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calculate the singular integrals in this work. The approach can automat-
ically cancel the singularity without using a variable change or coordi-
nate transform and reduce the integrals to a one-fold numerical integra-
tion with a very simple integrand. Compared with the Duffy’s method
which requires a two-fold numerical integration, the approach could be
more convenient in implementation and more efficient in calculation as
illustrated by the numerical examples.
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Electromagnetic Scattering by a Gyrotropic-Coated
Conducting Sphere Illuminated From Arbitrary

Spatial Angles
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Abstract—This communication presents the development of a Mie-based
scattering theory for a gyrotropic-coated conducting sphere such that an
arbitrary incident angle can be modeled analytically from an eigen-system
determined by gyrotropic permittivity and permeability tensors. The in-
cident and scattered fields can be expanded in terms of spherical vector
wave functions (SVWFs). After the unknown scattering coefficients are ob-
tained in the general gyrotropic media, the expansion coefficients associ-
ated with the eigenvectors and scattering coefficients can be determined by
matching boundary conditions at the interfaces between different media.
The scattering property of a gyrotropic object relies on where the illumina-
tion comes from, and hence it is different from the isotropic cases. This ana-
lytical approach enables the modeling of scattering by a gyrotropic-coated
conducting sphere under arbitrary incident angles and polarizations.

Index Terms—Azimuthal angle, electromagnetic scattering, gyrotropic
media, gyrotropic ratio, radar cross section (RCS), radius ratio, spherical
vector wave function.

I. INTRODUCTION

Electromagnetic scattering of a conducting sphere coated with a gy-
rotropic media has been studied over the past few decades. The ho-
mogeneous sphere illuminated by a plane electromagnetic wave was
developed by Lorenz and Mie, respectively [1] and [2], and it has been
further extended in [3] and [4]. In the existing works, many numerical
and analytical methods have been established and developed, for ex-
ample, the finite difference time-domain (FDTD) [5], the integral equa-
tion method [6], Fourier transform [7], dyadic Green’s functions [8],
[9], artificial boundary transformation [10], and wave expansion [11].

Manuscript received July 17, 2011; revised October 31, 2012; accepted Feb-
ruary 09, 2013. Date of publicationMarch 19, 2013; date of current versionMay
29, 2013.
The authors are with Department of Electrical and Computer Engineering,

National University of Singapore, Singapore 117576, Singapore (email:
eleqc@nus.edu.sg).
Color versions of one or more of the figures in this communication are avail-

able online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TAP.2013.2253294

0018-926X/$31.00 © 2013 IEEE



3382 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 61, NO. 6, JUNE 2013

Fig. 1. The geometry of a conducting sphere coated with gyrotropic media.

However, most methods can only present the incoming wave’s prop-
agation along the z-axis. This problem is not important for isotropic
objects because their radar cross section remains the same at the local
observation frame no matter where the plane wave is incident upon
it. Therefore, one can rotate the coordinate such that those reported
methods could be applied to calculate the scattering and transform the
results of the radar cross section (RCS) in the local frame back to the
original laboratory frame. However, this problem becomes more crit-
ical for gyrotropic media as they have different behavior when the il-
lumination angles change even at the local observation frame, making
determination of the RCS difficult. Therefore, it motivates us to de-
velop an analytical method to directly formulate the scattering prop-
erty of gyrotropic objects in a fixed observation frame (which is al-
ways true), while the illumination comes from different angles. By
exploiting the novel eigenwave expansion method developed for uni-
axial spheres under arbitrary illumination angles (see, e.g., [12] and
references therein), now the material in the core-shell system can be
gyrotropic in both permittivity and permeability tensors and the illu-
mination angle can be considered during SVWFs expansion. In this
communication, the electromagnetic field is to be expanded in terms
of the SVWFs in the gyrotropic medium. By applying the boundary
conditions at the interface between the gyrotropic shell and PEC core,
and another interface between the shell and free space, the unknown
expansion coefficients associated with the eigenvector and scattering
coefficients can be determined analytically. Not only did the numerical
results demonstrate the validity of our proposed theory, but this com-
munication shall also report some new results that the existing methods
(not only analytical but also numerical) are not able to deal with.

II. FORMULATION

In Fig. 1, it shows that a conducting sphere is coated with a gy-
rotropic medium. The coated sphere with an outer radius and an
inner radius is located at the coordinate origin. Hence the core-shell
system is divided into three distinct regions, namely, region 0 for the
free space, region 1 for the gyrotropic shell (characterized by the per-
mittivity and permeability tensors), and region 2 for the conducting
sphere (perfect electric conductor). The incident wave impinged on
the coated object comes from an arbitrary incident angle and az-
imuthal angle . The time dependence of is assumed
but suppressed throughout.
The permittivity and permeability tensors of the gyrotropic media

can be characterized by

(1)

The constitutive relations inside the gyrotropic medium are expressed
as

(2)

Substituting (2) into the source-freeMaxwell equations, the wave equa-
tion is obtained as follows,

(3)

(4)

where , and and are shown in the Appendix.
in region 1 can be expanded in terms of the SVWFs.

(5)

where runs from 1 to , and runs from to . In practice,
the expansion is uniformly convergent and can be truncated at

[13], where denotes the size parameter
. Employing the relations between SVWFs, the following sets of

equations can be obtained

(6.1)

(6.2)

(6.3)

(6.4)

where the unknown expansion coefficients

are given in the Appendix. Substituting (6) into (5),

(7.1)

(7.2)



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 61, NO. 6, JUNE 2013 3383

The coefficients and can be found
in the Appendix. In (7), where is the amplitude
of the incident electric field and is given in the Appendix. Note
that SVWFs satisfy the relations

(8)

Hence the following equations can be obtained by substituting (7) and
(5) into (3)

(9)

(10.1)

(10.2)

(10.3)

(10.4)

(10.5)

(10.6)

(10.7)

(10.8)

After lengthy mathematical manipulation for (9), the following eigen-
system is given, where

(11)

(12.1)

(12.2)

(12.3)

(12.4)

The subscripts and superscripts denote the row and column
indices, respectively. Equation (11) is an eigen-system of eigenvalue

and the eigenvectors where denotes the index
of eigenvalues and corresponding eigenvectors. A new function is
constructed based on the eigenvectors, where

(13)

Since , (3) and (5) can be rewritten as

(14)

(15)

The expansion coefficients can be determined by matching the
boundary condition between the sphere and free space. can thus
be expressed based on (2) and (15). Then can be formulated from
the Maxwell’s equation.

(16)

(17)

To solve those expansion coefficients, the incident fields are to be ex-
panded in terms of SVWFs which will make matching the boundary
condition easier

(18)

(19)

The coefficients and associated with the incident wave are
given in the Appendix. The scattered fields can be represented in a
similar fashion

(20)

(21)
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where . Applying boundary conditions at the surface
of the conducting sphere (size parameters ), the following
equations are obtained:

(22.1)

(22.2)

(22.3)

Similarly, matching boundary conditions at the interface be-
tween the free space and the gyrotropic shell (size param-
eter , the following equations are obtained, where

and
are the Riccati-Bessel functions, and are the spherical
Bessel functions of the first kind and third kind, respectively.

(23.1)

(23.2)

(23.3)

(23.4)

Equation (23) can be formulated in the following form

(24)

Equation (24) can be represented in a matrix form

(25)

Thus, the unknown coefficients of electromagnetic fields in the gy-
rotropic spherical medium can be obtained, and the unknown coeffi-
cients and of scattered fields in free space can be calculated

Fig. 2. (a) RCS versus the scattering angle of a non-magnetic sphere (b) RCS
versus the scattering angle in a homogeneous gyrotropic sphere.

Fig. 3. RCS versus scattering angle in E-plane and H-plane under
and 30 for two radius ratios.

and .

using the aforementioned method. With the scattering coefficients ob-
tained from (20) and (21), RCS for different incident angles can be
obtained using formulas presented in the Appendix.

III. NUMERICAL RESULTS AND DISCUSSION

Our proposed approach is validated numerically by comparing with
the results obtained from other existing approaches. Nevertheless, it
is clear that the existing approaches can only be comparable to our
approach in the case of a plane wave incident along the z-axis. Fig. 2
illustrates the agreement between our obtained bistatic RCS and those
obtained by the Fourier transform method [14] and the multilevel
boundary-element integration method [15], in both situations of a bare
homogenous gyrotropic sphere and a gyrotropic-coated conducting
sphere.
In Fig. 3(a) and (b), the inner radius is assumed to be extremely small

, leading to a homogeneous gyrotropic sphere with
. It is clear that the far-field RCS differs drastically when the

illumination angle changes. Only the forward scattering is insensi-
tive to the variation of . The RCS at the observation angle
in the H-plane increases significantly as the incident angle increases
from 10 to 30 . It implies that we can manipulate the scattering inten-
sity at a particular observation angle by launching the same incidence
along a particular direction. It can thus be concluded that RCS patterns
of a general gyrotropic-coated PEC sphere will be af-
fected by the illumination angle, as Fig. 3(c) and (d) show.
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Fig. 4. RCS versus scattering angle in E-plane, and
.

Fig. 5. Backscattering RCS versus radius ratio (0 to 1) in (a) E-plane
(b) H-plane under and 30 .

and . RCS versus
scattering angle in (c) E-plane (d) H-plane at two fixed radius ratios of 0.65 and
0.5, for lossy coatings.

and
.

In order to quantify the effects of the material’s gyrotropy on the
scattering, we define electric-gyrotropic contrast and
magnetic-gyrotropic contrast , respectively. Fig. 4
shows that the gyrotropic contrast plays an important role in con-
trolling RCS in a fixed observation frame. For example, when

(the off-diagonal parameter is smaller than the
diagonal parameter), RCS can reach its minimum near . On
the contrary, when (off-diagonal parameters become
more dominant), RCS has sensitive dependence of gyrotropic con-
trast, e.g., when the gyrotropic contrast decreases from 0.66 to 0.5,
RCS has been decreased over wide observation angles except for in
the forward direction.
Larger backscattering in the E-plane and the H-plane will be ob-

served in Fig. 5(a) and (b), if the radius ratio is smaller than 0.3 as the
incident angle increases to 30 . Fig. 5(c) and (d) demonstrates the effect
of the radius ratio on conducting spheres coated with lossy gyrotropic
media. It can be seen that the RCS decreases in both E- and H-planes
at as the radius ratio increases. Since we stress that the il-
lumination angles are crucial for the scattering of a gyrotropic object,
Fig. 6 shows us how the backscattering is influenced by the incident
and azimuthal angles.

Fig. 6. Backscattering versus incident angle (0 to 90 and azimuthal
angle (0 to 360 ), size parameter and

and .

In Fig. 6, it is observed that the backscattering RCS at is
insensitive to the azimuthal angle varying from 0 to 360 . Inter-
estingly, great variation of backscattering is pronounced as the incident
angle increases gradually up to 90 and backscattering is fluctuating
along the variation of the azimuthal angle. At , the backscat-
tering reaches its maximum at and 360 . At and

, backscattering reaches its minimum.

IV. CONCLUSION

The problem of electromagnetic scattering by a gyrotropic-coated
conducting sphere has been successfully solved at a fixed laboratory
frame for RCS observation. Hence, an incident wave from arbitrary
illumination angles can be treated analytically. Two excellent agree-
ments were observed, which verify the accuracy of our proposed ap-
proach and the correctness of the source code. The dependences of
radar cross section on incident angle, radius ratio, and joint gyrotropic
contrasts can be, for the first time, investigated in both lossless and
lossy gyrotropic media. In addition, the significance of the incident and
azimuthal angles in the RCS is illustrated, which has not been shown
previously. On the other hand, if the incoming wave is kept unchanged,
one can also rotate the gyrotropic object and the RCS along the back-
ward direction can be manipulated. Our present analytical approach
is expected to investigate a multi-layered gyrotropic sphere that has
wide applications in antenna design, satellite communication and target
shielding.

APPENDIX

The unknown coefficients in (6) are given as follows and in (A-2e
and A-2f) at the top of the next page.

(A-1a)

(A-1b)

(A-2a)

(A-2b)

(A-2c)
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(A-2e)

(A-2f)

(A-2d)

can be obtained by changing
and in (A-2) to and . The coefficients in (7)

are shown as

(A-3a)

(A-3b)

(A-3c)

(A-3d)

(A-4a)

(A-4b)

(A-4c)

(A-4d)

The coefficients of the incident fields are given as follows

(A-5a)

(A-5b)

(A-5c)

(A-5d)

(A-6)

(A-7)

(A-8)
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