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Abstract: Based on full-wave electromagnetic theory, we derive the zero-
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the far-field light scattering diagrams are similar under the zero-forward or
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anisotropic spheres is also derived, at which the scattering light is totally
polarized. In addition, the high-quality polarized scattering wave and the
tunable polarization conversion can be achieved for the radially anisotropic
spheres.
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1. Introduction

The light scattering from small particles has long been a topic of great interest [1–4]. For a
homogeneous sphere with arbitrary size, the full-wave electromagnetic theory was established
to investigate the light scattering [2]. Nowadays, the interest in this field has been increased
even more due to its potential applications in subwavelength optics, information processing
and nanotechnologies.

Recently, technological success in the fabrication of nanostructured materials has led to an
emergence of growing field of nanophotonics. Nanostructured materials possess unique op-
tical, electric and magnetic properties compared to bulk materials, they have many potential
applications in biomedical sciences [5,6], optical forces and trapping [7,8], and high-resolution
optical imaging [9]. On the other hand, with the prosperous progress in the engineered mate-
rials (known as “metamaterials”), especially in the negatively refractive materials, much effort
was devoted to these artificial materials for their interesting and novel properties such as per-
fect lens [10, 11] and electromagnetic cloaking [12]. In this connection, almost every corner
of electrodynamics theory was reexamined and many unusual phenomena were observed. For
instance, Anomalous light scattering and Fano resonance were revealed from nanospheres with
low dissipation rate [13, 14]. Non-Rayleigh limits for the scattering efficiency Qsca from the
small particles made of metamaterials were demonstrated such as Qsca ∼ 1/q2 (size parame-
ter q = 2πa/λ , where a is the radius of the sphere and λ is the illuminating wavelength) or
Qsca ∼ const under certain conditions [15, 16]. On the other hand, thirty years ago, Kerker
et. al. showed that the forward scattering and backward scattering can be almost suppressed
if the dielectric and magnetic properties of the isotropic scatters satisfy certain relations [17].
Garcı́a-Cámara et. al. renewed Kerker’s zero-forward scattering condition [18–20] and studied
the Mie resonance of light scattering by small particles with negative physical parameters [21].
More recently, Geffrin et. al. [22] gave unambiguous experimental evidence of observing the
zero-forward scattering, and experimental verifications of Kerker’s theoretical prediction in the
optical wavelength range was reported [23, 24]. Note that above investigations were valid for
isotropic cases only.

In this paper, we would like to investigate the electromagnetic scattering from nanospheres
with radial anisotropy. As a matter of fact, the majority of solid materials in nature are
anisotropic, and radial anisotropy was indeed found in many nanostructures such as biolog-
ical cells containing mobile charges and real phospholipid vesicles [25–27]. In addition, it
was found that radial anisotropy plays an important role in the creation of electromagnetic
cloaking of invisibility [12, 28], and much interesting progress was also made for radially
anisotropic structures [29–33]. Here, based on our previously derived scattering theory for
radial anisotropy [28], we shall derive the zero-forward and zero-backward conditions for
nanospheres when the radial anisotropy is taken into account. Furthermore, motivated by the
investigation on the manipulation of the polarization states of electromagnetic waves through
reflections by an anisotropic metamaterial slab [34], we take one step forward to study the
polarization of the scattering wave from radially anisotropic spheres.

This paper is organized as follows. In Section 2, we review the general scattering theory
of light scattering by radially anisotropic spherical particles. In Section 3, we study the light
suppression in the forward and backward directions. Especially, the zero-forward and zero-
backward scattering conditions for the radially anisotropic spheres are derived within the quasi-
static limit. In Section 4, we illustrate the polarization of the light scattered by the spheres with
radial anisotropy. Conclusions are made in Section 5.
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2. Theoretical model

We consider the light scattering by a radially anisotropic sphere with radius a, surrounded
by the free space with permittivity ε0 and permeability μ0. Radial anisotropy means that the
permittivity (or permeability) tensor is diagonal in spherical coordinates, and the element along
the radial direction differs from the one along the tangential direction [25]. Here the relative
permittivity and the permeability tensors are written in the spherical coordinates as, ¯̄ε = (εrr̂r̂+
εt θ̂ θ̂ + εt φ̂ φ̂) and ¯̄μ = (μrr̂r̂+ μt θ̂ θ̂ + μt φ̂ φ̂). For simplicity, we assume the polarized wave
with unit amplitude to be Ei = êxexp(ik0z) with k0 = ω√ε0μ0. We can generalize the Lorenz-
Mie scattering theory [3,4] to study light scattering by spherical particle with radial anisotropy
through Debye potentials. After some algebraic manipulations, we can obtain the electric and
magnetic scattering coefficients [28, 35],

an =

√
εtψ ′

n(q)ψνn(mq)−√μtψn(q)ψ ′
νn
(mq)√

εtξ ′
n(q)ψνn(mq)−√μtξn(q)ψ ′

νn
(mq)

, (1)

bn =

√
εtψn(q)ψ ′

γn
(mq)−√μtψ ′

n(q)ψγn(mq)√
εtξn(q)ψ ′

γn
(mq)−√μtξ ′

n(q)ψγn(mq)
, (2)

where m =
√

εt
√μt is the refractive index of the sphere relative to vacuum, q = k0a is the size

parameter, ψn(x) and ξn(x) are the Ricatti-Bessel functions. The primes indicate differentiation
with respect to the entire argument of the corresponding functions. From Eqs. (1) and (2), we
find that all the information on the particle anisotropy is presented by the orders of spherical
Bessel functions,

νn =

√
n(n+1)Ae+

1
4
− 1

2
and γn =

√
n(n+1)Am+

1
4
− 1

2
, (3)

where Ae= εt/εr and Am= μt/μr are, respectively, the electric and magnetic anisotropy ratios.
For the isotropic case, Ae=Am= 1, Eqs. (1) and (2) are naturally reduced to the exact formulae
of Mie theory.

The scattered radiant intensity I is composed of two polarized components [17],

I = I1 + I2 =
λ 2

4π2r2

{
|S⊥|2 sin2 φ +

∣∣S‖∣∣2 cos2 φ
}
, (4)

where I1 and I2 are the two polarized components of the scattered intensity when the incident
electric field vector is perpendicular (TE) and parallel (TM) to the scattering plane, which
contains the incident direction and the direction of the scattered wave. In addition, λ is the
incident wavelength, r is the distance to the observer, and φ is the angle between the electric
vector of the incident wave and the scattering plane. And the amplitude functions S⊥ and S‖ are
defined as,

S⊥ =
∞

∑
n=1

2n+1
n(n+1)

[anπn(cosθ)+bnτn(cosθ)] , (5)

S‖ =
∞

∑
n=1

2n+1
n(n+1)

[anτn(cosθ)+bnπn(cosθ)] , (6)

where the angular functions πn = P1
n (cosθ)/sinθ and τn = dP1

n (cosθ)/dθ , with θ being the
angle between the forward and scattering directions. Note that there are two special directions
such as 0◦ and 180◦ at which the scattering does not depend on the input polarization. In this
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connection, we can write the reflection (backward, θ = 180◦) R and transmission (forward,
θ = 0◦) T amplitudes,

R = S⊥,‖(180◦) =
∞

∑
n=1

2n+1
n(n+1)

(an −bn), (7)

T = S⊥,‖(0◦) =
∞

∑
n=1

2n+1
n(n+1)

(an +bn). (8)

3. Conditions for suppression of the scattering intensity

As we know for the magnetic or nonmagnetic small spheres with large values of permittivity,
the scattered radiant intensity may be either preferentially back or forward scattered [17]. This
asymmetry originally arises from the interference between the electric and magnetic dipole
modes. It is evident that the scattering in the backward direction can be totally suppressed (i. e.
R = 0) for the scattering coefficients satisfying an = bn, whereas the scattering in the forward
direction can be totally suppressed (i. e. T = 0) when an =−bn.

In the long-wave (q = 2πa/λ 	 1) and low-frequency (mq 	 1) limit, the higher terms for
n > 1 are so small that can be neglected, and the scattering efficiency is mainly characterized
by the first two scattering coefficients a1 and b1, which represent the dipole contributions.
Correspondingly, the Riccati-Bessel functions with small arguments for n = 1 and non-integer
order ν are approximately to be,

ψ1(x) ∼ x2

3
− x4

30
, ξ1(x)∼− i

x
− ix

2
+

x2

3
,

ψν(x) ∼
√

π
Γ(ν + 3

2 )

( x
2

)ν+1 −
√

π
Γ(ν + 5

2 )

( x
2

)ν+3
. (9)

Then, the scattering coefficients a1 and b1 with small arguments are,

a1 
 2εt − (ν1 +1)
3i(εt +ν1 +1)

q3 and b1 
 2μt − (γ1 +1)
3i(μt + γ1 +1)

q3. (10)

As a consequence, we obtain the zero-backward and zero-forward scattering conditions for
small particles with radial anisotropy,

εt

ν1 +1
=

μt

γ1 +1
and

εt

ν1 +1
=

2(γ1 +1)−μt

4μt +(γ1 +1)
. (11)

Here we would like to mention that Eq. (11) is reduced to Kerker’s conditions for the isotropic
case with ν1 = γ1 = 1. Actually, zero-forward scattering intensity cannot be exactly obtained
under the zero-forward scattering condition. The forward scattering intensity just leads to a
minimum, and its magnitude is much smaller than the scattering in all other directions. The
reason is that the zero-forward scattering condition is derived under the quasi-static limit, and
the higher-order scattering coefficients (i.e. a2, b2...), which definitely exist, have been omitted.
In this sense, the overall scattering from the sphere is indeed low and the higher-order compo-
nents of the forward scattering takes into account the extinction from the sphere, and then the
optical theorem (the extinction cross section is proportional to the scattering amplitude in the
forward direction) is satisfied [36]. In addition, there is an exception for zero-forward scattering
when εt =−(ν1 +1) [we get μt =−(γ1+1) with the condition for zero-forward scattering], at
which the localized surface plasmon resonances are excited [18].
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Fig. 1. Scattering intensity (logarithmic scale) as a function of the scattering angle calcu-
lated by full-wave scattering theory for spherical particles with q = 0.1, μr = μt = 2 when
they are illuminated from left by a TM-polarized incident wave. The physical parameters
satisfy either zero-backward scattering condition (a) or zero-forward scattering condition
(b).

Figure 1 shows the far-field scattering diagrams of spherical particles with different radial
anisotropies under zero-backward and zero-forward scattering conditions, illuminated by the
TM-polarized incident light (under the zero-backward or zero-forward conditions, the results
for TE-polarized wave are almost the same as those for TM one). If the physical parameters sat-
isfy the first condition in Eq. (11), the backward scattering intensity is almost zero, as expected
[see Fig. 1(a)]. On the other hand, the scattering diagram shows near zero forward scattering
intensity [see the black solid line in Fig. 1(b)], when the parameters are chosen to satisfy the
second condition in Eq. (11). We note that when the radial anisotropy in the permittivity is taken
into account, the scattering diagrams keep invariant under the zero-forward (or backward) scat-
tering conditions. Actually, for the given isotropic permeability μr = μt = 2, the scattering co-
efficient b1 is fully fixed. Moreover, under the zero-forward (or backward) scattering condition,
one yields a1 =−b1 (or a1 = b1) no matter what the anisotropic permittivities are chosen. As a
consequence, the scattering intensity, determined mainly by the first two scattering coefficients
a1 and b1, is almost independent of the radial anisotropy.

In order to show how the scattered wave evolves from the near- to far-fields and how they
are correlated, we calculate the total near-field intensity around the anisotropic particles under
the zero-backward and zero-forward scattering conditions for various radial anisotropy in the
permittivity, as shown in Figs. 2 and 3. From Fig. 2 (the zero-backward scattering condition
holds), we can observe that the electromagnetic scattering is inhibited in the backward direction
[see Figs. 2(a), 2(c) and 2(e)] and the modulus of the electric field is relatively large in the
forward direction. On the contrary, under zero-forward scattering condition, we really observe
that the electric field is suppressed in the forward direction (see Fig. 3). All these behavior
coincides well with far-field scattering diagrams (see Fig. 2). To one’s interest, although the
introduction of the radial anisotropy in the permittivity has little influence on the scattering
diagram, it leads to great modification in the local field distributions around the anisotropic
particles. For instance, when the electric anisotropy ratio Ae < 1 [see Figs. 2(c) and 2(d)],
the electric field is greatly enhanced when compared with the isotropic case [see Figs. 2(a)
and 2(b)]. And the field is divergent at the center of the spheres. However, when Ae > 1 [see
Figs. 2(e) and 2(f)], the internal field is found to be reduced considerably in comparison with the
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Fig. 2. Distribution of the total near-field intensity (log10 |E|) calculated by full-wave scat-
tering theory for the sphere with q = 0.6, μr = μt = 2 under the zero-backward scattering
condition: εr = εt = 2 for (a) and (b), εr = 5,εt = 7/5 for (c) and (d), εr = 1,εt = 3 for (e)
and (f). Note that (a), (c), (e): show the fields both inside and outside the spheres, whereas
(b), (d), (f) show the fields inside the spheres only.

isotropic case, and is almost zero in the center of the spherical particle. The divergence and the
vanish behavior in the center of spherical particles for different radial anisotropy under the zero-
backward scattering condition is also observed (not shown here), and can be well understood
within the quasi-static approximation [29]. It is interesting that for an observer sitting at the
backward of the sphere, the fields are uniformly boosted all across the anisotropy we studied,
but for an observer just inside the core, the fields can drastically change from almost zero to
infinity [37]. Therefore, through the adjustment of the radial anisotropy, one can still enhance or
weaken the local field inside the particles while keeping the scattering diagram almost invariant.

As suggested in [20] and [36], in deriving the zero-backward and zero-forward scattering
conditions, one can take into account the radiative correction so as to satisfy the power conser-
vation requirements. In this connection, the scattering coefficients a1 and b1 should be modified
by,

a1 
 1

1+ 3i(εt+ν1+1)
[2εt−(ν1+1)]q3

and b1 
 1

1+ 3i(μt+γ1+1)
[2μt−(γ1+1)]q3

. (12)

Then, the condition for zero-backward scattering is found to be the same as the first one in
Eq. (11), while the condition for the zero-forward scattering is revised to be

εt

ν1 +1
=

3[2(γ1 +1)−μt ]−2iq3[2μt − (γ1 +1)]
3[4μt +(γ1 +1)]−4iq3[2μt − (γ1 +1)]

. (13)

Similarly, Eq. (13) is reduced to the modified Kerker’s condition [20] when ν1 = γ1 = 1 for
the isotropic case. In order to fulfill Eq. (13), at least one of the anisotropic parameters should
be complex with negative imaginary part if other parameters are real. The negative imaginary
part of εr(t) or μr(t) may result in negative absorption cross section or amplification cross sec-
tion. The scatters with such a property are known as gain (active) objects. On the contrary, for
usual passive spheres whose imaginary parts of the permeabilities and/or permittivities are pos-
itive, the corresponding electric or magnetic polarizability cannot have opposite sign to each
other [36, 38, 39], and hence the zero-backward scattering condition is not fulfilled.
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Fig. 3. Distribution of the total near-field intensity (log10 |E|) calculated by full-wave scat-
tering theory for the spheres with q = 0.6, μr = μt = 2 under the zero-forward scattering
condition: εr = εt = 0.4 for (a), εr = 2,εt = 6/25 for (b), and εr = 1/4,εt = 13/25 for (c).

4. The polarization of the scattering wave

It is known that the polarization degree of the scattered wave from the isotropic particles pro-
vides us an alternative way for determining the physical parameters of the particles [40, 41]. In
this section, we would like to study the polarization of the scattering wave from the anisotropic
particles.

For an incident linearly polarized plane wave, the scattered wave from spherically anisotropic
particle may have two polarized components (named as TE and TM). Especially, when the
amplitude function S⊥ or S‖ equals zero, the scattering light will be totally polarized. The
angle at which S⊥ (or S‖) equals zero is defined as the generalized Brewster’s angles for the
sphere [16]. In the quasi-static limit, we obtain the analytical solution for the conditions to get
the completely polarized wave,

cosθ⊥ =− (2εt − (ν1 +1))(μt+(γ1 +1))
(2μt − (γ1 +1))(εt +(ν1 +1))

, cosθ‖ =
1

cosθ⊥
, (14)

where θ⊥ (when S⊥ = 0) and θ‖ (when S‖ = 0) refer to the “Brewster’s angles” for spherical
particles with radial anisotropy. Moreover, the degree of polarization P of the scattered light is
expressed as,

P =
|S⊥|2 −

∣∣S‖∣∣2
|S⊥|2 +

∣∣S‖∣∣2 . (15)

It is evident that in the quasi-static limit, when the angle of incidence equals the Brewster’s
angle, P shall be 1 or −1, indicating totally TE- or TM-polarized scattering light. On the other
hand, for the spheres with large size parameters, we can directly resort to our generalized for-
malism Eqs. (5) and (6) with Eqs. (1) and (2) to present the numerical results. In Fig. 4, we plot
the polarization diagram and P versus θ with q = 0.5 for different anisotropic permeabilities
and permittivities. The following features are clearly noted: (1) The polarization can be nearly
1 or −1, that is to say, totally polarized, when we adjust the electric and magnetic anisotropy
ratios suitably; (2) Either TE-polarized scattering wave (see the blue short dashed and olive
dash-dotted lines) or TM-polarized scattering wave (see the black solid and red dotted lines) is
achieved from the radially anisotropic sphere; (3) Through tuning the anisotropy ratios it is pos-
sible to obtain high-quality polarized scattered waves in comparison with those from isotropic
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Fig. 4. The polar diagram of absolute value of polarization (a) and the degree of polarization
versus θ (b) for q = 0.5, εr =−1, μr =−5, and for different radial anisotropy.

spheres. High-quality means the degree of polarization is larger and the range of “Brewster’s
angles” are broader; (4) Tunable “Brewster’s angles” from forward (0◦ ∼ 90◦, see the black
solid line) to backward (90◦ ∼ 180◦, see the dash-dotted olive line) directions can be achieved.

Fig. 5. Same as in Fig. 4 but with q = 1.

Figure 5 gives the results of the polarization patterns with q = 1.0. For the isotropic case
(Ae = 1 and Am = 1), increasing the size parameters while keeping the physical parameters
unchanged will result in a lower degree of polarization (see the red short dotted lines in Figs. 4
and 5). However, as the radial anisotropy is taken into account, we can still get high-quality
polarized scattering wave.

5. Conclusion

In summary, the light scattering of spherical particles with radially anisotropic permittivity and
permeability is analyzed with the expanded Mie theory. We propose an analytical approach to
obtain the zero-forward and zero-backward scattering intensity within the quasi-static approx-
imation. Numerical results show that the near-field intensity can be enhanced or weakened by
tuning the anisotropic permittivities, while the far-field radiation pattern is kept unchanged (i.e.
zero-forward or zero-backward scattering). In addition, we derive the generalized “Brewster’s
angles” for the spherically anisotropic particles. The high-quality polarized scattering wave
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and the tunable polarization conversion can be achieved through the suitable adjustment of the
electric and magnetic anisotropies. We hope our results will shed some light on both the the-
oretical and experimental study on the directionality of light scattering and the applications in
high-quality linear polarizers.
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