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1. Derivation and discussion of optical forces
for Bessel beam.
Firstly, we consider a magnetodielectric spherical par-

ticle of radius R in vacuum possessing only electric p and
magnetic m dipole moments. Then for any incident field,
the time-averaged force for a Rayleigh nanoparticle con-
sists of electric-dipole, magnetic-dipole, and interaction-
of-dipoles terms (see Eq. (2) in [1]), respectively:
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where the sum over repeating indices (i, j = 1, 2, 3.) is
assumed. Electric and magnetic dipole moments linearly
depend on the fields as p = αeE and m = αmB.
Longitudinal component of the optical force is equal to
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where Pz = (E × B∗)z and the fields are evalu-
ated at the center of the spherical particle. For a
propagation-invariant Bessel beam, the electric and mag-
netic field have the form E = e(r⊥) exp(iβk0z) and
B = b(r⊥) exp(iβk0z), where r⊥ is the transverse
radius-vector (r = r⊥ + zez). Then it is not dif-

ficult to obtain Re(αeE
∂E∗

∂z ) = Re(−ik0βαeEE∗) =

Im(αe)k0β|E|2. Similarly, one can get Re(αmB∂B∗

∂z ) =

Re(−ik0βαmBB∗) = Im(αm)k0β|B|2. Substituting
above expressions into Eq. 2, one can obtain the optical
force for Bessel beam in dipole approximation
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For Rayleigh particles Re(αe,m) ≫ Im(αe,m), the third
term in Eq. (3) can be rewritten as Re(αeα

∗
mPz) ≈

Re(αe)Re(αm)Re(Pz). Then the optical force can be pre-
sented in the form
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Nonmagnetic lossy Rayleigh particles (µ = 1, αm = 0
and Im(ε) > 0) can only be pushed (⟨Fz⟩ > 0), but
can never be pulled (⟨Fz⟩ < 0), because of Im(αe,m) >
0. They can be negative for the gain particles, to be
pulled by the light[2, 3]. For magnetodielectric particles
(Re(ε) ≥ 1 and Re(µ) ≥ 1) characterized by Re(αe,m) ≥
0, the positive Pz is required to obtain the pulling force.
However, when Re(αe) < 0 and Re(αm) > 0 or vice
versa, the pulling force only occurs to the situations with
Pz < 0, e.g., Bessel beam [4]. Inequality Re(αe) < 0

is equivalent to Re(α
(0)
e ) < 0 and can be realized for

the Rayleigh spheres in a wide range of permittivities
−2 < Re(ε) < 1. Nevertheless, such conditions afore-
mentioned are not sufficient conditions to have a pulling
force: a quite small longitudinal wavenumber β is still re-
quired in order to reduce the positive radiation pressure
corresponding to the first two terms in Eq. (4).

From Eq. (4), it is evident that positive and large
Poynting power along the z axis (namely propagation
direction) increases the chance of obtaining negative
pulling force. It has been unambiguously demonstrated
in Fig. 1 that total longitudinal Poynting component
is large and positive inside the particle when negative
pulling force arises.

Precise modeling of the optical force valid for arbitrary
radius R can be made by using Maxwell stress tensor
T̂ = (1/2)Re[ε0Ẽ⊗Ẽ∗+µ0H̃⊗H̃∗−(ε0|Ẽ|2+µ0|H̃|2)Î/2],
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FIG. 1. (Color online ) Distribution of the longitudinal Poynting component for particles at the beam axis d = 0 for various
radiuses, (a) k0R = 1.0, (b) k0R = 1.5, and (c) k0R = 2.5. Parameters: ε = 3.9, µ = 1, m = 1, α = 70◦, c1 = 1, c2 = i. The
longitudinal Poynting component is greatly enhanced in the center of the particle, providing large and positive axial Poynting
component to give rise to pulling force.

where the fields Ẽ = E+Esc and H̃ = H+Hsc are the
sum of the incident and scattered fields. Then the optical
force acting on a particle is the result of the integration
over any surface σ embracing the particle: ⟨F⟩ =

∫
σ
(n ·

T̂)ds. We use exactly this accurate calculation technique
through the whole paper.
2. Distribution of the longitudinal Poynting

component for the situations of pushing force and
pulling force.
The interaction between Bessel beam and particles can

generate various Poynting vectors, including concentrate

the Poynting vectors. For small particles (Fig. 1(a)), the
interference is weak and the beam shape is preserved.
By using appropriate Bessel beam and proper particle
size (Fig. 1(b)), much longitudinal Poynting component
can be focused at the center of the particle due to the
enhanced interaction. According to the expression of op-
tical force ⟨Fz⟩, the large positive longitudinal Poynt-
ing component inside the particle is the origin of pulling
force. For larger particles, higher-order multipoles are
developed, thus the dipole approximation is no longer
valid.
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