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1. Derivation of the transformation-optics magnifying lens 

To compress the circular region )(  br  in the virtual space into region I )( ar   in the 

real space, the following transformation can be used 
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Then, the relative constitutive parameters for the core region )( ar   are expressed as 





















 


2

,1,1
a

b
diagu


                                      (2) 

To stretch the annular region )( brb   in the virtual space into region II )( bra   in 

the real space, we apply for the following transformation 
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And the relative constitutive parameters for region II are calculated as 
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In the two-dimensional case, we only need to consider three components ( r ,  , and 

z ) for the transverse-electric polarization. Thus we can obtain 
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Because the wave propagation (wavenumber k


) is always confined in the x-y plane in the two 

dimensional case, Equation (5) may be replaced by the refractive index and be simplified as 
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Assuming 0 , Equation (6) will be reduced to Equation (1) in the main text. The 

normalized far-field patterns of the transformation-optics magnifying lens at 10 GHz are 

shown in Figure S1, with different radial indexes of refraction  

2. Imaging scheme of source positions 

The imaging scheme is an inverse problem to determine the source positions (p
(n)

) based on 

the far-field radiation patterns and the magnification factor M of the immersion lens. In fact, 

we can employ the inverse computation scheme to find out the equivalent positions of sources 

(p0
(n)

) in free space which produce the same far-field patterns. Then the actual source 

positions can be approximated as: p
(n)

= p0
(n)

/M, in which n represents the index of source. In 

our inversion algorithm, the optimal equivalent positions of sources are determined by 

seeking the minized least-square norm 
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where F0 is the known (measured or simulated) far-field patterns and F(p0
(n)

, φi) is the 

calculated far-field patterns of sources positioned at p0
(n)

 in free space, which have closed-

form expressions, and φi is the ith observation angle. In the inversion algorithm, we collect the 

data of electric fields along a semi-circle with the radius of 80mm. The far-field patterns are 

calculated from the near-field data by using the effective magnetic-current method. White 

noises have been added to the calculated far fields to simulate more realistic situations: 

( )

0 rand( , )n

iF F p F R   , 

in which ∆F is the maximum error of far fields, and Rrand is a random number. We note that, 

without white noise, breaking the diffraction limit is possible by retrieving the position of 

point sources from the far field. 
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Figure S1 The normalized far-field patterns of the transformation-optics modified solid 

immersion lens with different radial indexes of refraction at 10 GHz. (a) The transverse-

electric polarization. (b) The transverse-magnetic polarization. We observed that the far-field 

patterns are nearly unchanged when the radial index of refraction is set as different values for 

both polarizations. 

3. The material parameters of the fabricated impedance-matching magnifying lens 

The material parameters of the fabricated impedance-matching magnifying lens are illustrated 

in Table S1. 

Table S1. Details of the effective permittivity and size of unit cell of the fabricated lens 

 
Core 

Region 

Macthing 

Layer 1 
Macthing Layer 2 Macthing Layer 3 

Macthing 

Layer 4 

Macthing 

Layer 5 

Dielectric 

Plate 
TP2 TP2 FR-4 F4B F4B F4B-2 

Permittivity 9.6 9.6 4.6 2.65 2.65 2.2 

h (mm) 3 3 3 3 2 1 

Effective 

Permittivity 
9 7.67 5.76 4.48 3.59 2.94 2.45 2.07 1.78 1.54 1.35 1.19 

D (mm) 0.8 1.4 2.1 0.5 1.7 2.3 1.2 2 2.5 1.9 2.6 1.7 
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4. Eigen-mode analysis of the magnifying lens 

We introduce the rigorous theoretical analysis to the simplified modified solid immersion lens. 

When the transverse electric polarization is considered, the wave equation of region II can be 

expressed as 
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where 0 02π /k  , 0, 1, 2,n    , and 0  is the wavelength in free space. Using 

eigenfunction expansion method, the function of r obviously satisfies the Euler’s equation (7), 

and we can obtain 
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where 2 2 2

0k b n   , An and Bn are undetermined coefficients. The Ez fields of regions I and 

III can be expressed as 
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where 0c ck k n , Rn and Tn are undetermined coefficients, and ( )nJ x  and (2) ( )nH x  represent 

the Bessel function of the first kind and the Hankel function of the second kind, respectively. 

According to the continuous boundary condition of tangent field components, the four 

unknown coefficients can be determined. Since we only concern the field in region III, Tn can 

be expressed as 
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For the case of two sources with large distance, the electric field of outer region ( r b ) can 

be expressed as 

   (2) j0
0 01 cos π .
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