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Modified Spherical Wave Functions With Anisotropy
Ratio: Application to the Analysis of Scattering by

Multilayered Anisotropic Shells
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Abstract—We describe a novel and rigorous vector eigenfunc-
tion expansion of electric-type Green’s dyadics for radially multi-
layered uniaxial anisotropic media in terms of the modified spher-
ical vector wave functions, which can take into account the effects
of anisotropy ratio systematically. In each layer, the material con-
stitutions � and � are tensors and distribution of sources is arbi-
trary. Both the unbounded and scattering dyadic Green’s func-
tions (DGFs) for rotationally uniaxial anisotropic media are de-
rived in spherical coordinates ( ). The coefficients of scat-
tering DGFs, based on the coupling recursive algorithm satisfied
by the coefficient matrix, are derived and expressed in a compact
form. With these DGFs obtained, the electromagnetic fields in each
layer are straightforward once the current source is known. A spe-
cific model is proposed for the scattering and absorption character-
istics of multilayered uniaxial anisotropic spheres, and some novel
performance regarding anisotropy effects is revealed.

Index Terms—Anisotropic ratio, dyadic Green’s functions
(DGFs), modified spherical wave functions, radially multilayered
structures, recurrence matrix, scattering and absorption, vector
eigenfunction expansion.

I. INTRODUCTION

THE dyadic Green’s functions (DGFs) technique [1]–[3]
has been widely used to characterize electromagnetic wave

propagation and to solve electromagnetic boundary value prob-
lems for the last decades. The dyadic Green’s function serves as
a kernel of the integral and has to be defined or formulated be-
forehand. However, with the complexity of media growing, the
dyadic Green’s function representations for media also become
more complicated. In recent years, due to the advances in mate-
rial science and technology which have manifested fabrication
of various kinds of complex materials, considerable attention
has been paid to the interaction of electromagnetic waves with
anisotropic materials [4]–[6], bianisotropic media [7] and chi-
rowaveguides [8].

In addition to the modal representation of DGFs in [9] and
[10], vector eigenfunction expansion of DGFs was established
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for isotropic media [2]. For planarly multilayered media, DGFs
have been derived [11]–[13]. For cylindrical multilayered
media, DGFs were constructed for chiral media [14]. However,
due to the complexity of the parameter tensors, plane wave
expansion along with the Fourier transform and the theory of
TE and TM decomposition are widely employed in the analysis
of anisotropic media [15]. For the same reason, when formu-
lating the DGFs in anisotropic media, most papers express
Green’s dyadics in Cartesian or cylindrical coordinates such
as [16], [17]. Due to the complexity of DGF formulation for
multilayered structures in spherical coordinates, only some
related pieces of work have been done for isotropic [18], [19]
and bi-isotropic media [20]. Conventionally, only the case of
single layered anisotropic sphere with plane-wave incidence
can be studied [21], [22], and the application could be limited
unless the excitation can be a current source or dipole. Even if
the method of eigenfunction expansion is tailored for multilay-
ered anisotropic spheres [23], the formulation becomes rather
lengthy if one wants to take into account anisotropy in Mie
theory. Besides, if both permittivity and permeability possess
anisotropy, as in the present paper, the methodology adopted
in [23] would be quite cumbersome to apply. Moreover, the
role of anisotropy in the scattering properties deserves further
investigation, so we propose the parameter of anisotropic ratios
to characterize such effects. In our approach, not only the
scattering due to arbitrary current distribution and multilayered
anisotropic spheres is computed, but also the scattering problem
of plane-wave incidence can be transformed into a radiation
problem by introducing a special dipole so as to employ ob-
tained DGFs thereafter. Hence, the conventional plane-wave
scattering in the presence of an anisotropic sphere can be treated
as only a special subset of our work. Furthermore, the sphere’s
anisotropy ratio effects on radar cross section are taken into
account in a compact form by modifying the spherical wave
functions, which avoids tedious mathematical formulation.

This paper aims at solving radiation and scattering from
an embedded source of excitation in an arbitrary layer of the
radially multilayered anisotropic shells. Starting from potential
formulation, we obtain the field representations and unbounded
DGFs in terms of modified spherical wave functions. The
spectral-domain EM DGFs are derived by considering mul-
tiple transmission and reflection at each interface. A specific
numerical example is provided with the particular interest in
anisotropy effects, and the effects of anisotropy ratio are shown.
The originality, compactness and generality of the proposed
theory are the main contributions of the current work.

0018-926X/$25.00 © 2007 IEEE
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II. BASIC FORMULATIONS OF POTENTIALS AND MODIFIED

SPHERICAL WAVE FUNCTIONS

In this work, we investigate a kind of general uniaxial media
which consists of constitutive tensors of permittivity and per-
meability in the form

(1a)

(1b)

where the unit vector dyad is . To our knowl-
edge, this kind of form was first introduced in [24] where
and components are not zero. This kind of anisotropy can
be either natural or introduced in the processing of the surface
plane and the shear. We notice that if the nondiagonal compo-
nents of the material tensors and are zero, then the rotations
would be equivalent to letting unchanged while rotating the
transverse elements (to ) with as axes. The material in our
study remains invariant under such a rotation, which was called
G-type [24] where the analysis was in 2-D with respect to as
the axis of rotation. Thus, for this uniaxial anisotropic material,
the anisotropy ratio (AR) can be defined as

(2a)

(2b)

where the subscripts and denote electric and magnetic
anisotropy ratios, respectively. For anisotropic media, the
Maxwell equations and the constitutive relationship are given
as follows:

(3a)

(3b)

where time dependence is and is suppressed.
In the source-free case, (3) can be rewritten as

(4a)

(4b)

From (4), we have the idea to express and in terms of
the following sets:

(5a)

(5b)

and the TM and TE modes are with respect to in the spherical
coordinate.

Substituting (5) into (4), we obtain

(6a)

(6b)

By inserting (6a) and (5b) into (4b) and equating the radial
components, the potential can be obtained. The potential

can be obtained in a similar way by substituting (6b) and
(5a) into (4a)

(7a)

(7b)

where

(8)

Using the separation of variables method, we find that the so-
lutions to the above equations are composed of superpositions
of Bessel functions, associated Legendre polynomials, and har-
monic functions, i.e.,

(9a)

(9b)

(9c)

(9d)

(9e)

where is spherical Bessel functions. The field representa-
tions can be obtained by using TE/TM decomposition

(10a)

(10b)

(10c)

(10d)

After some manipulation, we obtain

(11a)

(11b)

(11c)
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where the superscript denotes the kinds of Bessel/Hankel func-
tions, , and

(12a)

(12b)

In our paper, are defined as

(13)

III. GENERAL EXPRESSION OF DYADIC GREEN’S FUNCTIONS

The modified vector wave functions in (12) for rotationally
symmetric anisotropic media can also be used as vector eigen-
functions to expand and express the DGFs in unbounded or mul-
tilayered cases. Without the loss of generality, both and have
the uniaxial form, which results in

(14a)

(14b)

The electric field can be expressed in terms of electric-type DGF
and current source

(15)

where represents the source volume. The source distribution
of in (3) can also be expressed as

(16)

Inserting (15) and (16) into (3), we have

(17)

By means of the vector eigenfunction expansion, one can finally
arrive at

(18)

where the upper part is for and the lower part is for
, and denotes the second kind of Hankel func-

tion used herewith and represents the first kind of Bessel

function involved. Note that the irrotational part has been ex-
tracted. It is obvious that (18) is reducible to the isotropic case
( and ) [3] and the present dyadic Green’s func-
tion agrees with the reduced form. Using the method of scat-
tering superposition, the dyadic Green’s function can be con-
sidered as the sum of the unbounded and scattering DGFs. The
former corresponds to the contribution due to the source in the
infinite homogeneous space while the latter reflects the contri-
bution of the source due to the presence of multiple interfaces.
The DGFs is thus given as

(19)

where and denote the total and unbounded electric DGFs,
respectively; superscripts and denote the field point located
at th layer and source located at th layer, respectively; and
is the Kronecker delta function. Consider a radially N-layered
geometry of a uniaxial anisotropic shell shown in Fig. 1. The
permittivity, permeability and wave number in th layer are de-
fined as

(20a)

(20b)

(20c)

Assuming that the current source is located in th layer, we
may construct the scattering DGFs as follows by considering
the model of multiple transmission and reflection due to the in-
terfaces

(21)

where and are the coefficients of
scattered DGFs to be determined by the boundary conditions
at each interface. The physical insight of the above equation
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Fig. 1. Geometry of radially multilayered media.

resides in the fact that in the th layer the scattered fields are
composed of inward and outward waves, which are due to the
reflections from the outer interfaces at and inner
interfaces at , respectively.

IV. DETERMINATION OF SCATTERING DGFS’ COEFFICIENTS: A
RECURSIVE MATRIX METHOD

A. Recursive Algorithms

By the proposed recursive matrix method, all the unknown
scattering coefficients can be determined by applying boundary
conditions at

(22a)

(22b)

To simplify the symbolic calculations, let us introduce the fol-
lowing operators:

(23a)

(23b)

(23c)

(23d)

where indicate and , respectively.
A set of linear equations of the scattering coefficients, which

can be represented by a series of compact matrices, are con-
structed to demonstrate the boundary conditions clearly

(24)

where and

(25a)

(25b)

(25c)

(25d)

(25e)

Defining the following transmission T-matrix:

(26)

where is the inverse matrix of . We
rewrite the linear equation into the following form:

(27)

To shorten the expression, we also introduce

(28)

It should be noted that the coefficients matrices of the first and
the last layers have the following relations:

(29a)

(29b)

B. Application to Specific Cases

To illustrate how to apply the recursive algorithms of trans-
mission and reflections coefficient matrices, the following cases
are specifically considered where the source is located in the
first, intermediate, and the last layers, respectively.

1) Source in the First Layer: When the current source is lo-
cated in the first layer (i.e., ), the terms containing
in (21) vanishes. The coefficient matrices in (25c) and (29) will
be further reduced to

(30a)

(30b)

(30c)

where . It can be seen that only two coef-
ficients for the first layer and the last layer, but four coefficients



QIU et al.: MODIFIED SPHERICAL WAVE FUNCTIONS WITH ANISOTROPY RATIO 3519

for each of the remaining layers, need to be solved for. By fol-
lowing (27), the recurrence relations in the th layer become

(31)

With in (31), a matrix equation satisfied by the coeffi-
cient matrices in (30) can be obtained. The coefficients for the
first layer is given by

(32)

The coefficients for the last layer can be derived in terms of the
coefficients for the first layer given by

(33)

The coefficients for the intermediate layers can be then obtained
by substituting the coefficients for the first layer in (32) to (31).
Thus, all the coefficients can be obtained by these procedures.

2) Source in the Intermediate Layers: When the current
source is located in an intermediate layer, (i.e., ), only
the terms containing for the first layer or for
the last layer vanish in (21). The coefficient matrices in (25c)
and (29) will be further reduced to

(34a)

(34b)

(34c)

From (27), the recurrence equation becomes

(35)

where is the unit step function. For , the
coefficients for the first layer are given by

(36a)

(36b)

and those for the last layer are

(37a)

(37b)

Substituting (36) into (35), the rest of the coefficients can be
obtained for the DGFs.

Fig. 2. Two-layer model.

3) Source in the Last Layer: When the current source is lo-
cated in the last layer (i.e., ), the coefficients are

(38a)

(38b)

(38c)

From the recurrence (27), similarly we have

(39)

By letting , the coefficient for the first region is

(40)

For the last layer, it is found that

(41)

Similarly, the rest of the coefficients can be obtained by inserting
(41) into (39).

V. NUMERICAL VALIDATION AND ANISOTROPY SUTDY

To further illustrate how to use the present theory in a more
practical way, we study the electromagnetic radiation and scat-
tering from a special dipole in a two-layer structure where the
first and the second layer are occupied by the air and a uniaxial
anisotropic sphere, respectively (see Fig. 2).

An infinitesimal electric dipole is assumed to be in the Region
(1), and the center of the spherical coordinates is set to be the
center of the sphere. is the radius of the sphere, and is the



3520 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 55, NO. 12, DECEMBER 2007

distance between the dipole and the center of the sphere. This
ideal dipole is given by

(42a)

(42b)

In our work, we let and , and should be
infinite in order to transform a plane-wave scattering problem
into a radiation problem [25]. Note that, conventionally, only
plane-wave incidence is considered in the problems of scat-
tering by anisotropic spheres. Thanks to the developed dyadic
Green’s function in the present paper, one can also consider cur-
rent-source illumination. We consider electric scattering field in
the far-zone of region (1). Hence, the scattering DGFs are con-
structed

(43a)

(43b)

where

(44a)

(44b)

The boundary conditions at are

(45a)

(45b)

where

(46a)

(46b)

where represents the unbounded dyadic Green’s function in
region (1).

The scattering coefficients can thus be obtained after some
manipulation

(47a)

(47b)

(47c)

(47d)

where and
denotes Bessel/ -Hankel functions involved in the (47).

Now, (15) can be applied to obtain electric fields. In numerical
calculation, the radar cross section (RCS) is defined as [26]

(48)

where and are incident angles. The monostatic (backscat-
tering) RCS is of our particular interest herein, and the RCS in
all figures are normalized by where is the radius of the
sphere. The truncation number is chosen. It can be
verified that the RCS values are convergent for bigger N on the
workstation.

In Fig. 3, the RCS result of an isotropic sphere is compared
with that of a slightly anisotropic sphere. It can be seen that the
normalized RCS values are quite sensitive to the anisotropy ratio
of the sphere, especially the electric size is not very small. Even
a 2% difference of anisotropy ratio will result in the obvious
variation of RCS. In Fig. 4, the joint anisotropy effects are dis-
cussed. Two cases are shown: 1) and ,
and 2) and . It can be found that RCS
characteristics of a sphere with joint anisotropy are greatly mod-
ified by anisotropy ratio. The case of the sphere with bigger elec-
tric anisotropy ratio in Fig. 4 exhibits many zero and near-zero
values of RCS, the sphere can then be considered as invisible.
If the radius of the sphere or the frequency is properly chosen,
invisible performance can be realized. By calculating other var-
ious cases with different anisotropy ratio, it can be verified that
joint anisotropy will produce more zero RCS values than single
anisotropy, and the RCS of the dielectric anisotropic sphere car-
ries a complex form, which cannot be predicted by a simple
theory.

In Figs. 5 and 6, we study the absorbing spheres with single
anisotropy and joint anisotropy. In Fig. 5, it is clear that the
oscillations exhibit irregular forms when , and for
bigger values of , the oscillations start to show a regular
decaying form, which agrees with the results for conducting
spheres and the results for the uniaxial anisotropic spheres in
[27], [28]. After considering different cases of , it is also found
that for absorbing anisotropic spheres, the extrema of the nor-
malized RCS values are proportional to the imaginary part of
the transverse and cannot be bigger than unit, if the rest of
material’s parameters keep unchanged. The RCS characteris-
tics of absorbing spheres with joint anisotropy have been shown
in Fig. 6. The RCS values of absorbing anisotropic spheres are
predictable when becomes large enough. The case of

in Fig. 6 is of our particular interest. It
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Fig. 3. Sensitivity of normalized RCS values for dielectric spheres with single
anisotropy (� = � = 1).

Fig. 4. Normalized RCS values versus k a for dielectric spheres with joint
anisotropy.

can be seen that the RCS value is very close to zero at .
By calculating other cases whose is very close to , similar
phenomenon will be observed, which exhibits great potential in
stealth technology.

It can be also observed that the values of the absorption
play an important role in the scattering behavior, which make
the effects of anisotropy ratio upon RCS controllable. In the
lossless dielectric cases shown in Figs. 3 and 4, the scattering
behavior depends on anisotropy ratio in a complex form, which
is difficult to predict by a simple method. Those extrema for
absorbing spheres are found to be determined by the limit

, which also partially validates
our method. The and , which are perpendicular to the elec-
tromagnetic perturbations of the incident wave, thus have little
effect on the backscattering behavior for the sufficiently large
absorbing spheres. The performance of RCS of the absorbing
sphere stems from the attenuation of the transmitted wave in
the sphere which causes all the scattering due to the reflection
at the external boundary surface [28]. The transmitted waves

Fig. 5. Normalized RCS values versus k a for absorbing spheres with single
anisotropy (� = � = 1).

Fig. 6. Normalized RCS values versus k a for absorbing spheres with joint
anisotropy.

can also be computed, which is suppressed due to the length
restriction. The numerical results again confirm the validity of
our theoretical formulation and calculation.

VI. CONCLUSION

This paper presents the construction of the modified spherical
wave functions and the general expression of scattering DGF co-
efficients for multilayered uniaxial anisotropic shells. From the
field expressions, the DGFs are constructed in terms of modi-
fied spherical wave functions, and the scattering DGFs can be
thus obtained by using the method of scattering superposition.
In the present theory, the conventional plane-wave illumina-
tion condition has been extended to arbitrary current sources,
and the anisotropy effects are represented in terms of the frac-
tional-order Bessel/Hankel functions. Based on that, the formu-
lation of field components and Green’s dyadics are greatly sim-
plified compared to the conventional way. Since the magnetic
type of DGFs can be derived by making the duality theorem,
only the electric type of DGFs is analyzed herein.

Based on a recursive algorithms of the scattering coefficients
which satisfy the boundary conditions of electromagnetic



3522 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 55, NO. 12, DECEMBER 2007

fields, the general representation of the coefficients is expressed
in terms of the transmission and reflection coefficients for
different cases where the current distributions are located in
the first, intermediate and the last layers of the radially multi-
layered uniaxial anisotropic media. Then a simple geometry of
radially multilayered uniaxial anisotropic media is considered
and anisotropy effects are extensively analyzed.

APPENDIX I
SOME PROPERTIES OF SPHERICAL BESSEL/HANKEL FUNCTIONS

In the formulation of this paper, spherical Bessel/Hankel
functions are employed, which are defined as

(A-1)

(A-2)

and in the calculation of RCS, the following identities have to
be used for simplicity

(A-3)

(A-4)

When the argument of the second-order Hankel functions ap-
proaches a sufficiently large value, we will have the asymptotic
forms

(A-5a)

(A-5b)

As for the associated Legendre polynomials, these properties
have to be utilized in this paper

(A-6a)

(A-6b)

where denotes Kronecker delta function.
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