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Derived from the light scattering by a radially anisotropic sphere, unusual scattering behavior is exhibited, which
breaks the Rayleigh law (scattering efficiency Qsca ∼ q4 as q → 0, where q is the size parameter). Under certain con-
ditions, we demonstrate an asymptotical relation between Qsca and q, i.e., Qsca � Fq8, which is not realizable
for isotropic particles in Rayleigh regime. Moreover, suitable adjustment of the anisotropic parameters can further
suppress the coefficient F , resulting in enhanced transparency of the anisotropic particle. © 2012 Optical Society
of America
OCIS codes: 290.4020, 290.5870, 290.5850, 160.1190.

Light scattering by a small obstacle is one of the most
fundamental problems in classical electrodynamics
[1–8]. The pioneering researcher is Rayleigh [1], who stu-
died the elastic scattering of light by spherical particles in
the small particle limit. For a homogeneous sphere with
arbitrary size, the full-wave electromagnetic theory was
established by Mie [2]. For instance, the scattering cross
section can be written in terms of the Mie scattering coef-
ficients an and bn [3,4]. In the Rayleigh limit with both
q � �2πa ∕ λ� << 1 (a is the radius of the sphere and λ is
the incident wavelength) andmq << 1 (m is the refractive
index of the sphere relative to the surrounding medium),
the scattering of electromagnetic radiation is dominated
by electric and magnetic dipoles, and the scattering effi-
ciency Qsca is found to be proportional to q4 in the case
that the sphere is made of conventional materials (ε > 0
and μ > 0). In addition, for small particles with low dis-
sipation rates, light scattering is unusual [5] and Fano
resonances are observed [6,7]. Motivated by both experi-
mental and theoretical developments in the field of
metamaterials with simultaneous negative permittivity
and permeability [9,10], non-Rayleigh limits of the small
particles made of metamaterials were demonstrated such
as Qsca ∼ 1 ∕ q2 or Qsca ∼ const under certain conditions
[11,12]. Recently, light scattering by nanoparticles with
radial anisotropy received much attention [13–17].
In this letter, we adopt the full-wave electromagnetic

theory to study light scattering by small particles with
radial anisotropy. Especially, we analytically study the
scattering efficiency in the Rayleigh limit, and the unu-
sual behavior of Qsca as a function of the size parameter
q is predicted Qsca ∼ q8 instead of the Rayleigh law
Qsca ∼ q4. As a consequence, with decreasing q, the scat-
tering efficiency by anisotropic particles may vanish
much faster than the one by the isotropic particles. More-
over, for the particles with radial anisotropy, suitable ad-
justment of the permittivity and permeability can result in
much smaller scattering efficiency and is helpful to rea-
lize near-transparency.

Let us consider the scattering of light by a spherical
particle with radial anisotropy of radius a, surrounded
by free space with permittivity ε0 and permeability μ0. Ra-
dial anisotropy means that the physical parameters such
as the permittivity and permeability of the particles differ
when measured along the radial and tangential directions
to the surface. The relative permittivity and permeability
tensors are written in the spherical coordinates as
¯̄ε � �εr r̂ r̂�εtθ̂ θ̂�εtϕ̂ ϕ̂�, ¯̄μ � �μr r̂ r̂�μtθ̂ θ̂�μtϕ̂ ϕ̂�. For
simplicity, we assume the polarized incident wave with
unit amplitude: Ei � êxeik0z, where k0 � ω

���������
ε0μ0

p
. Here,

we generalize the Mie scattering theory [3,4] to study
light scattering by the spherical particle with radial ani-
sotropy. After some algebraic manipulations, we obtain
the nth TM scattering coefficients an [13,14],

an �
����
εt

p
ψ 0
n�q�ψνn�mq� − �����

μt
p

ψn�q�ψ 0
νn�mq�����

εt
p

ξ0n�q�ψνn�mq� − �����
μt

p
ξn�q�ψ 0

νn�mq� ; (1)

where m � ����
εt

p �����
μt

p
is the refractive index of the sphere

relative to vacuum, ψ i�x� and ξi�x� are the Ricatti–Bessel
functions, and the primes indicate differentiation with
respect to the entire argument. Note that νn ���������������������������������������������
n�n� 1�εt ∕ εr � 1 ∕ 4

p
−

1
2. For the isotropic particle with

εr � εt, we have νn � n, Eq. (1) is just the Mie coeffi-
cients. Incidentally, the nth TE scattering coefficients
bn can be similarly obtained by εi↔μi (i � t or r) and
νn → γn (γn �

���������������������������������������������
n�n� 1�μt ∕ μr � 1 ∕ 4

p
−

1
2) in Eq. (1).

The scattering efficiency is defined by [3,4]

Qsca �
2

q2
X∞
n�1

�2n� 1��janj2 � jbnj2�: (2)

Here we focus on what happens in the Rayleigh limit
(both q << 1 and mq << 1), where the first-order coeffi-
cients a1 and b1 contribute to the scattering efficiency
mainly.
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The Riccati–Bessel functions for noninteger orders νn
are ψνn�x� �

����
πx
2

p P
∞

k�0
�−1�k

k!Γ�νn�k�3 ∕ 2� �x2�2k�νn�1 ∕ 2, with the
Euler gamma function Γ�� � ��. As a consequence, a1
can be approximately written as,

a1 � −

i
�
2C1

����
εt

p
− D1

�����
μt

p �

3
�
C1

����
εt

p � D1
�����
μt

p � q3

� i�4C1 � 20C2� ����
εt

p
− i�D1 � 10D2� �����

μt
p

30
�
C1

����
εt

p � D1
�����
μt

p � q5; (3)

with the parameters Cj � �m ∕ 2�ν1�2j−1 ���
π

p
∕Γ�ν1 � �2j �

1� ∕ 2� and Dj � �m ∕ 2�ν1�2j−2 ���
π

p �ν1 � 2j − 1� ∕ fΓ�ν1 � �2j −
1� ∕ 2��2ν1 � 2j − 1�g (j � 1, 2).
For an isotropic small sphere containing conventional

materials, with which the permittivity and permeability
are not equal to 1, both a1 and b1 are found to be propor-
tional to q3, then the scattering efficiency is governed by
the well-known Rayleigh law. Here, for anisotropic
spheres, we find that the scattering efficiency can exhibit
another unusual dependence of q. For instance, the first
term in Eq. (3) will vanish for εt � �εr � 1� ∕ �2εr�. As a
result, a1 admits the form

a1 �
i
45

�
1 −

5μt
4εt � 1

�
q5: (4)

Similarly, when the components of the permeability
tensor satisfy the relation μt � �μr � 1� ∕ �2μr�, b1 is sim-
plified as b1 � iq5�1 − 5εt ∕ �4μt � 1�� ∕ 45. Since the first-
order scattering coefficients (a1 and b1) are proportional
to q5, the contributions of the second-order scattering
coefficients (a2 and b2) should not be neglected. We have

a2 � −
i
45

3εt −
� ��������������������������������������

6εt�2εt − 1� � 1 ∕ 4
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Again, the expression for b2 follows from Eq. (5)
with εt↔μt.
Substituting these coefficients into Eq. (2) results in

Qsca ≈
2q8
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: (6)

Hence, for anisotropic particles, under proper condi-
tions, we find analytically Qsca ∼ q8 instead of the Ray-
leigh law Qsca ∼ q4. Actually, this change results from the
introduction of additional anisotropic parameters. Tun-
ing these parameters, one may make the leading terms
zero in the expansion of Qsca in powers of q, so that
the subleading terms begin to play a dominant role. In
addition, as q → 0, it is possible to realize faster vanishing
of the scattering efficiency with the anisotropic particles,

resulting in better transparency in comparison with iso-
tropic particles.

To verify our analytical theory, we numerically calcu-
late the scattering efficiency with the full-wave electro-
magnetic theory based on Eqs. (1) and (2), see Fig. 1.
We find that for ordinary anisotropic physical parameters
(εt � 3, εr � 1, μt � 5, and μr � 1), the scattering
efficiency obeys the Rayleigh law. However, εt � 3,
εr � 1 ∕ 5, μt � 5, and μr � 1 ∕ 9, which satisfy the relations
εt � �εr � 1� ∕ �2εr� and μt � �μr � 1� ∕ �2μr�, and one ob-
serves unusual scattering asymptotical behavior with
Qsca ∼ q8. The full-wave numerical results (the solid line)
are in good agreement with our analytical derivations
with Eq. (6) as expected. Here we would like to mention
that for nonmagnetic anisotropic particles (μt � μr � 1),
such unusual behavior is still possible to obtain (see
the dotted line). This is very important for possible
applications.

Generally, as q → 0,Qsca as a function of q always has a
form Qsca � Fqσ , where both the coefficient F and the
exponent σ depend on the physical parameters. For gt �
�gr � 1� ∕ �2gr� (g � ε or μ), we have predicted the fast
vanishing of the scattering efficiency with σ � 8 in com-
parison with Rayleigh’s prediction with σ � 4. It is natur-
al to ask the question whether one can further decrease
the scattering efficiency through the decrease of coeffi-
cient F . In Fig. 2, we show the unusual suppressed scat-
tering efficiency versus size parameter under our
conditions. We find that all lines take the same slope with
σ � 8, but have different scattering magnitudes. This is
due to the fact that the coefficient F can be tuned by ad-
justing the permittivity εt for a given μt (or μr), and it
achieves a minimal value for εt � μt (F � 0 for
εt � εr � μt � μr � 1). In our case, with increasing εt,
F decreases initially, and goes through a minimum at
an optimal εt � 3, then increases (see the inset). Thus,
one may control the rate of the suppression of Qsca
through tuning εt.

In the end, we would like to examine the origin of
changes in the asymptotic behavior of Qsca. In the
Rayleigh limit, the anisotropic particle can be regarded

Fig. 1. (Color online) Log-log plot of the scattering efficiency
against the size parameters. The lines are calculated via full-
wave electromagnetic theory. The magenta star is calculated
with Eq. (6).
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as the isotropic one with the equivalent permittivity
εe � εrν1 and the equivalent permeability μe � μrγ1
[14,18]. For gt � �gr � 1� ∕ �2gr�, it is easy to obtain εe � 1
and μe � 1. In other words, such an anisotropic sphe-
rical scatterer behaves as an isotropic sphere made of
vacuum [19]. As a consequence, one may observe the
unusual suppressed scattering efficiency. In addition,
one can check the electric field distribution, as shown
in Fig. 3. When the conditions gt � �gr � 1� ∕ �2gr� are sa-
tisfied, the scattering field is quite small (see Fig. 3(a)),
otherwise the scattering field cannot be ignored [see
Fig. 3(b)].
In summary, we study light scattering by small spheres

with radial anisotropy via the full-wave electromagnetic
theory. We predict the unusual dependence of the scat-
tering efficiency on small q such as Qsca � Fq8 for εt �
�εr � 1� ∕ �2εr� and μt � �μr � 1� ∕ �2μr�, and one may
obtain low scattering efficiency by small particles with
radial anisotropy. Such unusual asymptotic behavior is
absent for the isotropic spheres, while this is novel for
the anisotropic spheres. Moreover, the coefficient F
can be further decreased by the adjustment of the phy-
sical parameters. Therefore, it is possible to yield much
lower scattering efficiency, and hence better transpar-
ency with anisotropic particles.
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Fig. 2. (Color online) Qsca versus q and F versus εt (the inset)
for μt � 3 and μr � 1 ∕ 5.

Fig. 3. (Color online) Contour plot of electric field enhance-
ment jE ∕E0j in the x ∕ a − z ∕ a plane for μt � μr � 1,
q � 0.002. Other parameters are: (a) εt � 3, εr � 1 ∕ 5;
(b) εt � 3, εr � 2. Note that the area outside the sphere includes
the scattering field only.
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