕ(1− ζL),

M−1

HO,ab|ϕ(ζU)

Fig. 2. Prediction database update procedure.

one at a time. Lines 4 and 5 evaluate the first and second
order transition probabilities from the segment examined to
its neighboring segments. They are calculated based on the
paths of MTs previously served by the BS. Line 6 evaluates
the pdf of the time spent by previous MTs in the segment.
Note that the pdf may be estimated based on histograms with
appropriate bin size. In Line 7, we compute the probability that
a MT would request a handoff while transiting the segment. If
handoffs have occurred along this segment previously, then the
segment is identified as a HPS, and is entered into bothSHPS

andSRSV (Lines 9 and 10). Its membership inSRSV signifies
that MTs traveling in this segment are potential candidates
for resource reservation. Lines 11 to 13 simply evaluate the
database entries that describe the handoff behavior of MTs
traveling in this segment.

From Lines 14 to 24, we make a second pass through all
the road segments, again processing each segment sequentially.
For each segmentsab, we resetRX,HPS(sab) so that it will be
regenerated using newly computed database entries (Line 15).
For each hop-limited route that originates from segmentsab,
we test whether its last segment is a HPS (Lines 16 and
17). Note that a “route” must include the origin segmentsab,
and at least one other segment. A hop limit is specified so
as to reduce the computational load required. Also, note that
RX(sab) is pretty much static, and is modified only when there

are changes to the road topology within the BS’s coverage
area. Therefore, it does not need to be recomputed during each
database update. If the examined route is found to have a last
segment that is a HPS, we estimate the pdfmHO,ab|ϕ(t) of the
time taken to transitϕ′ and part of the last segmentslast(ϕ)
before handoff (Line 18). It is obtained from the convolution
of the pdfsftransit(t) of segments in the partial routeϕ′, and
also the pdfgHO(t) of the last segmentslast(ϕ) of routeϕ. For
example, if the segment we are currently processing issab,
and we consider one of its routesϕ = {sab, sbc, scd, sde}.
This route has three hops, with partial routeϕ′ = {sbc, scd},
and the last segmentslast(ϕ) is sde, which is assumed to be a
HPS. The pdfmHO,ab|ϕ(t) is then obtained as:

mHO,ab|ϕ(t) = ftransit,bc(t)⊗ ftransit,cd(t)⊗ gHO,de(t). (4)

Note that mHO,ab|ϕ(t) does not include the time taken to
complete the current segment,sab. The latter will be added
during the prediction phase because we wish to utilize the
dynamics of individual MT for its computation. Once the
pdf mHO,ab|ϕ(t) is obtained, we calculate the median time
M−1

HO,ab|ϕ(0.5). In Line 19, we compare the median time with
the limit Tthresmax. If it is found to be withinTthresmax, we add
the routeϕ to the setRX,HPS(sab), and include the segment
sab in SRSV (Lines 20 and 21). We then compute via the
chain rule the conditional probabilities that MTs currently in
segmentsab would follow this route and hand off at its last
segment (Lines 22 and 23). Finally, in Line 24, we compute
the quantilesM−1

HO,ab|ϕ(1−ζL) andM−1
HO,ab|ϕ(ζU) for this route,

which will be needed later to specify the prediction limits LPL
and UPL.

One important point to emphasize for the above database
update algorithm is that all the above database entries only
need to be calculated once during each database update. There-
fore, they should be well within the computational capability
of a dedicated, average processor at the BS. Having seen
the prediction database update procedure, we shall proceed
to describe the mobility prediction algorithm in the following
section.

B. Prediction Algorithm

In order to perform the predictions, the BS needs to map
each MT’s current position onto the correct road segment
within the road topology database (a process known as map-
matching [12]). In the prediction algorithm to be presented
next, we do not describe how the map-matching is performed.
Instead, we assume for simplicity that the MT’s current road
segment and estimated speed are already computed based on
its recent positions. Interested readers can refer to relevant lit-
erature from Intelligent Transportation Systems (ITS) research
for additional information, such as [12].

During the prediction phase, we need to specify two addi-
tional quantiles for every MT that is currently traveling within
any HPS. These quantiles will be used to calculate the LPL and
UPL of the predicted time from the handoff if the MT were
to hand off within that segment. They are dependent on the
MT’s current position within the segment, therefore they have



TABLE II

ADDITIONAL NOTATIONS USED TO PRESENT ALGORITHM.

Notation Meaning

vi Estimated speed of MTi.
si
ab Current road segment in which MTi is traveling.

si
prev Previous segment from which MTi came from

(may or may not be known).
di

EOS(s
i
ab) MT i’s estimated distance from end junction,jb.

tiEOS(s
i
ab) MT i’s estimated time from end junction,jb.

Tthres(Cj) Tthresholdof neighboring cellCj .
ĉi
target(ϕ) MT i’s most probable target handoff cell if it

follows routeϕ and hands off atslast(ϕ).
wi(ϕ) Prediction weight specifying the probability that

MT i may follow routeϕ and hands off atslast(ϕ).
t̂iL(ϕ, ζL) LPL of MT i’s remaining time from handoff

(tiremain) if it follows route ϕ and hands off at

slast(ϕ), s.t. P [tiremain≥ t̂iL(ϕ, ζL)] = ζL .

t̂iU(ϕ, ζU) UPL of MT i’s remaining time from handoff
(tiremain) if it follows route ϕ and hands off at

slast(ϕ), s.t. P [tiremain≤ t̂iU(ϕ, ζU)] = ζU.

t̂iL(si
ab, ζL) LPL of tiremain if MT i hands off insi

ab.

t̂iU(si
ab, ζU) UPL of tiremain if MT i hands off insi

ab.

Zi Set of predictions made for MTi. Each prediction
is a 4-tuple with the following form:

[target cell, prediction weight, LPL, UPL].
For a prediction that MTi may follow routeϕ and
hands off atslast(ϕ), the corresponding 4-tuple is:

[ĉi
target(ϕ), wi(ϕ), t̂iL(ϕ, ζL), t̂iU(ϕ, ζU)].

If si
ab is a HPS, then the 4-tuple for a prediction

that a handoff may occur alongsi
ab itself is:

[CHO(si
ab), PHO[si

ab], t̂
i
L(si

ab, ζL), t̂iU(si
ab, ζU)].

to be recomputed during each prediction. LetDab be a random
variable representing the distance from junctionjb in segment
sab where handoff occurs, with pdfhHO,ab(d). Suppose the MT
is currently at a distanceDt from junction jb, and it has not
yet made a handoff-request insab. Using this information, we
can derive a conditional pdfhHO,ab(d|Dab <Dt) for d < Dt:

hHO,ab(d|Dab <Dt) =
hHO,ab(d)

P [Dab <Dt]
. (5)

Note thathHO,ab(d|Dab <Dt) = 0 for d ≥ Dt. From the
above conditional pdf shown in (5), its conditional cdf can be
obtained as:

HHO,ab(d|Dab <Dt) =
∫ d

0

hHO,ab(u|Dab <Dt) du. (6)

With the above conditional cdf, it is straightforward to ap-
proximate anyqth conditional quantileH−1

HO,ab(q|Dab <Dt).
By estimating the time that the MT would take to reach
two specific quantile points, namelyH−1

HO,ab(ζL |Dab <Dt) and
H−1

HO,ab(1−ζU|Dab < Dt), we are able to specify the LPL and
UPL for a possible handoff that might occur alongsab.

Table II shows the additional notations used to present
the prediction algorithm. As mentioned earlier, predictions
are only performed for MTs that are currently traveling in
segments that belong to the setSRSV. The algorithm for a MTi

1 Zi ← ∅
2 if vi > 0

3 then computedi
EOS(s

i
ab)

4 tiEOS(s
i
ab) ← di

EOS(s
i
ab)/vi

5 for eachϕ ∈ RX,HPS(s
i
ab)

6 t̂iL(ϕ, ζL) ← tiEOS(s
i
ab) + M−1

HO,ab|ϕ(1− ζL)

7 t̂iU(ϕ, ζU) ← tiEOS(s
i
ab) + M−1

HO,ab|ϕ(ζU)

8 if t̂iL(ϕ, ζL) ≤ Tthres(CHO(slast(ϕ)))

9 then if si
prev is known

10 then wi(ϕ)←PHO[ϕ|sk=si
ab, sk−1=si

prev]

11 else wi(ϕ)←PHO[ϕ|sk=si
ab]

12 Zi ← Zi ∪ {[ĉi
target(ϕ), wi(ϕ),

t̂iL(ϕ, ζL), t̂iU(ϕ, ζU)]}
13 if si

ab ∈ SHPS
14 then t̂iL(si

ab, ζL)

← [di
EOS(s

i
ab)−H−1

HO,ab
(ζL |D<di

EOS(s
i
ab))]/vi

15 t̂iU(si
ab, ζU)

← [di
EOS(s

i
ab)−H−1

HO,ab
(1−ζU|D<di

EOS(s
i
ab))]/vi

16 if t̂iL(si
ab, ζL) ≤ Tthres(CHO(si

ab))

17 then Zi ← Zi ∪ {[CHO(si
ab), PHO[si

ab],

t̂iL(si
ab, ζL), t̂iU(si

ab, ζU)]}

Fig. 3. Prediction algorithm for a MTi traveling in segmentsi
ab.

that is currently traveling in segmentsi
ab ∈SRSV is shown in

Fig. 3. In Line 1, we empty the prediction output setZi,
as new predictions will be made. Line 2 ensures that the
MT is not stationary, otherwise the algorithm exits without
making any prediction. Next, in Line 3, we estimate the MT’s
remaining distance from the end of its current segment. The
time for the MT to reach this end is then estimated (Line 4).
From Lines 5 to 12, we examine previously recorded candidate
routes that might lead to handoffs. Note that each of these
routes will generate a 4-tuple prediction, which may or may
not be inserted into the setZi. For each of these routes, we
estimate its LPL(UPL) as the sum of two estimates, namely,
the estimated time taken to finish the current segment, and the
LPL(UPL) of the time taken to follow the remaining segment
sequence on the route and handing off at the very last segment.
If the LPL t̂iL(ϕ, ζL) is found to be within the threshold time
of the most probable target cell (which is the most commonly
chosen target handoff cell in the last segment of this route), the
weight of the prediction is taken to be either the first or second
order conditional probability of routeϕ, depending on whether
we know the previous segment of the MT (Lines 8 to 11).
Then, in Line 12, we insert the 4-tuple prediction generated
for this route into the setZi if the test in Line 8 is satisfied.

If the MT is currently in a HPS (Line 13), then there is
a chance that a handoff may occur while it is traveling along
this segment. In Lines 14 and 15, we obtain the LPL and UPL
as the estimated time taken to reach the two quantile points
H−1

HO,ab(ζL |D < di
EOS(s

i
ab)) andH−1

HO,ab(1− ζU|D < di
EOS(s

i
ab))

described earlier. Having determined botĥtiL(si
ab, ζL) and

t̂iU(si
ab, ζU), if t̂iL(si

ab, ζL) is found to be within the threshold
time of the cellCHO(si

ab), we insert the newly generated 4-
tuple into the prediction setZi (Lines 16 and 17).



Note that the above algorithm only performs predictions for
a single MT i. In order to perform bandwidth reservations,
predictions must be made for all active MTs that are currently
traveling in segments that belong to the setSRSV. In the next
section, we shall present the reservation scheme that we have
developed, and explain how these predictions will be used.

III. D YNAMIC BANDWIDTH RESERVATION SCHEME

This section describes the reservation scheme that we have
developed. Unlike some existing schemes that only utilize
incoming handoff predictions to adjust their reservations [2],
our scheme utilizes predictions about both incoming and
outgoing handoffs to achieve even more efficient tradeoffs
betweenPFT andPCB. In the following, we shall first describe
the system model assumed. We then explain the logic behind
the scheme, before presenting its detailed algorithms.

A. System Model

We consider a cellular network with 2-dimensional cell
layout, in which each cell is adjacent to several other cells.
The minimum granularity of bandwidth resources that could
be allocated to any call is assumed to be 1bandwidth unit
(BU) [2], [4]. Each BS j has a capacityC(j), which is
assumed to be constant for simplicity, although the proposed
scheme may be extended to include time-dependentC(j).
Given the bandwidth demand of individual connections, the
BS performs admission control to ensure that the total demand
of all active connections are below or equal toC(j). Although
it is suggested in [7] that some adaptive applications might be
able to accept a lower bandwidth at the expense of lower call
quality during congestion, we do not consider them here. Such
an assumption is likely to reducePFT, but it may make it harder
to visualize the advantages of using mobility predictions,
which is the main aim of our work. Similar to [2], we shall
also preclude delay-insensitive applications that can tolerate
long handoff delays, as well as, soft handoffs found in CDMA
systems. All these preclusions could possibly be added to our
proposed scheme as future extensions, when the advantages
of utilizing mobility predictions can be clearly demonstrated.

In order to prioritize handoffs over new calls, each cell must
reserve some bandwidth that can only be utilized by incoming
handoffs. Specifically, each BSj shall have a “reservation
target” Rtarget(j) that is being updated regularly based on
mobility predictions. A new call request is accepted if the
remaining bandwidth after its acceptance is at leastRtarget(j),
i.e.,

C(j)− (
∑

x

bx,j + bnew) ≥ Rtarget(j), (7)

wherebnew is the bandwidth required by the new call request,
andbx,j is the bandwidth currently being used by an existing
connectionx in cell j. Note thatRtarget(j) is merely a target,
not the actual amount of bandwidth that is reserved. The BS
can only attempt to meet this target by rejecting new call
requests, while waiting for some existing calls within the cell
to release bandwidth when they end, or hand off to other
cells. For a handoff request, the admission control rule is more

lenient – it is admitted so long as there is sufficient remaining
capacity for the handoff, regardless of the value ofRtarget(j):

C(j)−
∑

x

bx,j ≥ bhandoff, (8)

wherebhandoff is the bandwidth needed by the handoff.
When a new call request is rejected, we assume that it

is cleared. Subsequent new call requests are assumed to be
independent of previous requests. When the BS has insufficient
bandwidth to accommodate an incoming handoff-request, we
assume that it is forced to terminate. We do not consider
handoff queuing here, although it would likely improve the
performance of our scheme (as well as other schemes simu-
lated for comparison). As mentioned earlier, such extensions
may make it difficult to visualize the advantages of using
mobility predictions.

B. Logic Behind the Proposed Scheme

To understand the logic leading to the proposed scheme, we
first ask ourselves the following question:

Suppose we have perfect knowledge about all the
incoming/outgoing handoffs that will occur within a
limited time into the future, how much bandwidth
should be reserved to prevent any of these incoming
handoffs from being dropped?

Fig. 4 shows an example that we shall use to answer the above
question. Here, we assume that we have perfect knowledge
about future handoffs up to timeTthreshold. Note that an
incoming handoff into the current cell will lead to a positive
change in the bandwidth used, while an outgoing handoff will
lead to a negative change. SupposeTthreshold=TA . By summing
up all the bandwidth changes over the time interval[0, TA ],
we realize that the maximum peak bandwidth requirement
within this interval is 1 BU. This implies thatif we succeedin
reserving 1 BU at the BS, we can ensure thatall incoming
handoffs within [0, TA ] will not be dropped. Therefore, an
appropriateRtarget(j) would be 1 BU.

For a reservation scheme that does not utilize outgoing
handoff information (e.g., [2]), only the positive changes are
summed up. As a result, the BS would setRtarget(j) to 3 BUs,
which may lead to unnecessary blocking of new call requests
that arrive within the interval[0, TA ].

As mentioned earlier,Rtarget(j) is merely a target. If there
are insufficient existing calls that release bandwidth,Rtarget(j)
cannot be met. This will cause some of the incoming handoffs
to be dropped, despite the fact that we have prior knowledge
about them. However, the likelihood of this occurring will
decrease if the BS is given more time to meet the target. The
thresholdTthresholdcan be viewed as the time given to the BS to
set aside the required bandwidth to avoid a forced termination.
Referring to Fig. 4 again, notice that handoffs beyondTA

are shown as gray dotted lines. This information is currently
not available to the BS, therefore it will setRtarget(j)= 1 BU.
Suppose the BS has 2 BUs of spare capacity at timet = 0. If
a new call from MTx requests 1 BU, the BS will accept the
new call because it can still satisfyRtarget(j) after accepting
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Fig. 4. Perfect knowledge about handoffs up tot = Tthreshold.

the new call. However, if no existing call ends before time
t6, then the spare bandwidth at timet6 remains at 1 BU, thus
causing the incoming handoff at timet6 to be dropped. On the
other hand, if we have setTthresholdto TB, thenRtarget(j) would
have been set to 2 BUs. The BS would then have rejected
the new call request from MTx so as to maintain its spare
capacity at 2 BUs. Consequently, the incoming handoff at time
t6 will not be dropped. This shows that it is possible to reduce
PFT by giving the BS earlier notice, which could be done by
increasingTthreshold. Therefore, we could varyTthreshold as an
option to adjustPFT.

The scenario examined thus far is for the ideal case of
having perfect knowledge about handoffs within[0, Tthreshold],
which is unlikely to happen in real-life. Now let us examine
a more realistic scenario, whereby we only have handoff
predictions. Fig. 5 gives an example of the possible effects
of prediction errors in handoff timings. Here, handoffs are
predicted att1, t2, t3, t4 and t5, but the actual handoffs occur
at t1a, t2a, t3a, t4a and t5a. Using the predictions, the peak
computed by the BS is 1 BU. However, the actual peak is
2 BUs. Therefore, the incoming handoff-request at timet4a

might be dropped. A closer look at Fig. 5 reveals that the error
in predicted peak arises because the predicted sequence of a
pair of incoming and outgoing handoffs is wrong. An outgoing
handoff is predicted to occur (att3) before the incoming
handoff does (att4). However, the incoming handoff actually
occurs earlier (att4a) than the outgoing handoff (att3a). This
reversal of predicted sequence and actual sequence causes the
actual peak to become larger than the predicted peak. An
interesting point to emphasize here is that, if, on the other
hand, an incoming handoff is predicted to occur before an
outgoing handoff, but the actual sequence is reversed, then the
actual peak might be lower than the predicted peak. However,
this type of prediction error is benign because it does not
lead to a handoff being dropped. It may only result in over-
reservation of spare bandwidth resources.
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Fig. 5. Effects of prediction errors in handoff timings.

From the above, we observe that it is undesirable when an
incoming handoff occurs earlier than its predicted time, and
also, when an outgoing handoff occurs later than its predicted
time. Either one or both of these scenarios may increase the
chances of a forced termination. Therefore, we would like
to reduce their likelihood. Recall that each prediction’s 4-
tuple consists of a LPL and a UPL. Suppose we use an
incoming MT’s LPL as its predicted arrival time, and use
an outgoing MT’s UPL as its predicted departure time. By
specifyingζL andζU to be larger than 0.5, we introduce some
biases into the predicted times, such that the likelihood of the
above scenarios may be reduced. If the injected biases are
small, the predicted arrival and departure sequence for those
handoffs that are sufficiently far apart would probably remain
the same as though no biases have been injected. However,
these biases could capture and correct those predictions that
are close enough to result in under-reservation at the slightest
prediction errors. Note that the parametersζL andζU are design
parameters whose optimal values are best determined through
experimentation in real cellular networks. A general rule of
thumb is to set a value that is within the range of0.5∼0.7.
Any value that is under 0.5 will actually increase the likelihood
of under-reservation, while a value that is too high may render
the predictions too conservative and result in excessive over-
reservation.

Having seen these key concepts, in the next section, we
shall describe how each BS adjusts itsTthreshold to meet the
desiredPFT. Section III-D will explain howRtarget is adjusted
at each BS.

C. AdjustingTthreshold at each BS

In Section III-B, we have seen that thePFT experienced
by incoming handoff-requests may be indirectly controlled by
adjustingTthreshold. Although there might exist an optimal value
of Tthreshold for the desiredPFT, it would probably be different



TABLE III

NOTATIONS USED IN ALGORITHM THAT ADJUSTSTTHRESHOLD.

Notation Meaning

Tthresmax The maximumTthresholdvalue allowed.
Tthresmin The minimumTthresholdvalue allowed.
Tthresinit The initial Tthresholdvalue.
nHO The number of handoffs counted.
nFT The number of forced terminations counted.
PFT,target The desiredPFT target.
wobs Observation window size.
µ Scaling factor, an experimentally determined parameter.

1 wobs = dµ/PFT,targete;
2 Tthreshold← Tthresinit ; nHO ← 0; nFT ← 0;
3 while (system running)
4 if (incoming handoff-request occurs)
5 then nHO ← nHO + 1;
6 if (handoff accepted)
7 then if (nHO ≥ wobs)
8 then if ((nFT = 0) and (Tthreshold> Tthresmin))
9 then Tthreshold← Tthreshold− 1;
10 nHO ← 0; nFT ← 0;
11 elsenFT ← nFT + 1;
12 if (nFT > 1)
13 then if (Tthreshold< Tthresmax)
14 then Tthreshold← Tthreshold+ 1;
15 nHO ← 0; nFT ← 0;

Fig. 6. Algorithm used by each BS to adjust itsTthreshold.

in each cell, as it might be characteristic of the cell’s coverage
area, subscriber density, and so on. It might even fluctuate
with user mobility and traffic load at different times of the
day. Since there is no obvious way to compute the optimal
Tthreshold, we utilize an adaptive algorithm to approximate its
value for any givenPFT. Table III shows the notations we have
used in our algorithm, while the actual algorithm is shown in
Fig. 6.

The basic idea of the algorithm is that it attempts to
maintain approximately one forced termination out of every
wobs incoming handoffs that are observed. For this reason,
wobs is also referred to as the “observation window size”. If
there is no forced termination withinwobs handoffs, the value
of Tthresholdis deemed to be too large, and will be decreased by
1 sec. A fresh observation window will be restarted when the
current window is exhausted. If, at any time, more than one
forced termination is observed within the observation window,
the value ofTthreshold is immediately increased by 1 sec. When
this happens, the observation window is also restarted.

For a desiredPFT target, the value ofwobs is chosen to be
dµ/PFT,targete, whereµ is a scaling factor close to 1. Ideally, if
the algorithm were to succeed in achieving exactly one forced
termination everywobs handoffs, thenwobs should have simply
been set to be the reciprocal ofPFT,target. However, through
our simulations, we discover that thePFT obtained by setting

1 Reference cell A
sends Tthres(A) to
neighboring cell B

2 Neighboring cell B
performs predictions

3 Neighboring cell B 
returns 3-tuples,
[MT_ID, weighted
bandwidth requirement,
lower prediction limit],
for MTs likely to
hand off to reference
cell A within Tthres(A)

4 Reference cell A
computes Rtarget(A)

Reference cell (A)

Neighboring cell (B)

1

2

3

4

Note:
Tthres(A) = Tthreshold of cell A
Rtarget(A) = Rtarget of cell A

Fig. 7. Procedure performed everyTpredict.

wobs = d1/PFT,targete is slightly different from the desired
target PFT,target by an approximately constant factor (about
1.2∼1.25). A possible explanation for the above observation
is that handoffs are bursty and the best that our adaptive
algorithm could achieve is to allow the value ofTthreshold to
fluctuate around its optimal value. This causes the average
number of forced terminations perwobs observations to deviate
slightly from 1. To compensate for the above difference, the
scaling factorµ is introduced for the calculation ofwobs. Note
that the value ofµ for an actual cellular system shall be
determined experimentally.

D. AdjustingRtarget at each BS

The predictions used to computeRtarget(j) are made pe-
riodically every Tpredict, which is a design parameter. If the
predictions are performed very frequently, they are more
accurate but a more powerful processor will be required at
each BS. On the other hand, their accuracy may deteriorate if
they are far apart, causing the tradeoff betweenPFT andPCB

to become less efficient.
Fig. 7 depicts the procedure that is repeated everyTpredict.

For clarity, we only show two cells, A and B. Cell A is our
reference cell for which we demonstrate the computation of
its Rtarget(A), while cell B is one of A’s neighboring cells.
Note that in an actual cellular network, each cell is usually
surrounded by several neighboring cells; Steps 1, 2 and 3 are
simultaneously performed for every neighbor of cell A. Also,
cell A concurrently serves as a neighboring cell for cell B;
the procedure shown also applies when they interchange their
roles.

An assumption made here is that inter-BS communications
are possible and take place via wired links. The following
describes each step of the procedure:



Step 1: Reference cell A transmitsTthres(A) to neighboring
cell B. This will be used later by B to decide what prediction
information needs to be sent to A.

Step 2:Neighboring cell B performs outgoing handoff pre-
dictions for the active MTs under its service. Each prediction
is in the form of a 4-tuple described earlier. Note that cell A
itself will also be performing outgoing handoff predictions at
the same time for its role as some other cells’ neighbor (not
shown).

Step 3: For every active MT that is predicted to hand off
into cell A with LPL ≤ Tthres(A), the neighboring cell B
transmits part of the predicted information to cell A in the
form of a 3-tuple, with the format [MTID, weighted band-
width requirement, predicted time]. Theweighted bandwidth
requirementis a real number calculated as the product of the
prediction weight and the MT’s bandwidth requirement, while
the predicted timeis its LPL.

Step 4: As cell A receives the 3-tuples from cell B,
they are inserted into an ascending sorted list according to
their predicted times. These represent the incoming handoff
predictions. Cell A then examines its own outgoing handoff
predictions. For those with UPL≤ Tthres(A), they are also in-
serted into the same list, but in the form of 3-tuples with format
[MT ID, −weighted bandwidth release, predicted time]. The
weighted bandwidth releaseis the product of the prediction
weight and the bandwidth that would be released when the MT
leaves. Thepredicted timeis its UPL. Finally, the completed
list is used to calculate the value ofRtarget(A).

To calculateRtarget(j) for BS j, its sorted list is scanned
and the bandwidth change from each entry are summed. Upon
finishing the entire list, the overall peak discovered will be
assigned toRtarget(j).

Although the predictions are performed everyTpredict,
Rtarget(j) may be adjusted more than once between two succes-
sive predictions. This is because the BS may acquire updated
information that renders some of the previous predictions
invalid, before the next prediction takes place. Specifically,
Rtarget(j) of BS j may be updated when any of the following
events occurs:

1) A previously predicted incoming handoff within the list
has taken place.

2) A previously predicted outgoing handoff within the list
has either handed off or ended its call.

3) A previously predicted incoming handoff within the list
has either ended its call without handoff, or has handed
off to another cell other than BSj. BS j needs to be
informed by the neighboring BS that has previously sent
the 3-tuple for that MT.

When an updated information is acquired due to any of the
above conditions, the BS removes the affected entry from its
sorted list, and recomputesRtarget(j).

IV. SIMULATIONS AND RESULTS

A. Simulation Model

To facilitate the evaluation of the schemes presented, a
novel simulation model was designed. It incorporates road
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Fig. 8. (a) Simulation network with wrap-around at network boundary, (b)
a sample road layout generated using heuristic rules.

layouts that place constraints on MTs’ paths, thus establishing
a more realistic platform to evaluate the performance of any
positioning-based prediction algorithm.

The simulation network consists of 19 wireless cells. In
order to eliminate boundary effects that could make it very
difficult to comprehend the results, a common approach found
in the literature is used [2], [5]: cells at the boundary wrap
around as shown in Fig. 8(a). In this way, whenever a MT
travels out of the network boundary, it is re-injected into the
network again via the appropriate wrap-around cell as though
a handoff has occurred from outside the simulation network.
This eliminates any traffic loss at the network boundary. The
simulation model also consists of arbitrary road layouts that
are randomly generated based on heuristic rules; real maps are
not used because we require the roads to wrap around at the
network boundary. The road layouts are designed to imitate
those found in city areas. Fig. 8(b) shows an example of the
road topology that was randomly generated.

Although the cell layout shown in Fig. 8(a) adopts the
hexagonal cell model, we do not assume that handoffs occur at
the hexagonal boundary. The hexagonal model is merely used
to determine the relative positions of the cells. In contrast to
previously mentioned work in which handoffs are assumed to
occur at either circular or hexagonal cell boundaries, there are
no well-defined cell boundaries. SupposeR is the designed
cell radius (assumed to be 1000 m in the simulations), which
is typically defined as the distance from the BS to the vertex
of the hexagonal cell model. When a MT is between1.1R
and 1.2R from the BS, we assume that a handoff will occur
during its transit through this region. The time at which the
handoff shall occur is a random variable that is uniformly
distributed over the total time spent in the region. The target
BS is assumed to be the nearest neighboring BS at the time
when the handoff occurs, although this may not be the case
in real life.

To make the problem more interesting, traffic lights are
introduced into the simulation model. Two sets of traffic lights
are assumed. When one set is GREEN, the other set is RED.
Each GREEN and RED signal shall last for 30 sec. A speed
limit is also assigned to each road segment, chosen from the
set 40 km/h, 50 km/h, and 60 km/h with equal probability. The



speed of each MT is a random variable, drawn from truncated
Gaussian distribution. The mean speed will be the speed limit
of that particular road segment. The standard deviation is
assumed to be 5 km/h, and the speed is truncated to a limit
of three standard deviations from its mean.

We do not assume any particular positioning technology
for the MTs, as new breakthroughs will continue to surface.
The distribution and correlation of the possible positioning
errors are thus unknown. For the sake of simplicity, we do
not model the effects of positioning errors in the simulations.
As mentioned earlier, our mobility prediction technique as-
sumes that the positioning errors of future MTs are relatively
small. Therefore, we do not foresee any drastic effect on the
simulation results if positioning errors were to be introduced.

Each cell is assumed to have a fixed link capacityC
of 100 BUs. For simplicity, the bandwidth requirement of
each MT is assumed to be symmetric in both uplink and
downlink, although it is straightforward to modify the scheme
to handle asymmetric requirements. The traffic model used
here is similar to the one used in [2]. Connection requests
are generated according to Poisson distribution with rateλ
(connections/sec/cell) in each cell. The initial position of a
new call and its destination can be on any road segment with
equal probability. The path chosen by the MT is assumed to
follow the shortest path between its origin and its destination.
Like in [2], we assume that each call request is either of
type “voice” (requires 1 BU), or of type “video” (requires
4 BUs) with probabilitiesRvo and1−Rvo respectively, where
Rvo is also called thevoice ratio. In the simulations,Rvo

is set to 0.5. All MTs are assumed to have the samePFT

requirement, regardless of their connection types. The lifetime
for both types of connections are assumed to be exponentially
distributed, with mean 180 sec. We define thenormalized
offered loadper cell as

Lnorm =
[1 ·Rvo + 4 · (1−Rvo)] · λ · 180

C
(9)

In this paper, we shall only present the simulation results for
Lnorm=1. The interval between predictions,Tpredict, is set to
5 sec. The probabilitiesζL and ζU that affect the prediction
limits are both set to 0.65, as they are found to achieve the
best performance for the simulation model used.

B. Other Schemes Simulated For Comparison

We shall call our proposed scheme theroad topology based
scheme (RTB). We have also simulated six other bandwidth
reservation schemes for comparison purposes:

1) Benchmark Scheme:This is an idealized scheme that
assumes perfect knowledge about every active MT’snextcell
and handoff time. It utilizes the same algorithms described in
Sections III-C and III-D for adjustingTthresholdand maintaining
Rtarget. The only difference is that, instead of using prediction
limits, it uses actual handoff times for the computation of
Rtarget at each BS. The sorted list at each BS is created every
Tpredict as well, and only handoffs that are known to take place
within the nextTthreshold of the BS are included in this list.

2) Reactive Scheme:This scheme is purely reactive with
no prediction. It gives a lower bound for the efficiency of
the schemes considered. The basic idea is to adapt the BS’s
Rtarget according to forced termination counts observed over
wobs handoff-requests. We utilize the same adaptive algorithm
presented in Fig. 6 that was originally designed for adjusting
Tthreshold. Instead of adjustingTthreshold (which does not exist
in this scheme), the algorithm is used for adjustingRtarget

directly. If no forced termination occurs withinwobs handoff-
requests,Rtarget is decreased by 1 BU. If more than one forced
termination is observed,Rtarget is increased by 1 BU instead.

3) Static Scheme:This scheme utilizes a fixedRtarget for
each simulation run. ThePCB and PFT obtained for different
Rtarget values are plotted.

4) Choi’s AC1 Scheme:This is one of the three schemes
proposed in [2]. In their simulations based on 1-D cell layout,
their AC3 method performed best among the three methods,
namely AC1, AC2 and AC3. However, in our simulations
based on our 2-D simulation network, AC1 has the best
performance, whereas AC2 and AC3 are over-conservative
and has much worse efficiency than the Reactive scheme.
Therefore, we shall only present the results for AC1 here.
This scheme works by estimating the probability that a MT
would hand off into a neighboring cell within an estimation
time windowTest, based upon its previous cell, and its extant
sojourn time. The neighboring cell’sRtarget is then increased by
the MT’s bandwidth requirement, weighted by the estimated
probability. TheTest of each cell is dynamically adjusted based
on the measured forced termination ratio among a number of
handoffs recently observed, so as to meet the desiredPFT.

5) Linear Extrapolation (LE) Scheme:This scheme utilizes
the same algorithms described in Sections III-C and III-D for
adjustingTthresholdand maintainingRtarget. The only difference
from our RTB scheme is that, instead of using road topology
based mobility prediction technique, a linear extrapolation
based mobility prediction technique similar to the one we
proposed in [8] is used.

6) RTB with Path Knowledge (RTBPK) Scheme: This
scheme is a variant of our RTB scheme. It assumes that there
is a probabilityPknown that a MT’s path may be known, either
from the MT’s past history, or via routes computed by an
ITS navigation system. Note that even when the MT’s path is
known, we do not know the exact time and position that the
handoff might occur, because it could happen anywhere within
the handoff region. Also, note that we do not model errors
in the presumed known path, although in an actual cellular
system, there is a chance that the MT may deviate from its
usual known path. We are only interested in understanding
what is thebestperformance achievable if there is a probability
Pknown that we have prior knowledge about a MT’s path. In
this paper, we shall only assume thatPknown = 1.

C. Simulation Results

All results shown here are the averages over 19 cells in
the simulation network. When no handoff prioritization is per-
formed, bothPCB andPFT are 0.075. This is unacceptably high
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Fig. 9. PCB versusPFT for different schemes atLnorm = 1.0.

for PFT, thus emphasizing the need for handoff prioritization.
Fig. 9 shows the plots ofPCB versusPFT. For each scheme,
the targetPFT is varied so as to illustrate its tradeoff withPCB.
The relative positions of such plots demonstrate the relative
efficiencies among the different schemes. A curve that is closer
to the origin represents a more efficient scheme. It means that
the scheme is able to achieve the samePFT target while causing
a smaller increase inPCB.

The most efficient scheme among the seven schemes shown
is the Benchmark scheme. It serves as a bound to the best
efficiency that may be achieved by others. The Reactive
scheme, on the other hand, has the worst efficiency. Recall that
this scheme has little intelligence, as it merely adaptsRtarget

according to forced termination counts over an observation
window of past handoff-requests. AlthoughLnorm is constant,
new call and handoff call arrivals are random processes.
Therefore, there might be times when many handoff-requests
arrive together within a short period of time. Since the Reactive
scheme has no predictive capability, it does not increaseRtarget

even when there is a cluster of incoming handoff-requests in
the near future, until forced terminations start to occur. The
resulting large counts of forced terminations might cause the
scheme to rapidly adapt itsRtarget to a much larger value,
although there might be very few incoming handoff-requests
after this busy period. This blocks new calls unnecessarily for
extended periods of time, thus making the scheme the least
efficient.

The Static scheme appears to be more efficient than the
Reactive scheme. However, it is only useful if the average
system load is constant all the time, which is unlikely to be
the case. When load fluctuates with time, it may experience
periods of over-reservation and under-reservation. While a
staticRtargetmay be sufficient to meet the desired targetPFT for
a certain load, it may be too much or too little for some other
loads. On the other hand, other adaptive schemes, including
the Reactive scheme, can adapt to different loads.

Choi’s AC1 scheme has slightly better efficiency than the
Reactive scheme, because it is predictive and possesses some
intelligence in where and when the bandwidth should be
reserved. However, it only has about the same efficiency as
the Static scheme, and has much lower efficiency than the
remaining four schemes. This is probably because it might
be insufficient to predict the mobility of a MT based on
its previous cell information, and its extant sojourn time. In
addition, calls that are newly generated in the cell do not have
previous cell information. This hinders the scheme’s prediction
accuracy, thus lowering its efficiency. Moreover, the scheme
does not utilize predictions about outgoing handoffs from
each cell; it might over-reserve bandwidth resources, when
sufficient resources would have been released by outgoing
handoffs before the incoming ones arrive.

The LE scheme has better efficiency than Choi’s AC1
scheme. The improvement is even more significant in the RTB
scheme. These demonstrate that mobility prediction schemes
based on mobile positioning information are more accurate,
thus leading to more efficient reservations. Also, the LE and
RTB schemes utilize both incoming and outgoing handoff
predictions when determining the values ofRtarget, thus raising
their potential to outperform other schemes that do not.

While the RTBPK scheme performs better than the RTB
scheme, it can be seen that the improvement is not very
significant. In addition,Pknown is unlikely to be 1 in real-life,
therefore the actual improvement might be even lesser. It may
not be worth the extra effort to implement the RTBPK scheme
in place of the RTB scheme, unless the additional information
required by the RTBPK scheme is readily available.

As we have seen from the simulation results, the plots
agree with intuition that handoff prioritization efficiency im-
proves as the amount of knowledge incorporated into the
schemes increases. With the additional knowledge of real-
time mobile positioning information, the LE scheme is able
to outperform the Reactive scheme, the Static scheme, and
Choi’s AC1 scheme, even though it is based on a simple linear
extrapolation approach. For the RTB scheme, the use of both
real-time mobile positioning information and road topology
knowledge allows it to perform better than the LE scheme.
The RTBPK scheme, which eliminates the uncertainty in
predicting the MTs’ future paths, further improves upon the
RTB scheme, although the improvement is not dramatic.
Finally, the Benchmark scheme sets a non-realizable bound
for all the other schemes, using perfect knowledge about every
MT’s next handoff cell and time.

In Section III-B, we have explained the importance of
utilizing both incoming and outgoing handoff predictions for
adjusting the amount of reservation in each cell. Here, we shall
demonstrate via simulations that the reservation efficiencies of
such schemes are indeed better than those schemes that only
utilize incoming handoff predictions.

We consider three additional schemes, which are variants
of the Benchmark, LE, and RTB schemes. In these variant
schemes, predictions about outgoing handoffs from each cell
are purposely withheld from the computation ofRtarget. Fig. 10
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Fig. 10. Performance deteriorates when outgoing predictions not used.

shows thePCB versusPFT plots for these variant schemes
and their original schemes. We also reproduce the plot for
Choi’s AC1 scheme, which does not utilize outgoing handoff
predictions as well.

From the plots, we observe that the reservation efficiencies
of the variant schemes are much worse than their original
counterparts. This justifies the inclusion of outgoing hand-
off predictions for resource reservations. Another important
observation is that even without using the outgoing handoff
predictions, the variants of both our LE and RTB schemes
outperform Choi’s AC1 scheme. This reemphasizes the advan-
tages of using predictive schemes that utilize real-time mobile
positioning information, in contrast to the latter which only
uses each MT’s previous cell history and extant sojourn time.

V. CONCLUSION

We have presented a novel mobility prediction technique
built upon the assumption that future MTs would likely be
equipped with reasonably accurate positioning capability. Un-
like previous attempts which have assumed either hexagonal
or circular cell geometries, our technique caters for irregular
handoff regions. We also incorporate road topology informa-
tion into the prediction technique, which could potentially
yield better prediction accuracy for MTs that are carried in
vehicles.

Among the many possible applications for which mobility
predictions could prove useful, we are interested in using it
for handoff prioritization. We designed an adaptive bandwidth
reservation scheme that dynamically adjusts the reservation at
each BS according to both incoming and outgoing handoff
predictions.

We have performed simulations to evaluate the performance
of our scheme, and also simulated six other schemes for
comparison. The results agree with intuition that schemes
which incorporate more knowledge are able to achieve better
reservation efficiency. The relative efficiencies of the different
schemes can be summarized as: Reactive< Static≈ Choi’s
AC1 < LE < RTB < RTB PK < Benchmark. Although
the RTBPK scheme is potentially realizable forPknown< 1,
its improvement over the RTB scheme is found to be small
even whenPknown=1. Therefore the RTB scheme is the pre-
ferred scheme for implementation, unless the extra knowledge
required by the RTBPK scheme is readily available, such
as through dynamic route guidance in vehicular telematics
systems.

In order to justify our claim thatbothincoming and outgoing
handoff predictions should be used in order to maximize any
reservation scheme’s efficiency, we also examined variants of
the Benchmark, LE, and RTB schemes that do not account for
possible outgoing handoffs in their reservations. These variants
suffer significant deterioration in performance compared to
the original schemes. Nevertheless, both LE and RTB variant
schemes still outperform Choi’s AC1 scheme, demonstrating
the improvement in prediction accuracy resulting from the use
of real-time positioning information.
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